Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO Tehtäväkokoelma

Koko: px
Aloita esitys sivulta:

Download "Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO 2010. Tehtäväkokoelma"

Transkriptio

1 Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO 2010 Tehtäväkokoelma 1. Komponentit k 1,...,k n muodostavat rinnan kytketyn systeemin, jos systeemi toimii aina, kun yksikin komponentti toimii. Komponentit muodostavat sarjaan kytketyn systeemin, jos systeemi toimii vain, kun kaikki komponentit toimivat. Olkoot tiettyyn aikaväliin liittyvät tapahtumat A i = komponentti k i toimii. Lause seuraavat tapahtumat tapahtumien A i avulla: a) Rinnan kytketty systeemi toimii. b) Rinnan kytketty systeemi ei toimi. c) Sarjaan kytketty systeemi toimii. d) Sarjaan kytketty systeemi ei toimi. 2. Lehdenjakajalla on kolme epäluotettavaa herätyskelloa. Paras kello toimii keskimäärin 9 kertaa 10:stä, seuraava kello 2 kertaa 3:sta ja huonoin kello vain joka toinen kerta. Henkilö yrittää parantaa tilannetta virittämällä kaikki kolme. a) Kuvaa tämän satunnaiskokeen otosavaruus. b) Laske alkeistapahtumien todennäköisyydet. c) Millä todennäköisyydellä ainakin yksi kelloista soi? d) Millä todennäköisyydellä täsmälleen kaksi kelloa soi? c) d) Tilastollisen tutkimuksen yhteydessä käytetään usein satunnaislukuja. Eräs tapa generoida satunnaislukuja on vetää umpimähkään kortti sekoitetusta 100 kortin pakasta, jonka kortit on numeroitu 1,2,...,100. a) Mikä on todennäköisyys, että saatu luku on parillinen? b) Mikä on todennäköisyys, että saatu luku on kokonaisluvun neliö? c) Generoidaan samalla tavalla kymmenen satunnaislukua väliltä 1,2...,100. Millä todennäköisyydellä kaikki ovat parillisia? 0, Geometrinen todennäköisyys: Jos n-ulotteisesta joukosta Ω R valitaan piste X umpimähkään eli siten, että kaikilla pisteillä on sama valintamahdollisuus (poimintatodennäköisyys), ja A on jokin Ω osajoukko, niin

2 P(X A) = m(a) m(ω missä m on joukon n-ulotteinen mitta (pituus, pinta-ala, tilavuus jne). Määrittely perustuu todennäköisyyden frekvenssitulkintaan. Esimerkki: Ystävättäret Leila ja Annukka ovat sopineet, että he saapuvat lounasaikaan tietyn ravintolan eteen ja lounastavat yhdessä, jos tapaavat toisensa. Tapaamisehdot ovat seuraavat: Kumpikin valitsee saapumisajankohdan täysin sattumanvaraisesti klo ja väliltä. Ensiksi saapuva odottaa ravintolan edessä tasan 10 minuuttia, jos toinen ei ole paikalla. Kuinka suurella todennäköisyydellä ystävättäret tapaavat toisensa? Voimalan generaattoreiden pyörittämiseen käytetään häiriön sattuessa kolmea dieselmoottoria 1, 2, ja 3, joiden tulisi olla vian ilmaantuessa käynnissä automaattisesti. Tyyppiä 1 olevien moottorien käynnistymistodennäköisyys on 99%, kun taas moottorien 2 ja 3 käynnistymistodennäköisyys on vain 90%. a) Kun tarkastellaan kaikkien kolmen moottorin käynnistymistä, mikä on kyseisen satunnaiskokeen otosavaruus? b) Laske alkeistapahtumien todennäköisyydet. c) Laske tapahtumien A = {moottori 1 käynnistyy} B = {moottori 2 tai 3 käynnistyy} C = {ainakin yksi moottori käynnistyy} D = {kaikki kolme käynnistyvät} todennäköisyydet alkeistapahtumien todennäköisyyksien avulla. d) Lausu sanallisesti seuraavat tapahtumat ja laske niiden todennäköisyydet: C, A B, A B, A D. e) Tapahtumat A ja B ovat riippumattomat silloin ja vain silloin, kun P(A B) = P(A)P(B) Ovatko tapahtumat A ja B riippumattomia? Entä A ja D? c)p(c) = 0,9999 e) A ja B ovat riippumattomat A ja D eivät ole riippumattomia 6. Arvotaan kaksi reaalilukua x ja y väliltä [0,1] esim. laskimen satunnaislukugeneraattorilla. Oletetaan, että jokaisella joukon S = {(x,y) 0 x 1, 0 y 1} alkiolla on sama mahdollisuus tulla valituksi (ei huomioida laskimen äärellistä tarkkuutta). Millä todennäköisyydellä pisteen (x,y) etäisyys origosta on pienempi kuin 0,5?

3 P(A) 0,20 7. Olkoot A, B ja C tapahtumia otosavaruudessa S. Määritä joukko-opilliset lausekkeet tapahtumille a) tarkalleen yksi tapahtumista A, B tai C tapahtuu b) ainakin kaksi tapahtuu c) yksikään ei tapahdu d) A tai B tapahtuu, C ei tapahdu. 8. Osoita todennäkoisyysaksioomien avulla oikeaksi laskusäännöt P(A B) = P(A) P(A B) P(A B) = P(A) + P(B) P(A B). 9. Jos heitetään kahta noppaa, mikä on todennäköisyys sille, että saadaan ainakin yksi kuutonen? Todennäköisyys on Jos valitaan toisistaan riippumattomasti n joukko ihmisiä, kuinka suuri tulee n:n olla ennen kuin on suurempi kuin 50 % todennäköisyys sille, että kahdella heistä on sama syntymäpäivä (ei välttämättä sama vuosi)? n = Olkoot A ja B saman otosavaruuden tapahtumia. Laske P(A), P(B) ja P(A-B) = P(A B), kun tiedetään todennäköisyydet P(A B) = 1/4, P(A B) = 7/8 ja P(A) = 5/8. P(A) = 3/8 P(B) = 3/4 P(A B) = 1/8 12. Tuotteessa voi olla materiaalivika (tapahtuma A) tai käsittelyvika (tapahtuma B). Esitä joukkojen A ja B avulla tapahtumat "ainakin yksi vika", "molemmat viat"ja "tarkalleen yksi vika"ja määritä niiden todennäköisyydet, kun tiedetään, että 10%:ssa tuotteista on materiaalivika, 20%:ssa käsittelyvika ja 75%:ssa ei ole kumpaakaan vikaa.

