Simulointi. Satunnaisluvut

Koko: px
Aloita esitys sivulta:

Download "Simulointi. Satunnaisluvut"

Transkriptio

1 Simulointi Satunnaisluvut

2 Satunnaisluvut Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin, John v. Neumann Simuloinnissa käytetään aina näennäisesti satunnaisia lukuja (pseudo random numbers) Satunnaislukujen tulisi olla Tehokkaasti ja toistettavasti generoitavia Toistaa tavoitellun satunnaislukujonon keskeiset piirteet (tunnusluvut, näennäinen riippumattomuus) Käyttötarve määrää, mitkä piirteet keskeisiä

3 Historiaa Tarve generoida satunnaislukuja syntyi yhtä aikaa tietokoneiden kanssa Ydinreaktion simulointi, Los Alamos Alkuvaiheessa yksinkertaisuus ja laskennallinen tehokkuus korostuivat Yksinkertaiset laskutoimitukset, sopivat numeeriset vakiot Myöhemmin siirrettävyys Tehokas toteutus korkean tason kielillä Lisäksi tilastolliset ominaisuudet

4 Satunnaislukujen generointi Generointi jaetaan yleensä kahteen osaan Tasan (0,1) jakautuneiden satunnaislukujen generointi Generoidaan tasan (0,m-1) jakautuneita kokonaislukuja ja jaetaan lopuksi m:llä Annetun todennäköisyysjakauman mukaan jakautuneiden lukujen generointi Tehdään Tas(0,1) lukujen avulla

5 Keskineliömenetelmä Ensimmäisiä ad hoc ajatuksia (von Neumann) Olkoon x k-numeroinen luku. Esim x=12345 Lasketaan x*2 (2k-numeroinen) Otetaan k keskimmäistä Jne >x, U=0,16604

6 Keskineliömenetelmä integer,parameter :: m0=100,m1=10000 integer :: seed real function random() seed=seed*seed seed=seed/m0 seed=modulo(seed,m1) random=real(seed)/real(m1) return end function random E E E E E E E E

7 Keskineliö - analyysiä Menetelmä tuottaa päättymättömän jonon k-numeroisia lukuja. Ensimmäiset luvut yleensä näennäisesti toisistaan riippumattomia. Menetelmä päätyy toistamaan tiettyä lukusarjaa Sykli yleensä liian lyhyt simulointitarpeisiin Syklin pituutta ja laatua ei voi hallita helposti

8 Hyvät satunnaisluvut Generoiduilta satunnaisluvuilta edellytetään Satunnaisuutta Sama sekvenssi ei saa toistua systemaattisesti käytön aikana Käytännössä syklin oltava pidempi kuin koesarjassa tarvittujen lukujen määrä Oikeaa jakaumaa Yleensä OK, jos kaikki mahdolliset arvot käydään läpi (maksimisykli).

9 Hyvät satunnaisluvut Peräkkäisten arvojen riippumattomuus Ei toteudu kirjaimellisesti, vaatii testausta Esim. k peräkkäisen arvon jakauma R^k:n yksikkökuutiossa tai max(x_i,,x_(i+k-1)):n jakauma. Taajuustesti (lukujonon tulisi olla ortogonaalinen kaikkien sini-aaltojen kanssa) Hyvyys riippuu käyttötarkoituksesta käytetäänkö lukuja yksittäin, pareittain, k-luvun ryppäissä, jne Tarkemmin Knuth vol II

10 Lehmer generaattori Kehitetty 40-luvulla (D Lehmer) ensimmäisille tietokoneille (Eniac) Perusoperaatiot: kertolasku, yhteenlasku ja jakojäännöksen ottaminen X= (a X+ c) mod m Parametreilla a, c ja m voidaan vaikuttaa lukujonon ominaisuuksiin Alkuperäinen generaattori toteutettiin omana laskentayksikkönään (jonka tuloksia käytettiin vain tarvittaessa) -> lisää satunnaisuutta

11 Lehmer generaattori Alkuperäinen generaattori Eniacille m= 10^8 +1 A= 23 C= 0 Oli tehokas toteuttaa kyseisellä koneella Ei erityisen hyvälaatuinen (pieni kertoja, peräkkäiskorrelaatiota)

