Simulointi. Satunnaisluvut

Koko: px
Aloita esitys sivulta:

Download "Simulointi. Satunnaisluvut"

Transkriptio

1 Simulointi Satunnaisluvut

2 Satunnaisluvut Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin, John v. Neumann Simuloinnissa käytetään aina näennäisesti satunnaisia lukuja (pseudo random numbers) Satunnaislukujen tulisi olla Tehokkaasti ja toistettavasti generoitavia Toistaa tavoitellun satunnaislukujonon keskeiset piirteet (tunnusluvut, näennäinen riippumattomuus) Käyttötarve määrää, mitkä piirteet keskeisiä

3 Historiaa Tarve generoida satunnaislukuja syntyi yhtä aikaa tietokoneiden kanssa Ydinreaktion simulointi, Los Alamos Alkuvaiheessa yksinkertaisuus ja laskennallinen tehokkuus korostuivat Yksinkertaiset laskutoimitukset, sopivat numeeriset vakiot Myöhemmin siirrettävyys Tehokas toteutus korkean tason kielillä Lisäksi tilastolliset ominaisuudet

4 Satunnaislukujen generointi Generointi jaetaan yleensä kahteen osaan Tasan (0,1) jakautuneiden satunnaislukujen generointi Generoidaan tasan (0,m-1) jakautuneita kokonaislukuja ja jaetaan lopuksi m:llä Annetun todennäköisyysjakauman mukaan jakautuneiden lukujen generointi Tehdään Tas(0,1) lukujen avulla

5 Keskineliömenetelmä Ensimmäisiä ad hoc ajatuksia (von Neumann) Olkoon x k-numeroinen luku. Esim x=12345 Lasketaan x*2 (2k-numeroinen) Otetaan k keskimmäistä Jne >x, U=0,16604

6 Keskineliömenetelmä integer,parameter :: m0=100,m1=10000 integer :: seed real function random() seed=seed*seed seed=seed/m0 seed=modulo(seed,m1) random=real(seed)/real(m1) return end function random E E E E E E E E

7 Keskineliö - analyysiä Menetelmä tuottaa päättymättömän jonon k-numeroisia lukuja. Ensimmäiset luvut yleensä näennäisesti toisistaan riippumattomia. Menetelmä päätyy toistamaan tiettyä lukusarjaa Sykli yleensä liian lyhyt simulointitarpeisiin Syklin pituutta ja laatua ei voi hallita helposti

8 Hyvät satunnaisluvut Generoiduilta satunnaisluvuilta edellytetään Satunnaisuutta Sama sekvenssi ei saa toistua systemaattisesti käytön aikana Käytännössä syklin oltava pidempi kuin koesarjassa tarvittujen lukujen määrä Oikeaa jakaumaa Yleensä OK, jos kaikki mahdolliset arvot käydään läpi (maksimisykli).

9 Hyvät satunnaisluvut Peräkkäisten arvojen riippumattomuus Ei toteudu kirjaimellisesti, vaatii testausta Esim. k peräkkäisen arvon jakauma R^k:n yksikkökuutiossa tai max(x_i,,x_(i+k-1)):n jakauma. Taajuustesti (lukujonon tulisi olla ortogonaalinen kaikkien sini-aaltojen kanssa) Hyvyys riippuu käyttötarkoituksesta käytetäänkö lukuja yksittäin, pareittain, k-luvun ryppäissä, jne Tarkemmin Knuth vol II

10 Lehmer generaattori Kehitetty 40-luvulla (D Lehmer) ensimmäisille tietokoneille (Eniac) Perusoperaatiot: kertolasku, yhteenlasku ja jakojäännöksen ottaminen X= (a X+ c) mod m Parametreilla a, c ja m voidaan vaikuttaa lukujonon ominaisuuksiin Alkuperäinen generaattori toteutettiin omana laskentayksikkönään (jonka tuloksia käytettiin vain tarvittaessa) -> lisää satunnaisuutta