4 Ainakin yksi vika = 0,25 Molemmat viat = 0,05 Tarkalleen yksi vika = 0,2 13. Erään suurfirman työntekijöistä 90%:lla on auto, 97%:lla kännykkä ja 2% ei omista kumpaakaan. Valitaan haastateltavaksi satunnainen työntekijä. a) Millä todennäköisyydellä tämä omistaa sekä auton että kännykän? b) Millä todennäköisyydellä tämä omistaa auton, mutta ei kännykkää? a) 0,89 b) 0, Generoitaessa satunnaisesti 4-bittinen binääriluku (esim. heitetään kolikkoa 4 kertaa ja asetetaan vastaava bitti 0:ksi, jos saadaan kruuna ja 1:ksi, jos saadaan klaava). Kaikki näin saadut binääriluvut ovat silloin yhtä todennäköisiä. Olkoot tapahtumat: A = luvussa parillinen määrä ykkösiä. B = luvun kaksi viimeistä bittiä ykkösiä. Laske todennäköisyydet P(A), P(B), P(A B), P(A B) ja P(A-B). P(A) = 1/2 P(B) = 1/4 P(A B) = 1/8 P(A B) = 5/8 P(A B) = 3/8 15. Valimo toimittaa eräitä moottorin osia 20 kappaleen erissä. Erä tarkastetaan testaamalla kolme satunnaisesti valittua osaa. Tarkastellaan sellaista 20 kappaleen erää, jossa 4 viallista ja 16 kunnollista osaa. Olkoon satunnaismuuttuja X viallisten osien määrä testattavien kolmen osan joukossa. a) Mikä on satunnaismuuttujan X jakauma (eli sen pistetodennäköisyysfunktio)? b) Millä todennäköisyydellä testaukseen valittujen joukossa on korkeintaan yksi viallinen? b) P(X 1) 0, Rahanväärentäjä sekoittaa 16 väärennettyä seteliä 35 oikean samanarvoisen setelin kanssa ja lähtee vaihtamaan rahaa katukaupassa. Ensimmäinen asiakas vaihtaa 6 seteliä. Millä todennäköisyydellä hän saa kolme väärää seteliä?

5 P(3 väärennettyä) = Tilastomatematiikan luennoitsijalla on varatossa 25 tenttikysymystä, joista hän päättää valita 5 kysymystä seuraavaan tenttiin täysin satunnaisesti. a) Kuinka monta erilaista tenttiä näin voidaan saada aikaan? b) Opettaja on päättänyt helpottaa opiskelijoiden tenttiinvalmistautumista jakamalla näille kyseisen 25 kysymyksen sarjan ratkaisuineen. Opiskelija, joka ei halua vaivata terävää päätään pänttäämällä teoriaa, päättää selviytyä tentistä opettelemalla ulkoa 10 tärppiä. Millä todennäköisyydellä opiskelija saa tentissa k tehtävää oikein? c) Millä todennaköisyydellä hän pääsee tentistä läpi, jos läpipääsyrajana on 3 oikein? a) c) eli noin 30%:n mahdollisuus. 18. Vuoristoalueella on eräänä päivänä annettu lumimyrskyn todennäköisyydeksi 30%. Eräästä vuoristokylästä lähtee kaksi tietä. Tie 1 suljetaan lumimyrskyn sattuessa 60%:n varmuudella, tie 2 suljetaan 45%:n varmuudella. Millä todennäköisyydellä ainakin toinen kylästä lähtevistä teistä on auki? Oletetaan, että kummankin tien auki pitäminen riippuu vain lumimyrskystä, ei siitä onko toinen tie auki vai ei Joku heittää noppaa ja peittää sen ja kertoo sinulle, että näkyvissä oleva luku on pienempi kuin neljä. Kuinka todennäköisyyttä muuttaa se, että luku on parillinen? Todennäköisyys on Todennäköisyys sille, että säännöllisesti liikennöivä lento lähtee ajallaan on P(D) = 0.83, todennäköisyys sille, että se saapuu ajallaan on P(A) = 0.92, ja todennäköisyys sille, että se sekä lähtee, että saapuu ajallaan on P(A D) = 0,78 Millä todennäköisyydellä kone a.) saapuu ajallaan, kun se on lähtenyt ajallaan b.) ei lähtenyt ajallaan kun se ei saapunut ajallaan a.) 0.94 b.) 0.375