12 Lehmer generaattori Seuraava X määräytyy yksikäsitteisesti edellisestä. Generaattori alkaa toistaa samaa sarjaa heti kun X toistuu ensimmäisen kerran X:n arvoalue määrää teoreettisen maksimipituuden syklille (= m) Lehmer generaattorille tiedetään, milloin maksimisykli saavutetaan Jos q on m:n tekijä (alkuluku tai 4), a-1 =0 mod q c:llä ja m:llä ei yhteisiä tekijöitä (ja c ei nolla)

13 Lehmer generaattori (Vasta)esimerkkejä maksimisykliehdoista Valitaan m=8, c=3 Oltava a-1 =0 mod 2 ja a-1=0 mod 4=> a=5 0->3->18=2->13=5->28=4->23=7->38=6->33=1->0 Jos a=3 (a-1=0 mod 2) 0->3->12=4->15=7->24=0 Jos c=0, 0->0 kaikilla m, a

14 Lehmer generaattori Jos c=0, maksimisykliä ei saavuteta (X=0 kuvautuu aina nollaksi) Teoreettinen maksimisykli (kun c=0) on m-1. Voidaan saavuttaa jos ja vain jos m on alkuluku a on ns primitiivinen elementti mod m Käytännössä a voidaan määrätä vain kokeellisesti Prime modulus multiplicative congruental generator

15 Lehmer generaattorit Käytännössä suosittuja perusgeneraattoreita Käsitteellisesti helppoja laskutoimituksia 2^31-1 (maxint) on sopivasti alkuluku Helppo tehdä siirrettävä toteutus (jos a riittävän pieni) (käytettävä kaksoistarkkuuden aritmetiikkaa, jos 64 bitin kokonaislukuja ei tueta) Tutkittu ja tunnettu

16 Lehmer generaattori real(dp),parameter :: m=2._dp**31-1._dp m_1=1._dp/m a=16807._dp real(wp) function random() seed=modulo(seed*a,m) random=seed*m_1 return end function random

17 Yhdistelmägeneraattorit Tehty aikanaan lyhyen sananpituuden koneille (16-bit), Wichman-Hill Käytetään useampaa lyhyen syklin generaattoria Esim syklit m_1, m_2 ja m_3 Tuotetaan jonot X_i ja U_i= X_i/m_i Tulos U= U_1+U_2+U_3 mod 1 Sopivin valinnoin syklin pituus on m_1*m_2*m_3 Toteutus täysin standardiaritmetiikalla (m_i<2^14)

18 Sekoitetut generaattorit Käytetään sekä syklin pidentämiseen että peräkkäiskorrelaation vähentämiseen Periaate on tuottaa satunnaislukuja generaattorilla A taulukkoon Taulukosta poimitaan generaattorin B avulla satunnainen alkio (generaattorin output) ja lasketaan tilalle uusi luku generaattorilla A Tarvitsee muistia ja käynnistysvaiheen sekä kaksi satunnaislukua/tulos Sykli pitenee (mutta paljonko)

19 Sekoitettu generaattori A B

20 State of the Art Tämän hetken de facto standardi on Mersenne Twister Kehitetty 1990-luvun lopulla Erittäin pitkä sykli (2^ ) Parhaat tunnetut peräkkäiskorrelaatioominaisuudet Tarvitsee 624-sanan työmuistin (joten käynnistys kestää) Saatavissa useille kielille/ympäristöille

21 Mersenne twister Mihin perustuu X_(N+1) = F(X_N,, X_(N-623)) Tilavektorissa 624*32 = bittiä Teoreettinen maksimisykli kävisi kaikki tilat läpi Jättämällä X_(N-623):sta osa biteistä käyttämättä, ja rajaamalla algoritmisesti 0-vektori pois mahdollisista tiloista saadaan haluttu teoreettisesti maksimaalinen sykli (alkuluku, ns Mersenne luku, josta nimi)

22 Mersenne twister Tarvitaan F, joka On laskennallisesti kevyt Tuottaa maksimaalisen syklin Löydetty luokasta X_(N+1) = X_N*A_0 + X_(N-k) * A_k A_i:t kerroinmatriiseja Menetelmäluokalle on teoriaa maksimisykleistä Löydetty A:t joille vain 3 matriisia nollasta eroavia Ts vain kolmea vanhaa X arvoa käytetään yhdellä kierroksella