11 Lehmer generaattori Alkuperäinen generaattori Eniacille m= 10^8 +1 A= 23 C= 0 Oli tehokas toteuttaa kyseisellä koneella Ei erityisen hyvälaatuinen (pieni kertoja, peräkkäiskorrelaatiota)

12 Lehmer generaattori Seuraava X määräytyy yksikäsitteisesti edellisestä. Generaattori alkaa toistaa samaa sarjaa heti kun X toistuu ensimmäisen kerran X:n arvoalue määrää teoreettisen maksimipituuden syklille (= m) Lehmer generaattorille tiedetään, milloin maksimisykli saavutetaan Jos q on m:n tekijä (alkuluku tai 4), a-1 =0 mod q c:llä ja m:llä ei yhteisiä tekijöitä (ja c ei nolla)

13 Lehmer generaattori (Vasta)esimerkkejä maksimisykliehdoista Valitaan m=8, c=3 Oltava a-1 =0 mod 2 ja a-1=0 mod 4=> a=5 0->3->18=2->13=5->28=4->23=7->38=6->33=1->0 Jos a=3 (a-1=0 mod 2) 0->3->12=4->15=7->24=0 Jos c=0, 0->0 kaikilla m, a

14 Lehmer generaattori Jos c=0, maksimisykliä ei saavuteta (X=0 kuvautuu aina nollaksi) Teoreettinen maksimisykli (kun c=0) on m-1. Voidaan saavuttaa jos ja vain jos m on alkuluku a on ns primitiivinen elementti mod m Käytännössä a voidaan määrätä vain kokeellisesti Prime modulus multiplicative congruental generator

15 Lehmer generaattorit Käytännössä suosittuja perusgeneraattoreita Käsitteellisesti helppoja laskutoimituksia 2^31-1 (maxint) on sopivasti alkuluku Helppo tehdä siirrettävä toteutus (jos a riittävän pieni) (käytettävä kaksoistarkkuuden aritmetiikkaa, jos 64 bitin kokonaislukuja ei tueta) Tutkittu ja tunnettu

16 Lehmer generaattori real(dp),parameter :: m=2._dp**31-1._dp m_1=1._dp/m a=16807._dp real(wp) function random() seed=modulo(seed*a,m) random=seed*m_1 return end function random

17 Yhdistelmägeneraattorit Tehty aikanaan lyhyen sananpituuden koneille (16-bit), Wichman-Hill Käytetään useampaa lyhyen syklin generaattoria Esim syklit m_1, m_2 ja m_3 Tuotetaan jonot X_i ja U_i= X_i/m_i Tulos U= U_1+U_2+U_3 mod 1 Sopivin valinnoin syklin pituus on m_1*m_2*m_3 Toteutus täysin standardiaritmetiikalla (m_i<2^14)

18 Sekoitetut generaattorit Käytetään sekä syklin pidentämiseen että peräkkäiskorrelaation vähentämiseen Periaate on tuottaa satunnaislukuja generaattorilla A taulukkoon Taulukosta poimitaan generaattorin B avulla satunnainen alkio (generaattorin output) ja lasketaan tilalle uusi luku generaattorilla A Tarvitsee muistia ja käynnistysvaiheen sekä kaksi satunnaislukua/tulos Sykli pitenee (mutta paljonko)

19 Sekoitettu generaattori A B

20 State of the Art Tämän hetken de facto standardi on Mersenne Twister Kehitetty 1990-luvun lopulla Erittäin pitkä sykli (2^ ) Parhaat tunnetut peräkkäiskorrelaatioominaisuudet Tarvitsee 624-sanan työmuistin (joten käynnistys kestää) Saatavissa useille kielille/ympäristöille

21 Mersenne twister Mihin perustuu X_(N+1) = F(X_N,, X_(N-623)) Tilavektorissa 624*32 = bittiä Teoreettinen maksimisykli kävisi kaikki tilat läpi Jättämällä X_(N-623):sta osa biteistä käyttämättä, ja rajaamalla algoritmisesti 0-vektori pois mahdollisista tiloista saadaan haluttu teoreettisesti maksimaalinen sykli (alkuluku, ns Mersenne luku, josta nimi)