6 21. Kumpi on todennäköisempää: saada vähintään yksi kuutonen neljässä nopan heitossa vai saada vähintään yksi kuutospari heitettäessä kahta noppaa 24 kertaa? kuutonen: 0,518 kuutospari 0, Mainontafirman suorittamassa tutkimuksessa selvitettiin erään pikkukaupungin maksullisen paikallislehden ja ilmaisjakelulehden lukijakuntaa. Havaittiin, että väestöstä 60% luki molempia, 10% ainoastaan maksullista lehteä ja 25% ainoastaan ilmaislehteä. Valitaan satunnainen kaupunkilainen. Olkoon tapahtumat A = "henkilö lukee maksullista lehteä" B = "henkilö lukee ilmaislehteä" a) Ovatko tapahtumat A ja B riippumattomat? b) Jos poimitaan satunnainen henkilö maksullisen lehden tilaajista, millä todennaköisyydellä hän lukee myos ilmaislehteä? a) P(A B) b) 6/7 23. Professorilla on kolme hajamielistä assistenttia Jokinen, Nieminen ja Virtanen, jotka hän on kutsunut palaveriin. Jokinen ja Nieminen unohtavat kokoukset keskimäärin joka kolmas kerta, Virtanen noin joka toinen kerta (toisistaan riippumatta). a) Määrittele alkeistapaukset kun tarkastellaan kokoukseen osallistuvien assistenttien joukkoa ja laske alkeistapausten todennäköisyydet. b) Millä todennäköisyydellä vähintään yksi assistentti saapuu paikalle? c) Millä todennäköisyydellä täsmälleen kaksi saapuu paikalle? b) c) Erään elektroniikkalaitteen takuukorjaustilastojen mukaan 14 prosentissa tapauksista on kytkinvika ja 21 prosentissa on vioittunut kondensaattori. Tapauksia, joissa on molemmat viat, on 3 a) Millä todennäköisyydellä korkattavassa laitteessa on kytkinvika tai vioittunut kondensaattori? b) Millä todennäköisyydellä laitteessa on vioittunut kondensaattori mutta ehjä kytkin?

7 c) Millä todennäköisyydellä laitteessa ei ole kumpaakaan näistä vioista? d) Jos laitteessa havaitaan kytkinvika, millä todennäköisyydellä siinä on myös vioittunut kondensaattori? e) Ovatko viat riippumattomia toisistaan? a) 0.32 b) 0.18 c) 0.68 d) e) Koska P(A) P(B) = = P(A B), viat eivät ole (tarkkaan ottaen) riippumattomat. 25. Tarkastettaessa elintarvikkeita sallitaan erään tuotteen kohdalla tietty lyijy- ja kadmiumpitoisuus erikseen, mutta tuote hylätään, jos elintarvikkeessa on sekä lyijyä että kadmiumia. Tiedetään, että satunnaisesti valitussa tuotteessa on kadmiumin esiintymistodennäköisyys 0,1% ja lyijyn 0,07%, sekä molempien yhtäaikainen esiintymistodennäköisyys 0,002%. a) Ovatko kadmiumin ja lyijyn esiintyminen toisistaan riippumattomia tapahtumia? b) Oletetaan, että tarkastukseen valitussa tuotteessa havaitaan lyijyä. Millä todennäköisyydellä tuote hyväksytään? a) 0, P(Cd Pb). Tapahtumat eivät riippumattomia. b) = 0,971 = 97,1% 26. Automaattisessa laaduntarkastuksessa robotti hyväksyy 99% tuotteista ja hylkää loput. Robotin hyväksymistä tuotteista on todellisuudessa viallisia 0,1%:a ja vastaavasti robotin hylkäämistä tuotteista on todellisuudessa ehjiä 0,5%. Millä todennäköisyydellä viallinen tuote läpäisee tarkastuksen? n. 9% todennäköisyydellä 27. Väestöstä 0.1 % on erään viruksen kantajia. Laboratoriotesti viruksen toteamiseksi antaa oikean (positiivisen) tuloksen todennäköisyydellä 0.99, jos henkilö on viruksen kantaja. Jos henkilö on terve, testi antaa oikean (negatiivisen) tuloksen todennäköisyydellä Jos satunnaisesti valittu henkilö testataan ja tulos on positiivinen, millä todennäköisyydellä kyseinen henkilö on todella viruksen kantaja? Lamppuvarastossa on sekaisin kolmea eri laatuluokkaa L1, L2 ja L3 olevia lamppuja

8 suhteessa 2:1:1. Todennäköisyydet sille, että lamppu kestää 3000 tuntia, ovat eri luokissa vastaavasti 0.4, 0.2 ja 0.1. a) Millä todennäköisyydellä satunnaisesti valittu lamppu kestää 3000 tuntia? b) Huomattiin, että lamppu ei kestänyt 3000 tuntia. Millä todennäköisyydellä se kuuluu laatuluokkaan L1? a) b) Kuolemaantuomitulle vangille annetaan seuraava mahdollisuus pelastua: Hän saa kaksi samanlaista laatikkoa sekä 10 palloa, joista on 5 mustaa ja 5 valkoista. Pallot vanki saa sijoittaa laatikoihin haluamallaan tavalla (kumpikaan laatikoista ei saa olla tyhjä). Tämän jälkeen oikeudenpalvelija valitsee täysin satunnaisesti toisen laatikoista ja ottaa valitsemastaan laatikosta pallon umpimähkään. Jos pallo on valkoinen, vanki vapautetaan; jos pallo on musta, vanki teloitetaan. Kuinka pallot kannattaa sijoittaa laatikoihin? todennäköisyys vapautumiselle optimaalisella kombinaatiolla on Lisätehtävä (syksyn -85 yo-tehtävä, demoissa tai kotona mietittäväksi): Laatikossa on 150 korttia, joista 40 on kokonaan mustia, 60 kokonaan valkoisia ja 50 toiselta puolelta mustia, toiselta puolelta valkoisia. Laatikosta umpimähkään otetun kortin toinen puoli on musta. Mikä on todennäköisyys, että toinenkin puoli on musta? Kysytty todennäköisyys on 8 13