23 Mersenne Twister Löydetty menetelmä tuottaa pitkä sykli Laskennallisesti kevyt Peräkkäiskorrelaatio vaatii vielä huomiota K-testi: tarkastellaan peräkkäisten satunnaislukujen k-merkitsevimpien bittien jonoa Monelleko peräkkäiselle luvulle ym jono on tasajakautunut Tähän voidaan vaikuttaa sekoittamalla X:n bittejä laskennan jälkeen Ei vaikuta sykliin vaan vain output streamiin

24 Satunnaisluvut ja jakaumat Miten generoida satunnaislukuja, joilla on haluttu tiheysjakauma. Käänteistodennäköisyyden menetelmä Olkoon f haluttu tiheysfunktio. Tätä vastaa kertymäfunktio F: x-> (0,1).

25 Käänteistn. menetelmä Arvotaan u Tas (0,1) jakaumasta Asetetaan x = F^(-1) (u). x:n tiheysjakauma on f. Edellyttää, että F^(-1) tunnetaan suljetussa muodossa u x

26 Käänteistn. menetelmä Tarkastellaan eksponenttijakaumaa Tiheys f. on f(x) = a e^(-ax) Kertymä f. on F(x) = 1- e^(-ax) Vastaavasti F^(-1) (U) = - ln(1-u)/a Eksponenttijakautuneita suureita saadaan arpomalla U ~ Tas(0,1) ja tulostamalla ln(1-u)/a Myös ln (U)/a toimii, jos U>0 aina

27 Eliminointimenetelmä Yleinen menetelmä, edellyttää pelkästään tiheysfunktion arvoja Olkoon f tiheysfunktio välillä (a,b), 0<f<c. Arvotaan x, Tas(a,b), y, Tas(0,c). Jos y< f(x), hyväksytään x. Muuten hylätään ja arvotaan uudet x,y y x

28 Eliminointimenetelmä Eliminointimenetelmä on sitä tehokkaampi, mitä vähemmän hylkäyksiä Väli (a,b) voidaan jakaa osaväleihin ja/tai vaihtaa y:n jakaumaa paremmin f:ää approksimoivaksi. f< cg (osavälillä), g tunnettu jakauma ja x noudattaa g:tä, y = Tas(0, cg(x)) y x

29 Eliminointimenetelmä Osaväleihin jaettaessa on Aluksi arvottava mihin osaväliin/alueeseen x kuuluu (tn laskettava etukäteen) Sitten valitaan x osavälin jakaumasta ja 0< y< cg(x) sekä testataan y<f(x). Jakauman ositus voi olla taidetta (Marsaglia, ks Knuth vol II) y x

30 Yhteenvetoa Satunnaislukugeneraattoreilla yli 60-vuoden historia Testattuja ja tunnettuja generaattoreita hyvin saatavilla. Itse ei yleensä kannata säätää Tuntematonta generaattoria (menetelmä ja lähdeviitteet puuttuvat) ei kannata käyttää ainakaan testaamatta (vrt PC:n Basic-generaattori) Generaattoria ymmärrettävä niin, että voi tehdä hallittuja kokeita/toistoja.

31 Simulointi Monte Carlo

32 Monte Carlo simulointi Yksittäisen stokastisen simuloinnin tulos on aina sattumanvarainen Yksittäinen instanssi satunnaismuuttujasta Simulointikoesarjan tavoite on saada tietoa satunnaismuuttujan jakaumasta tai jakauman parametreista (keskiarvo, hajonta) Taustalla periaatteessa deterministinen arvo, johon ei kuitenkaan aina suoraan päästä käsiksi.

33 Buffonin neula Klassinen esimerkki mekaanisesta simuloinnista, jonka tarkka vastaus tunnetaan. Buffonin herttuan 1733 esittämä menetelmä p arvon määräämiseksi. Heitetään l pituista neulaa alustalle, jossa on yhdensuuntaisia suoria d välein. Lasketaan, kuinka usein neula koskettaa viivaa. Kokeellinen todennäköisyys P= #osumat/#yritykset

34 Buffonin neula Neula osuu viivaan jos Neulan keskipisteen etäisyys viivasta on pienempi kuin l sin a, missä a on neulan ja viivan välinen kulma d l a Kulma ~ Tas(0, p/2) Keskipiste ~ Tas (0,d/2)

35 Buffonin neula Osuman todennäköisyys lasketaan sinikäyrän rajoittaman pinta-alan avulla p= 2l/(pd) Jos p:lle tunnetaan havaintoarvo, voidaan saada estimaatti p:lle. d/2 l/2 p/2

36 Buffonin neula Yksittäisen heiton tulos on satunnainen Samoin N heiton keskiarvo. Mitä tiedämme N heiton jälkeen? Määrättävä N heiton keskiarvon (P) jakauma Tai ainakin odotusarvo ja keskihajonta P on N:n riippumattoman satunnaissuureen keskiarvo Yksittäiset kokeet noudattava binomijakaumaa odotusarvolla p (=2l/(pd)) E(P)=p.