22 Mersenne twister Tarvitaan F, joka On laskennallisesti kevyt Tuottaa maksimaalisen syklin Löydetty luokasta X_(N+1) = X_N*A_0 + X_(N-k) * A_k A_i:t kerroinmatriiseja Menetelmäluokalle on teoriaa maksimisykleistä Löydetty A:t joille vain 3 matriisia nollasta eroavia Ts vain kolmea vanhaa X arvoa käytetään yhdellä kierroksella

23 Mersenne Twister Löydetty menetelmä tuottaa pitkä sykli Laskennallisesti kevyt Peräkkäiskorrelaatio vaatii vielä huomiota K-testi: tarkastellaan peräkkäisten satunnaislukujen k-merkitsevimpien bittien jonoa Monelleko peräkkäiselle luvulle ym jono on tasajakautunut Tähän voidaan vaikuttaa sekoittamalla X:n bittejä laskennan jälkeen Ei vaikuta sykliin vaan vain output streamiin

24 Satunnaisluvut ja jakaumat Miten generoida satunnaislukuja, joilla on haluttu tiheysjakauma. Käänteistodennäköisyyden menetelmä Olkoon f haluttu tiheysfunktio. Tätä vastaa kertymäfunktio F: x-> (0,1).

25 Käänteistn. menetelmä Arvotaan u Tas (0,1) jakaumasta Asetetaan x = F^(-1) (u). x:n tiheysjakauma on f. Edellyttää, että F^(-1) tunnetaan suljetussa muodossa u x

26 Käänteistn. menetelmä Tarkastellaan eksponenttijakaumaa Tiheys f. on f(x) = a e^(-ax) Kertymä f. on F(x) = 1- e^(-ax) Vastaavasti F^(-1) (U) = - ln(1-u)/a Eksponenttijakautuneita suureita saadaan arpomalla U ~ Tas(0,1) ja tulostamalla ln(1-u)/a Myös ln (U)/a toimii, jos U>0 aina

27 Eliminointimenetelmä Yleinen menetelmä, edellyttää pelkästään tiheysfunktion arvoja Olkoon f tiheysfunktio välillä (a,b), 0<f<c. Arvotaan x, Tas(a,b), y, Tas(0,c). Jos y< f(x), hyväksytään x. Muuten hylätään ja arvotaan uudet x,y y x

28 Eliminointimenetelmä Eliminointimenetelmä on sitä tehokkaampi, mitä vähemmän hylkäyksiä Väli (a,b) voidaan jakaa osaväleihin ja/tai vaihtaa y:n jakaumaa paremmin f:ää approksimoivaksi. f< cg (osavälillä), g tunnettu jakauma ja x noudattaa g:tä, y = Tas(0, cg(x)) y x

29 Eliminointimenetelmä Osaväleihin jaettaessa on Aluksi arvottava mihin osaväliin/alueeseen x kuuluu (tn laskettava etukäteen) Sitten valitaan x osavälin jakaumasta ja 0< y< cg(x) sekä testataan y<f(x). Jakauman ositus voi olla taidetta (Marsaglia, ks Knuth vol II) y x

30 Yhteenvetoa Satunnaislukugeneraattoreilla yli 60-vuoden historia Testattuja ja tunnettuja generaattoreita hyvin saatavilla. Itse ei yleensä kannata säätää Tuntematonta generaattoria (menetelmä ja lähdeviitteet puuttuvat) ei kannata käyttää ainakaan testaamatta (vrt PC:n Basic-generaattori) Generaattoria ymmärrettävä niin, että voi tehdä hallittuja kokeita/toistoja.

31 Simulointi Monte Carlo

32 Monte Carlo simulointi Yksittäisen stokastisen simuloinnin tulos on aina sattumanvarainen Yksittäinen instanssi satunnaismuuttujasta Simulointikoesarjan tavoite on saada tietoa satunnaismuuttujan jakaumasta tai jakauman parametreista (keskiarvo, hajonta) Taustalla periaatteessa deterministinen arvo, johon ei kuitenkaan aina suoraan päästä käsiksi.