9 31. Synteettistä kangasta tuotetaan vakiolevyisinä pakkoina. Olkoon satunnaismuuttuja X kankaan kudontavirheiden määrä 10 metriä kohden. Kokemuksen perusteella X noudattaa seuraavaa jakaumaa k P(X = k) 0,33 0,37 0,20 0,07 0,02 0,01 a) Olkoon f(x) jakauman kertymäfunktio. Laske F(2), F(2,5), F(3), F(7). b) Millä todennäköisyydellä 10 metrin palassa on 2:sta 4:ään virhettä? c) Laske virheiden määrän odotusarvo. 10 metrin palasessa on 2-4 virhettä todennäköisyydellä 0,29. Virheiden määrän odotusarvo on 1, Ikiteekkari Brian Kottarainen on jälleen kerran ilmoittautunut tilastomatematiikan kurssille. Brian ei kuitenkaan aio osallistua opetukseen, vaan aikoo tenttiä kurssin vanhasta muistista. Voidaan olettaa Brianin tentinläpäisytodennäköisyyden säilyvän vakiona tenttikerrasta toiseen, olkoon se 15 %. Laske todennäköisyys sille, että Brian pääsee läpi vasta joko neljännellä tai viidennellä yrittämällä. Mikä on Brianin odotettavissa oleva läpäisykerta? (vastaus löytyy esim. Beta-kirjasta ao. jakauman kohdalta, ei tarvitse laskea määritelmää käyttäen) todennäköisyys 0,1704 odotusarvo: 6, Heitetään noppaa niin kauan, että saadaan ensimmäinen kuutonen. Olkoon satunnaismuuttuja X tarvittavien heittojen lukumäärä. Johda X:n jakauma. X:n jakauma yleisesti on: P(X = k) = p(1 p) k 1 = 1 6 ( 5 6 )k 1, k = 1,2, Oletetaan, että erään pariston vikatiheys on: f (x) = 2 (x + 1) 3 kun x 0 eli jos X= pariston toiminta-aika ennen vikaa, f(x) on sen tiheysfunktio. Laske jakauman kertymäfunktio. Millä todennäköisyydellä paristo kestää vioittumatta yli 5h? Kertymäfunktio: F(x) = x f (t)dt

10 P(X > 5) 0, Oletetaan, että erään pariston vikatiheys on: f (x) = 2 (x + 1) 3 kun x 0 eli jos X= pariston toiminta-aika ennen vikaa, f(x) on sen tiheysfunktio. Laske pariston keskimääräinen kesto eli keston odotusarvo. Keskimääräinen kesto: 1h 36. Itä-länsi suuntaisen tien eteläpuolella 12 metrin päässä tiestä kasvaa 15 metriä korkea puu. Eräänä myrskyisenä yönä tuulen suunta X noudattaa tiheysfunktion { 1/π x /π 2, π < x < π f (x) = 0,muulloin määrittelemää jakaumaa, odotusarvona suunta etelästä pohjoiseen. Kun puu kaatuu juuri siihen suuntaan mihin kaatumishetkellä tuulee, niin millä todennäköisyydellä osa kaatuneen puun rungosta on tiellä? Määritä a siten että P( X < a) = a = 0.9π 37. Itä-länsi suuntaisen tien eteläpuolella 12 metrin päässä tiestä kasvaa 15 metriä korkea puu. Millä todennäköisyydellä puu kaatuu tielle kun kaatumissuunta on täysin sattumanvarainen (tasaisesti jakautunut satunnaismuuttuja)? 38. Satunnaismuuttujan X varianssi määritellään X:n ja X:n odotusarvon erotuksen neliön odotusarvona, eli kaavalla D 2 (X) = E((X u) 2 ). Johda varianssille vaihtoehtoinen laskentakaava D 2 (X) = E(X 2 ) (E(X)) 2. (Voit olettaa X:n jatkuvaksi sat. muuttujaksi). 39. Olkoon X tasajakautunut sat. muuttuja välillä (0,1) eli tiheysfunktio { 1,0 < x < 1 f (x) = 0,muulloin ja Y = X n. Laske odotusarvot ja varianssit X:lle ja Y :lle, sekä selitä näiden perusteella sanallisesti miten Y :n jakauma muuttuu kun parametrin n arvo kasvaa. 40. a) Olkoon a R vakio ja X satunnaismuuttuja. Perustele sanallisesti tai osoita matemaattisesti miksi D 2 (X a) = D 2 (X). b) Olkoon X 1,X 2,...,X n riippumattomia satunnaismuuttujia joille D 2 (X 1 ) = D 2 (X 2 ) = = D 2 (X n ). Miten vektori (b 1,...,b n ) R n täytyisi valita jotta satunnaismuuttujalle Y = b 1 X 1 + b 2 X b n X n pätisi D 2 (Y ) = D 2 (X 1 ) = = D 2 (X n )?

11 41. Mikrotietokoneiden maahantuoja on ilmoittanut, että erään suositun merkin viimeisessä valmistuserässä n. 20%:ssa koneista on tietty valmistusvika ja vialliset koneet ovat jakautuneet ostajille täysin sattumanvaraisesti. TITE:n mikroluokkaan on tulossa 12kpl kyseisiä koneita. a) Olkoon satunnaismuuttujua X viallisten koneiden lukumäärä tuilattujen 12:n joukossa. Mikä on X:n jakauma? b) Mikä on viallisten määrän odotusarvo ja hajonta? c) Millä todennäköisyydellä viallisia koneita on korkeintaan puolet? a) X:n Jakauma = X Bin(12, 0.2) b) Odotusarvo EX = 2.4 Hajonta DX = 1.4 c) P(X 6) = Oletetaan, että USA:n erään presidenttiehdokkaan kannattajia olisi todellisuudessa 45%. a) Jos valitaan satunnaisesti 100 haastateltavaa, niin millä todennäköisyydellä vähintään puolet heistä on kyseisen ehdokkaan kannattajia? Laske vastaus käyttäen normaalijakaumaapproksimaatiota ja jatkuvuuskorjausta. (Tarkalla binomi-jakaumalla tulokseksi saadaan noin ) b) Jos valitaan satunnaisesti 1000 haastateltavaa, niin millä todennäköisyydellä vähintään puolet heistä on kyseisen ehdokkaan kannattajia? Laske vastaus käyttäen normaalijakaumaapproksimaatiota ja jatkuvuuskorjausta. a) b) Jalokivikauppiaalla on neljä samanlaista arvokasta timanttia. Hänellä on 7 asiakasta, joista kunkin arvellaan haluavan ostaa timantin 30% todennäköisyydellä. Kaupaksi menneestä timantista kauppias saa 1000 euron myyntivoiton. a)millä todennäköisyydellä korkeintaan kaksi asiakkaista haluaa ostaa timantin? b)millä todennäköisyydellä kaikki timantit menevät kaupaksi? c)laske kauppiaan saaman myyntivoiton odotusarvo. Huom. myytyjen timanttien jakauma ei ole sama kuin ostohalukkaiden jakauma. A. 0,6471 B. 0,126 C. 2067,2 euroa

12 44. Kuljetettaessa erästä tavaraa keskimäärin 2% tavaroista rikkoutuu. Laske, millä todennäköisyydellä 80 kappaleesta korkeintaan kaksi rikkoutuu kuljetuksessa, käyttäen A. binomijakaumaa. Ilmoita tulos neljän desimaalin tarkkuudella. B. Poisson-jakauma-approksimaatiota. 0, Lomaosakkeita välittävä firma on lähettänyt 1000 talouteen kutsun esittelyyn, jossa on tarjolla 30 lomaosaketta. Vanhan kokemuksen perusteella tiedetään, että keskimäärin 2% kutsun saaneista tulee ostamaan lomaosakkeen. Millä todennäköisyydellä kaikki osakkeet menevät kaupaksi? P = Ensiapuasemalla on havaittu, että tiettyä kipulääkettä tarvitaan keskimäärin 1,6 annosta päivässä. a) Kuinka suuri varasto lääkettä tulisi olla, jotta se riittäisi 99%:n varmuudella yhdeksi päiväksi? b) Kuinka suuri varasto lääkettä tulisi olla, jotta se riittäisi 99%:n varmuudella kolmeksi päiväksi? c) Millä todennäköisyydellä 5 päivässä kuluu yli 6 annosta? a) v 5 b) v 11 c) 0, Ydinvoimalassa sattuu havaittavissa oleva radioaktiivinen päästö keskimäärin kaksi kertaa kuussa. Päästöjen lukumäärän aikayksikössä voidaan katsoa noudattavan Poissonjakaumaa. a) Millä todennäköisyydellä kuukauden aikana sattuu vähintään neljä päästöä? b) Millä todennäköisyydellä ensimmäinen päästö havaitaan aikaisintaan kolmen kuukauden kuluttua? c) Johda ensimmäiseen päästöhavaintoon kuluvan ajan jakauma. d) Kuinka kauan ensimmäistä havaintoa saadaan keskimäärin odottaa? a) P(X 4) = b) P(X 3 = 0) = c) T Exp(2) d) ET = 1/2kk

13 48. Eräällä alueella sattuu tietyn suuruusluokan maanjäristys keskimäärin kerran vuodessa. Vuodenajalla ei ole vaikutusta. Alueen turistikausi kestää neljä kuukautta, kesäkuusta syyskuuhun. Laske todennäköisyys, että turistikaudella sattuu vähintään yksi tällainen maanjäristys. Kuinka todennäköistä on, että kyseisellä kaudella sattuisi vähintään kolme maanjäristystä? 0, Puutaloelementtejä valmistavassa verstaassa syntyvien laudanpätkien eli hukkapalojen pituus noudattaa likimain jakaumaa, jonka tiheysfunktio on f (x) = 3 8 (x 2)2, kun 0 x 2 (metriä). a) Laske pituuden odotusarvo. b) Määrää jakauman kertymäfunktio. Kuinka suuri osuus paloista on yli metrin mittaisia? a) Odotusarvo on 0,5 m b) Paloista on yli metrin mittiaisia 12,5 %. 50. Suuren yrityksen puhelinkeskukseen saapuu keskimäärin 0,4 puhelua minuutissa. a) Millä todennäköisyydellä 3 minuutissa saapuu korkeintaan 5 puhelua. b) Puhelinkeskusta hoitaa yksi henkilö. Kuinka pitkäksi aikaa hän voi poistua, jotta todennäköisyys sille, että hänen poissaollessaan ei tule puheluita, olisi vähintään 0,5? Ohje: käytä satunnaismuuttujaa X t = saapuvien puheluiden lukumäärä t minuutissa. a) 3 minuutissa saapuu korkeintaan 5 puhelua todennäköisyydellä 0,9985 b) keskuksen hoitaja voi poistua 1 minuutiksi ja 44 sekunniksi. 51. Oletetaan, että asiakkaan palveluaika pankin tiskillä on eksponentiaalijakautunut, keskimääräisenä kestona 6 minuuttia. a) Kuinka suuri osa asiakkaista selviytyy palvelusta alle 2 minuutissa? b) Odotat vuoroasi ja olet havainnut edelläsi olevan asiakkaan viettäneen tiskillä jo 8 minuuttia. Kuinka suurella todennäköisyydellä tämän asiakkaan palvelu päättyy kahden minuutin kuluessa? a) palvelusta selviää alle 2 minuutissa 28,3 % asiakkaista. b) 28,3 % todennäköisyydellä. 52.

14 Tiedetään, että keskimäärin % vakuutetuista miehistä kuolee joka vuosi tietynlaisessa onnettomuudessa. Mikä on todennäköisyys, että vakuutusyhtiö joutuu suorittamaan korvauksen kolmesta tai useammasta ko. onnettomuudessa vuoden aikana kuolleesta miehestä, jos vakuutettuja on ? P = Tiedonsiirtolinjalla on havaittu lähetetyn merkin vaihtuvan matkalla todennäköisyydellä a) Millä todennäköisyydellä 50 merkkiä sisältävä jono siirtyy virheettömästi? b) Millä todennäköisyydellä 1000 merkin siirrossa on 5-10 virhettä? a) 50 merkkiä sisältävä jono siirtyy virheettömästi todennäköisyydellä b) 1000 merkin siirrossa on 5-10 virhettä todennäköisyydellä 0, Osoita, että jos X Exp(λ), niin P(X > t + h X t) = P(X > h). 55. Valokuvausliike lupaa kuvat ilmaiseksi, elleivät ne ole valmiit 24 tunissa. Keskimääräinen valmistusaika (eli valmistusajan odotusarvo) on 15 h ja sen hajonta 3 h 20 min. Kuinka monta prosenttia tilauksista liike joutuu antamaan ilmaiseksi, kun valmistusajan jakauma on normaali? 0.35% 56. Valmistaja ilmoittaa, että loistelampun palamisaika on 1500h. Oletetaan, että palamisaika on exponentiaalijakautunut. a) Kuinka suuri osa lampuista palaa vähintään 2000 h? b) Jos lamppu on palanut jo 2000 h, millä todennäköisyydellä se palaa vielä 1000h? 0, Automaattivaa an mittausvirheen odotusarvo on 1.8 g ja keskihajonta 2.6 g. Mittausvirhe noudattaa normaalijakaumaa. Millä todennäköisyydellä mittaustulos poikkeaa

15 todellisesta arvosta yli 5 g? Arvioidaan, että altaassa kasvatettujen kirjolohien paino X noudattaa normaalijakaumaa parametrein µ = 1.4 kg ja σ = 0.3 kg. Myyntiin viedään kirjolohet, joiden paino on vähintään m kg. Mikä on painoraja m jos tiedetään, että 9% kirjolohista ei kelpaa myyntiin? 1.0 kg 59. Tehdas valmistaa sähkövastuksia kytkemällä sarjaan kaksi osavastusta. Toinen otetaan valmiste-erästä, jonka jakauma on N(150, 3 2 ) ja toinen erästä, jonka jakauma on N(200, 4 2 ), yksikkönä Ω. Tuote katsotaan kelvolliseksi, jos sen kokonaisvastus on välillä [340, 360] Ω, muulloin vialliseksi. Montako viallista tuotetta on odotettavissa 200 kappaleen näyte-erässä? 9 kpl 60. Eräs yritysjohtaja on lähdössä lomailemaan saareen mukanaan matkapuhelin ja 30 akkua. Akun keskimääräinen toiminta-aika on 6 tuntia ja keskihajonta 4 tuntia. LAske normaalijakauma-approksimaation avulla todennäköisyys, että akut riittävät vähintään 160 tunniksi Erään sähkölampun kestoaika noudattaa normaalijakaumaa. Keskimääräinen kestoaika on 1000 tuntia ja keskihajonta 200 tuntia. Olohuoneen uuteen kattovalaisimeen asennetaan neljä tälläistä lamppua. Jos lamput palavat keskimäärin 5 tuntia vuorokaudessa, millä todennäköisyydellä puoleen vuoteen (=180 vrk) ei tarvitse vaihtaa yhtään lamppua?

16 Oletetaan että erään huoltoaseman päivittäinen myynti X (1000$) noudattaa Gamma - jakaumaa parametrein k = 5 jaλ = 0,9. Jakauman odotusarvo on k/λ ja varianssi k/λ 2. Millä todennäköisyydellä yhden vuoden (365 vrk) yhteenlaskettu myynti on alle 2,1 miljoonaa $, jos päivittäiset myynnit ovat toisistaan riippumattomia. (Ohje: keskeinen raja-arvolause -> normaalijakauma-approksimaatio) 0, Pakkauskone pakkaa karamelleja rasioihin. Rasian paino on normaalijakautunut satunnaismuuttuja, jonka odotusarvo on 25,5 g ja hajonta 0,4 g. Rasian (=kuoren) paino on myös normaalijakautunut, odotusarvona 4,0 g ja 0,2 g. Rasiat pakataan lisäksi 10 kpl laatikoihin, joiden paino on normaalijakautunut odotusarvona 30 g ja hajontana 0,5 g. Kuinka suuri osa täytetyistä laatikoista painaa enemmän kuin 327 g? 9,2% painaa yli 327 g 64. Hehkulamppujen kestoikä noudattaa normaalijakaumaa, odotusarvona µ = 2500h.Keskihajonnan σ suuruuteen (=lamppujen tasalaatuisuuteen) voidaan vaikuttaa valmistusprosessia säätämällä. Koska σ : n pienentäminen aiheuttaa kustannuksia, valitaan σ siten, että sillä on suurin mahdollinen asetetut vaatimukset täyttävä arvo. Mikä on suurin arvo, kun laatuvaatimus on että vähintään 90% lampuista kestää yli 2200 tuntia? 234 h 65. Kopiokoneiden huoltomiehen kirjanpidon mukaan 10 prosentissa laitteista joudutaan uusimaan yksi laakeri, 4 prosentissa tapauksia 2 laakeria ja 1 prosentissa 3 laakeria. Ennustettu huolto-ohjelma ensi vuodelle on 500 konetta. a)millä todennäköisyydellä laakereita kuluu vähintään 80 kappaletta? b)minkä rajan alle tarve jää todennäköisyydellä 0,99? 134 kpl 66. Tehdas valmistaa elektronisi lämpömittareita, joiden pariston kestoikä on normaalijakautunut siten, että odotusarvo on 700 vuorokautta ja hajonta 160 vuorokautta. Tehdas vaihtaa paristot, jotka kestävät alle vuoden (365 vrk). Kuinka monta prosenttia paristoista joudutaan vaihtamaan? Paristoista joudutaan vaihtamaan 1.83%