37 Buffonin neula Yksittäisen heiton tuloksen (tai Bin(p) muuttujan) varianssi on p(1-p) N riippumattoman kokeen keskiarvon varianssi on p(1-p)/n Ts Var(P) = p(1-p)/n Nyt meillä on havainto satunnaissuureesta, jonka varianssi tunnetaan. Voimme tehdä arvioita havainnon (otoskeskiarvo) ja odotusarvon välisestä suhteesta.

38 Luottamusväli Oletetaan, että tunnemme satunnaismuuttujasta otoskeskiarvon Millä välillä on todellinen odotusarvo esim 99% todennäköisyydellä. Määriteltävä ns. luottamusväli, jolle pätee P( P-d < p< P+d) >0.99. Määrittely mahdollista, jos P:n jakauma tunnetaan. P N riippumattoman Bin-muuttujan summa, joten suurilla N, P likimain normaalijakautunut. d laskettavissa ja muotoa c(p)n^(1/2).

39 Monte Carlo -integrointi Buffonin neulan taustalla oli odotusarvon integraalilauseke, jolle haettiin estimaattia kokeellisesti. Samaa voi soveltaa yleisemminkin integraalien laskentaan. Integroidaan f välillä [a,b] jos 0<f<c Jos x on Tas(a,b) ja y on Tas(0,c) jakautunut, määrätään (kokeellisesti) tn p, jolla y< f(x). Integraali on p(b-a)c.

40 Monte Carlo -integrointi Kokeellinen arvo integraalille on sitä tarkempi, mitä useampi koetoisto tehdään. Luottamusväli tarkentuu suhteessa N^(1/2):een. Hyötysuhde on huono yksiulotteisille integraaleille Luottamusvälin pituus ja käyttäytyminen ei riipu integraalin dimensiosta (vaan vain osumistodennäköisyydestä p) Tehokas tapa saada karkeita likiarvoja moniulotteisille integraaleille.

41 Monte Carlo Edellinen Monte Carlo ei suoraan sovellu kaikkiin tapauksiin Rajoittamaton funktio tai väli Mahdollista luopua y muuttujasta Lasketaan vain E(f(x)) Halvempi, mutta varianssianalyysi vaikeampaa Korvataan tasainen yläraja Etsitään tn tiheysfunktio g s.e. f(x)< cg(x) Arvotaan x:t g-jakaumasta Tavoitteena osumis tn ~ 1

42 Monte Carlo sovelluksia Tyypillinen Monte Carlo sovellus on (erittäin) moniulotteinen integraali, joka syntyy kun mallitetaan säteilyn etenemistä materiaalissa. Jokainen törmäys mallittuu moniulotteisella integraalilla (heijastus ja absorptiotodennäköisyydet, tulokulman, energian jne funktioina, partikkelien muodot, pintaominaisuudet, sironta väliaineessa jne) Yksittäisen säteen simuloinnin kannalta monimutkaisuus kasvaa vain lineaarisesti.

43 M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo -menetelmällä

44 Koeasetelma

45 Simuloitava säteen etenemistä partikkelijoukossa Säteen seurantaa Partikkelien paikat ja sirontasuunnat satunnaisia Sironta

46 Simuloinnin tavoite Laskea (kamerassa näkyvän) sirontakuvion intensiteetti, painopiste tms Eli käytännössä integraali funktiosta, jossa esiintyy intensiteettijakauma

47 Lähetetään yhdensuuntaisia säteitä (normaalij. Intensiteetti) Kerätään kameraan sironnut osuus (alle 3%) Simulointikoe

48 Simuloinnin tuloksista M-C koe toteutettu kolmella eri tavalla Jokaisessa 100 miljoonan säteen simulointia Eroja sekä suoritusajoissa että tulosten luottamusväleissä Eroihin palataan kun varianssin hallinnan tekniikat on esitelty

Simulointi. Varianssinhallintaa Esimerkki

Simulointi. Varianssinhallintaa Esimerkki Simulointi Varianssinhallintaa Esimerkki M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo

Lisätiedot

Satunnaislukujen generointi

Satunnaislukujen generointi Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Stokastiikan perusteet

Stokastiikan perusteet Stokastiikan perusteet Lasse Leskelä 10. joulukuuta 2013 Tiivistelmä Tämä luentomoniste sisältää muistiinpanoja asioista, joita käsiteltiin Jyväskylän yliopiston kurssilla MATA280 Stokastiikan perusteet

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 2

031021P Tilastomatematiikka (5 op) viikko 2 031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Teema 7: Todennäköisyyksien laskentaa

Teema 7: Todennäköisyyksien laskentaa Teema 7: Todennäköisyyksien laskentaa Teemassa 6 tutustuttiin todennäköisyyden ja satunnaisuuden käsitteisiin sekä todennäköisyyslaskennan perusteisiin. Seuraavaksi tätä aihepiiriä syvennetään perehtymällä

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Muuttujien eliminointi

Muuttujien eliminointi 228 Muuttujien eliminointi Toistuvat alilauseet voidaan evaluoida kerran ja niiden arvo talletetaan käytettäväksi aina tarvittaessa Tarkastellaan muuttujien eliminointi -algoritmia lausekkeen P(Murto jussikäy,

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Approksimatiivinen päättely

Approksimatiivinen päättely 218 Approksimatiivinen päättely Koska tarkka päättely on laskennallisesti vaativaa, niin on syytä tarkastella ratkaisujen approksimointia Approksimointi perustuu satunnaiseen otantaan tunnetusta todennäköisyysjakaumasta

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Simuloinnin taktisia kysymyksiä

Simuloinnin taktisia kysymyksiä Simuloinnin taktisia kysymyksiä Timo Tiihonen Tietotekniikan laitos 2010 Simuloinnin taktisia kysymyksiä Simuloinnilla on aina tavoite. Simuloitaessa on käytössä ohjelma, joka tilastollisesti riittävän

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8906 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

Simulointi. Simulointi. Esimerkkejä. Mallit. Kurssirunko. Esimerkkejä

Simulointi. Simulointi. Esimerkkejä. Mallit. Kurssirunko. Esimerkkejä Simulointi Simulointi Johdanto Simulointi ~ jäljittely Pyrkii kuvaamaan tutkittavan ilmiön tai systeemin oleellisia piirteitä mallin avulla. Systeemin rajaus ja tarkasteltavat piirteet määriteltävä ennen

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

= = = 1 3.

= = = 1 3. 9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo? Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

Yhtälön ratkaiseminen

Yhtälön ratkaiseminen Yhtälön ratkaiseminen Suora iterointi Kirjoitetaan yhtälö muotoon x = f(x). Ensin päätellään jollakin tavoin jokin alkuarvo x 0 ja sijoitetaan yhtälön oikealle puolelle, jolloin saadaan tarkennettu ratkaisu

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Simulointi. Tapahtumapohjainen

Simulointi. Tapahtumapohjainen Simulointi Tapahtumapohjainen Diskreettiaikainen simulointi 1 Tarkastellaan systeemejä, joissa on äärellisen monta komponenttia. Jokaisella komponentilla äärellisen monta tilaa. Komponentit vaikuttavat

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali integraali 1 Matta-projekti(Aalto yliopisto): Integraali (http://matta.hut.fi/matta2/isom/html/isomli8.html ) Johdatus korkeakoulumatematiikkaan (Tampereen teknillinen korkeakoulu): Integraali (http://matwww.ee.tut.fi/jkkm/integraa/integ01.htm

Lisätiedot

Simulointi. Johdanto

Simulointi. Johdanto Simulointi Johdanto Simulointi Simulointi ~ jäljittely Pyrkii kuvaamaan tutkittavan ilmiön tai systeemin oleellisia piirteitä mallin avulla. Systeemin rajaus ja tarkasteltavat piirteet määriteltävä ennen

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa.

C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa. Taulukot C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa. Taulukon muuttujilla (muistipaikoilla) on yhteinen nimi. Jokaiseen yksittäiseen

Lisätiedot