33 Buffonin neula Klassinen esimerkki mekaanisesta simuloinnista, jonka tarkka vastaus tunnetaan. Buffonin herttuan 1733 esittämä menetelmä p arvon määräämiseksi. Heitetään l pituista neulaa alustalle, jossa on yhdensuuntaisia suoria d välein. Lasketaan, kuinka usein neula koskettaa viivaa. Kokeellinen todennäköisyys P= #osumat/#yritykset

34 Buffonin neula Neula osuu viivaan jos Neulan keskipisteen etäisyys viivasta on pienempi kuin l sin a, missä a on neulan ja viivan välinen kulma d l a Kulma ~ Tas(0, p/2) Keskipiste ~ Tas (0,d/2)

35 Buffonin neula Osuman todennäköisyys lasketaan sinikäyrän rajoittaman pinta-alan avulla p= 2l/(pd) Jos p:lle tunnetaan havaintoarvo, voidaan saada estimaatti p:lle. d/2 l/2 p/2

36 Buffonin neula Yksittäisen heiton tulos on satunnainen Samoin N heiton keskiarvo. Mitä tiedämme N heiton jälkeen? Määrättävä N heiton keskiarvon (P) jakauma Tai ainakin odotusarvo ja keskihajonta P on N:n riippumattoman satunnaissuureen keskiarvo Yksittäiset kokeet noudattava binomijakaumaa odotusarvolla p (=2l/(pd)) E(P)=p.

37 Buffonin neula Yksittäisen heiton tuloksen (tai Bin(p) muuttujan) varianssi on p(1-p) N riippumattoman kokeen keskiarvon varianssi on p(1-p)/n Ts Var(P) = p(1-p)/n Nyt meillä on havainto satunnaissuureesta, jonka varianssi tunnetaan. Voimme tehdä arvioita havainnon (otoskeskiarvo) ja odotusarvon välisestä suhteesta.

38 Luottamusväli Oletetaan, että tunnemme satunnaismuuttujasta otoskeskiarvon Millä välillä on todellinen odotusarvo esim 99% todennäköisyydellä. Määriteltävä ns. luottamusväli, jolle pätee P( P-d < p< P+d) >0.99. Määrittely mahdollista, jos P:n jakauma tunnetaan. P N riippumattoman Bin-muuttujan summa, joten suurilla N, P likimain normaalijakautunut. d laskettavissa ja muotoa c(p)n^(1/2).

39 Monte Carlo -integrointi Buffonin neulan taustalla oli odotusarvon integraalilauseke, jolle haettiin estimaattia kokeellisesti. Samaa voi soveltaa yleisemminkin integraalien laskentaan. Integroidaan f välillä [a,b] jos 0<f<c Jos x on Tas(a,b) ja y on Tas(0,c) jakautunut, määrätään (kokeellisesti) tn p, jolla y< f(x). Integraali on p(b-a)c.

40 Monte Carlo -integrointi Kokeellinen arvo integraalille on sitä tarkempi, mitä useampi koetoisto tehdään. Luottamusväli tarkentuu suhteessa N^(1/2):een. Hyötysuhde on huono yksiulotteisille integraaleille Luottamusvälin pituus ja käyttäytyminen ei riipu integraalin dimensiosta (vaan vain osumistodennäköisyydestä p) Tehokas tapa saada karkeita likiarvoja moniulotteisille integraaleille.