17 67. Oletetaan, että mittausvirhe X on normaalijakautunut, X N(0,2 2 ). Kuinka suurella todennäköisyydellä mittausvirhe on itseisarvoltaan yli 2,5? 0, Estimoidaan normaalijakautuneen satunnaismuuttujan X odotusarvoa µ tilanteessa, jossa hajonta σ tunnetaan. Kuinka suuri otos tarvittaisiin, jotta odotusarvon 99%:n luottamusvälin pituus olisi alle a) σ, b) 0,1σ? a) 27 b) Olkoon X N(µ, 4). Kuinka suuri otoskoon on vähintään oltava, jotta otoskeskiarvo poikkeaisi odotusarvosta korkeintaan 0.1 yksikköä 99%:n varmuudella? Otoskoko vähintään n = Kuinka suuri otoksen on oltava, jotta normaalijakautuneen satunnaismuuttujan odotusarvon µ 99% :n luottamusvälin pituus olisi A. alle σ, kun hajonta on tunnettu ja käytetään normaalijakaumaa? B. alle s, kun hajonta on tuntematon ja käytetään t-jakaumaa Otoskoon oltava Aineen sulamispisteen määrittämiseksi on tehty 10 mittausta: a) Määrää sulamispisteen odotusarvon ja mittauksen varianssin piste-estimaatit. b) Aikaisempien mittaussarjojen perusteella tiedetään mittauksen hajonnan olevan σ = 2.0. Muodosta sulamispisteen 95%:n luottamusväli. c) Päätät kerätä lisää havaintoja. Suoritettuasi 50 määritystä saat keskiarvoksi x = Mikä on nyt 95%:n luottamusväli? d) Miten b-kohdan tulos muuttuisi, jos hajonta σ olisi tuntematon?

18 72. Mediatutkimuksessa poimittiin suomalaisista 150 hengen otos ja kysyttiin mm. kuinka moni katsoi säännöllisesti erästä uutta televisiosarjaa. 57 henkeä ilmoitti katsovansa kyseistä sarjaa. Laske tämän perusteella 95%:n luottamusväli katsojien suhteelliselle osuudelle koko väestössä. 38 ± 8% 73. Valuraudan hiilipitoisuudeksi saatiin 6 näytteessä seuraavat arvot (%) 3,4 3,6 3,4 4,0 3,7 4,2 Oletetaan hiilipitoisuuden määritystulos normaalijakautuneeksi. A. laske hiilipitoisuuden otoskeskiarvo, -mediaani ja -varianssi. B. määritä valuraudan keskimäärisen hiilipitoisuuden (ts. odotusarvon) 95%:n luottamusväli µ = 3,72 ± 0, Olkoon X = sahatun laudan pituus (m), joka noudattaa jakaumaa N(µ,σ 2 ), missä hajonta on 0.02 m. Testataan hypoteeseja H 0 : µ = 2.0 H 1 : µ > 2.0 Oletetaan, että otoskeskiarvoksi saadaan x = a) Laske tuloksen P-arvo, jos otoskoko on n=10. b) Laske tuloksen P-arvo, jos otoskoko on n=20. c) Tarkastellaan tilannetta otoskoon ollessa n=20. Kuinka tuloksen x = P-arvo muuttuu, jos pituuden hajonta pienenee? Perustele. 75. Valmistetaan laakerikuulia, joiden halkaisijan tulisi olla mahdollisimman tarkkaan 5 mm. Halkaisija X on normaalijakautunut odotusarvona säätöarvo µ ja keskihajontana σ = 0,2mm. Säätöarvo tarkastetaan mittaamalla n=20 satunnaisesti valitun laakerikuulan halkaisija ja testaamalla riskitasolla α = 0,01 hypoteeseja. H 0 : µ = 5 H 1 : µ 5 Suorita testaus sekä taulukkoarvoon vertaamalla että P-arvoa käyttäen, kun tarkastetun otoksen keskiarvoksi saatiin A. x = 5,06 B. x = 4,87 Kuinka kerrot testin tuloksen, jos kiinteää riskitasoa ei ole annettu? Onko tässä tilanteessa perusteltua käyttää kiinteää riskitasoa?

19 eli Säätöarvo poikkeaa 5 mm:stä merkitsevyystasolla P = 0, Kemiallisen prosessin vavonnassa tarvitaan liuoksen ph:n mittaamista. Prosessin toiminnan kannalta oikea ph-arvo on 7,90. Liian suuret poikkeamat kumpaankin suuntaan ovat haitallisia. Onko ph pysynyt halutussa arvossa, jos kahdeksasta mittauksesta saadaan keskiarvoksi 7,85 ja keskihajonnaksi 0,04? Testaa hypoteeseja H 0 :µ = 7,90 H 1 :µ 7,90 Käyttäen riskitasoa α = 0, 05 Ei ole. 77. Tietyn tyyppisen sementin puristuslujuuden tulisi olla 5000 kg/cm 2. Puristuslujuuden hajonnan tiedetään olevan σ = 120kg/m 2. Testataan hypoteeseja H 0 : µ = 5000 H 1 : 5000 Mitataan puristuslujuus 50:stä näytteestä ja H 0 päätetään hylätä, jos otoskeskiarvo x < a) Mikä on kyseisen testin riskitaso? b) Mikä on hyväksymisvirheen todennäköisyys β ja testin voimakkuus, jos todellinen odotusarvo µ = 4960 a) 0,0348 b) 0,2776

20 78. Vedenpuhdistuslaitteen suodatin joudutaan vaihtamaan määrävälein epäpuhtauksien aiheuttaman tukkeutumisen vuoksi. Seuraavassa on pieni otos kalkkipitoisuuden x ja toimintaiän y arvoista: x(%) y(h) a) Laske regressiomallin Y = β 0 +β 1 x+ε parametrit, myös jäännösvarianssin, estimaatit. Laske kertoimien b 0 ja b 1 hajontaestimaatit. b) Testaa riskitasolla α = 0.05 hypoteesit H 0 : β 1 = 0 (eli kalkkipitoisuudella ei vaikutusta) H 1 : β 1 < 0 (eli kalkkipitoisuus lyhentää toimintaikää) (Testisuureen arvo on 2.28) a) SST = 160 SSD = SSE = ˆσ 2 = s s(b 1 ) 3.54 s(b 0 ) 4.96 b) Johtopäätös: H 0 hylätään, joten kalkkipitoisuus lyhentää toimintaikää. 79. Mikä on mallin antama ennuste suodattimen toimintaiälle, jos kalkkipitoisuus on 2%? Laske ennusteen 95%:n varmuusrajat. Laske myös keskimääräisen toimintaiän (odotusarvon) 95%:n varmuusrajat. y = ± µ = ± Pikasuutari teki tilastoa asiakkaan palvelemiseen kuluvasta ajasta. 80 asiakkaan otoksessa ajat jakautuivat seuraavasti:

21 min: lkm: Tutki χ 2 -yhteensopivuustestin avulla voidaanko palveluajan katsoa noudattavan eksponentiaalijakaumaa. Jakauman parametriksi on estimoitu λ = 1/ x = 1/3. Luokkatodennäköisyydet eksponentiaalijakaumalle voidaan laskea kaavalla P(a X b) = F(b) F(a) = e λa - e λb. Testisuure χ 2 = 2.03 Palveluajan voidaan katsoa noudattavan eksponentiaalijakaumaa. 81. Metsäalueesta satunnaisesti valitulla lohkolla kasvoi 56 koivua, 70 kuusta ja 75 mäntyä. Onko aineisto sopusoinnussa sen hypoteesin kanssa, että metsäalueella kasvaa mainittuja puulajeja kaikkia yhtä paljon? (Testisuureen arvo 2.9) 82. Neljä eri konetta valmistavat samaa tuotetta. Kunkin koneen tuotannosta otettiin 200 kappaleen näyte ja saatiin viallisten lukumääriksi 2, 9, 10 ja 3. Testaa 5%:n merkitsevyystasolla, poikkeavatko koneiden tuottamien virhekappaleiden osuudet toisistaan. On eroja, eli poikkeavat. 83. Satunnaisesti valittuja henkilöitä pyydettiin maistamaan kolmea margariinia A, B ja C ja kertomaan, mitä he pitivät parhaana. Kolmessa eri ikäryhmässä valinnat jakautuivat seuraavasti (taulukossa henkilöiden lukumäärät): A B C alle 25-vuotiaat vuotiaat yli 50-vuotiaat Poikkeavatko eri ryhmien mieltymykset toisistaan? Mieltymyksissä EI merkitseviä eroja

a) 0,89 b) 0,01 P (A) = 3/8 P (B) = 3/4 P (A B) = 1/8

a) 0,89 b) 0,01 P (A) = 3/8 P (B) = 3/4 P (A B) = 1/8 Laskuharjoitukset, 5-6.9.2014 Tilastomatematiikka TUDI 1. Olkoot A, B ja C tapahtumia otosavaruudessa S. Määritä joukko-opilliset lausekkeet tapahtumille a) tarkalleen yksi tapahtumista A, B tai C tapahtuu

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 12.1.2016/1 MTTTP5, luento 12.1.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585&i dx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Todennäköisyyslaskenta - tehtävät

Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskenta - tehtävät Todennäköisyyslaskentaa käsitellään Pitkän matematiikan kertauskirjan sivuilla 253 276. Klassinen todennäköisyys Kombinatoriikka Binomitodennäköisyys Satunnaismuuttuja,

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Tilastomatematiikka TUDI

Tilastomatematiikka TUDI Miika Tolonen http://www.mafy.lut.fi/tilmattudi Laboratory of Applied Mathematics Lappeenranta University of Technology 10. syyskuuta 2014 Sisältö I Johdanto 1 Johdanto 2 Satunnaiskokeet ja satunnaismuuttujat

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo.

Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Kertaus Tilaston esittäminen frekvenssitaulukossa ja graafisesti. Luokiteltu aineisto. Keskiluvut luokittelemattomalle ja luokitellulle aineistolle: moodi, mediaani, keskiarvo. Hajontaluvut luokittelemattomalle

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta 031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 %

ikä (vuosia) on jo muuttanut 7 % 46 % 87 % 96 % 98 % 100 % Testaa taitosi 1 1. Noppaa heitetään kahdesti. Merkitse kaikki alkeistapaukset koordinaatistoon. a) Millä todennäköisyydellä ainakin toinen silmäluvuista on 3? b) Mikä on a-kohdan tapahtuman vastatapahtuma?

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 2

031021P Tilastomatematiikka (5 op) viikko 2 031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

4. Tutkittiin kolikonheittäjän virheetöntä rahaa. Suoritettiin kymmenen

4. Tutkittiin kolikonheittäjän virheetöntä rahaa. Suoritettiin kymmenen MAT-20500 Todennäköisyyslaskenta Laskuharjoituksia / Periodi 2 / 2009-2010 1.1 Peruskäsitteitä 1. Totea Venn-diagrammien avulla oikeaksi demorganin lait A B = A B, A B = A B Jos otosavaruus on ihmiset

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

9 Yhteenlaskusääntö ja komplementtitapahtuma

9 Yhteenlaskusääntö ja komplementtitapahtuma 9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Teema 7: Todennäköisyyksien laskentaa

Teema 7: Todennäköisyyksien laskentaa Teema 7: Todennäköisyyksien laskentaa Teemassa 6 tutustuttiin todennäköisyyden ja satunnaisuuden käsitteisiin sekä todennäköisyyslaskennan perusteisiin. Seuraavaksi tätä aihepiiriä syvennetään perehtymällä

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

2. laskuharjoituskierros, vko 5, ratkaisut

2. laskuharjoituskierros, vko 5, ratkaisut 2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja. Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?

Lisätiedot