41 Monte Carlo Edellinen Monte Carlo ei suoraan sovellu kaikkiin tapauksiin Rajoittamaton funktio tai väli Mahdollista luopua y muuttujasta Lasketaan vain E(f(x)) Halvempi, mutta varianssianalyysi vaikeampaa Korvataan tasainen yläraja Etsitään tn tiheysfunktio g s.e. f(x)< cg(x) Arvotaan x:t g-jakaumasta Tavoitteena osumis tn ~ 1

42 Monte Carlo sovelluksia Tyypillinen Monte Carlo sovellus on (erittäin) moniulotteinen integraali, joka syntyy kun mallitetaan säteilyn etenemistä materiaalissa. Jokainen törmäys mallittuu moniulotteisella integraalilla (heijastus ja absorptiotodennäköisyydet, tulokulman, energian jne funktioina, partikkelien muodot, pintaominaisuudet, sironta väliaineessa jne) Yksittäisen säteen simuloinnin kannalta monimutkaisuus kasvaa vain lineaarisesti.

43 M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo -menetelmällä

44 Koeasetelma

45 Simuloitava säteen etenemistä partikkelijoukossa Säteen seurantaa Partikkelien paikat ja sirontasuunnat satunnaisia Sironta

46 Simuloinnin tavoite Laskea (kamerassa näkyvän) sirontakuvion intensiteetti, painopiste tms Eli käytännössä integraali funktiosta, jossa esiintyy intensiteettijakauma

47 Lähetetään yhdensuuntaisia säteitä (normaalij. Intensiteetti) Kerätään kameraan sironnut osuus (alle 3%) Simulointikoe

48 Simuloinnin tuloksista M-C koe toteutettu kolmella eri tavalla Jokaisessa 100 miljoonan säteen simulointia Eroja sekä suoritusajoissa että tulosten luottamusväleissä Eroihin palataan kun varianssin hallinnan tekniikat on esitelty

Satunnaislukujen generointi

Satunnaislukujen generointi Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Generointi yksinkertaisista diskreeteistä jakaumista

Generointi yksinkertaisista diskreeteistä jakaumista S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Harjoitus 8: Monte-Carlo simulointi (Matlab)

Harjoitus 8: Monte-Carlo simulointi (Matlab) Harjoitus 8: Monte-Carlo simulointi (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheet Satunnaismuuttujien ja todennäköisyysjakaumien

Lisätiedot

Batch means -menetelmä

Batch means -menetelmä S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Martingaalit ja informaatioprosessit

Martingaalit ja informaatioprosessit 4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

Johdanto. Luku Mallit ja simulointi

Johdanto. Luku Mallit ja simulointi Luku 1 Johdanto 1.1 Mallit ja simulointi Simulointi ja mallit liittyvät läheisesti yhteen. Simulointi tarkoittaa pohjimmiltaan simuloitavan systeemin tai ilmiön jäljittelyä. Tätä varten tarvitaan malli:

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.

Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori. Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)

JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Teema 7: Todennäköisyyksien laskentaa

Teema 7: Todennäköisyyksien laskentaa Teema 7: Todennäköisyyksien laskentaa Teemassa 6 tutustuttiin todennäköisyyden ja satunnaisuuden käsitteisiin sekä todennäköisyyslaskennan perusteisiin. Seuraavaksi tätä aihepiiriä syvennetään perehtymällä

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Stokastiikan perusteet

Stokastiikan perusteet Stokastiikan perusteet Lasse Leskelä 10. joulukuuta 2013 Tiivistelmä Tämä luentomoniste sisältää muistiinpanoja asioista, joita käsiteltiin Jyväskylän yliopiston kurssilla MATA280 Stokastiikan perusteet

Lisätiedot

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...

Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,... Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 2

031021P Tilastomatematiikka (5 op) viikko 2 031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.

Lisätiedot

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja 5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Cantorin joukko LUKU 8

Cantorin joukko LUKU 8 LUKU 8 Cantorin joukko 8.. Cantorin 3 -joukko Merkitään J = J 0, = [0, ]. Poistetaan välin J keskeltä avoin väli I,, jonka pituus on /3; siis I, = (, 2). Olkoot jäljelle jäävät suljetut välit J 3 3, ja

Lisätiedot

Määrätty integraali. Markus Helén. Mäntän lukio

Määrätty integraali. Markus Helén. Mäntän lukio Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI

1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI 1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.

Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI. 39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot