ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

Koko: px
Aloita esitys sivulta:

Download "ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!"

Transkriptio

1 TEKSTIOSA AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä me r- kintöjä artikkeliin. 2) Ennen tehtävien suorittamista artikkeli kerätään pois. Tämän jälkeen jaetaan tekstiosaan liittyvät tehtävät ja samalla kertaa myös toinen osa, jossa ovat matematiikan, loogisen päättelyn ja fysiikan/kemian tehtävät. Aikaa molemp i- en osien tehtävien tekoon on yhteensä 2 h 45 min. ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

2 2 Henrikki Timgren Kenen idea? Henkisen omaisuuden hallinnasta käydään ankaraa kilpailua. Köyhät maat vaikuttavat kisan häviäjiltä ja isot yritykset voittajilta. Mutta kenen taskuun päätyvät korkeakoulut? Tämä on aika kallis artikkeli. Tämän artikkelin kirjoittamiseen ja taittamiseen käytettyjen tietokoneohjelmien lisensseistä on maksettu kymmeniätuhansia euroja. Tähän artikkeliin on etsitty taustamateriaalia tietokannoista, joiden käytöstä maksetaan vuosittain satojatuhansia euroja. Sopii myös muistaa, että tämän artikkelin uudelleenjulkaisu ilman minun lupaani tulee sinulle kalliiksi. Ajatus immateriaalioikeudesta eli henkisen omaisuuden nauttimasta lainsuojasta ei ole mitenkään uusi. Ensimmäisiä patentteja kuten yksinoikeutta vaikkapa tietyn kirjapainomenetelmän käyttöön ryhdyttiin viilailemaan renessanssiajan Italiassa, 1400-luvun lopulla. Laajan mittakaavan bisnestä patenteista ja tekijänoikeuksista tuli teollisen vallankumouksen myötä. Kun alan kansainväliset perussopimukset solmittiin 1800-luvulla, sekä patentin että tekijänoikeuden perusidea oli kohtalaisen selvä. Sille, joka julkistaa hengentuotteensa olipa kyseessä sähkölamppu tai sinfonia kaiken kansan nautittavaksi, taataan oikeus nauttia luovuutensa hedelmistä. Jos ei taloudellisesti, niin ainakin moraalisesti. Maailmanlaajuisiin oikeuksiin Viimeisen kymmenen, viidentoista vuoden aikana keskustelu aineettomien olioiden omistusoikeudesta on kimmahtanut aivan uusiin sfääreihin. Vertautuuko nollista ja ykkösistä koostuva tietokoneohjelma keksintöön? Kyllä vertautuu. Onko kasvilaji patentoitavissa? Kyllä on, tietyin ehdoin. Saako digitaalisessa muodossa olevia tietokantoja, kuten geenikarttoja, kopioida yksityiseen käyttöön? Ei saa. Aikaisemmin immateriaalioikeuden idea oli se, että lainsäädäntö on kansallista, mutta että se antaa suojaa myös muunmaalaisille tuotteille. Kansainvälistyvässä maailmassa immateriaalioikeuden piiriin kuuluvien tuotteiden markkinat ovat muuttuneet valtaviksi. Nyt pyritään suojamuotoihin, jotka ovat alueellisia tai globaaleja, toteaa oikeustieteen professori Niklas Bruun. Bruun toimii paitsi Svenska Handelshögskolanin professorina, myös IPR- eli immateriaalioikeusinstituutin johtajana. Helsingin ja Turun yliopistojen, Teknillisen korkeakoulun, Helsingin kauppakorkeakoulun sekä Handelshögskolanin vuonna 1999 perustamassa laitoksessa tutkitaan immateriaalioikeuksiin liittyviä kysymyksiä ja annetaan koulutusta suomalaistutkijoille. Ankaraa lainsäädäntöä Bruunin mainitsemat "alueelliset" ja "globaalit" suojamuodot nostattavat kylmiä väreitä monen kansalaisaktiivin ja vähemmänkin aktiivisen kansalaisen selkäpiissä.

3 3 Suomen vinkkelistä alueellisia suojamuotoja edustaa EU:ssa vireillä oleva monitahoinen lakipaketti, jonka tavoitteena on muokata tekijänoikeus- ja patenttilainsäädäntö uuteen uskoon. Jos ja kun laki toteutuu, suomalaiskeksijä voi hakea keksinnölleen patentin suoraan EU-tasolta. Nykyinen kansallinen patenttiviranomainen, patentti- ja rekisterihallitus, tulee tavallaan turhaksi. Eurooppalaisen patenttilainsäädännön sisällöllinen puoli arveluttaa monia. Poliittisesta epäaktiivisuudestaan tunnetut tietokonenörtit nousivat syksyllä barrikadeille Brysselissä vastustaakseen kaavaillun EU-lain suomaa mahdollisuutta patentoida jo pelkkä ohjelmointiidea. Alan ihmisten mielestä pykälä uhkaa uusien tietokoneohjelmien vapaata kehittämistä: jos uusi ohjelma sattuu sisältämään jo patentoidun ohjelmakomponentin, syyllistyy ohjelman kehittäjä patenttilain rikkomiseen. Kuluttajien edunvalvojat taas pitävät kaavailtua tekijänoikeuslainsäädäntöä aivan liian tiukkana: muutaman piraattilevyn tai T-paidan itärajan yli kuljettava suomalainen voi ainakin periaatteessa joutua oikeuden eteen. Kansallinen liikkumavara EU-hankkeissa ei ole kovin suuri. Onkin entistä tärkeämpää pohtia, miten sitä vähäistä liikkumavaraa käytetään. Vahvat lobbaajat pyrkivät ajamaan etujaan. Esimerkiksi piratismista kauhistuneet levyteollisuuden edustajat saattavat vaatia turhan kovia rangaistuksia ja hirvittävän tiukkaa rajavalvontaa, mikä ei välttämättä ole kovin kaukonäköistä, Bruun muotoilee. Itse asiassa uusi EU-lainsäädäntö on sekin osa suurempaa, maailmanlaajuista immateriaalioikeusmullistusta. Kun kansainvälinen kauppajärjestö WTO perustettiin vuonna 1996, sen kylkiäiseksi laadittiin immateriaalioikeuksilla käytävää kauppaa sääntelevä Trips (trade related aspects of intellectual property rights) -sopimus. Periaatteessa kaikki WTO:n jäsenmaat ovat sitoutuneet noudattamaan sopimusta. Trips-sopimus pakottaa kaikki jäsenet yhteiseen patenttijärjestelmään. Kehitysmaille on sovittu pitkiä ylimenokausia, mutta maailmanlaajuiseen suuntaan ollaan menossa, Bruun toteaa. Bisnespiirien ulkopuolelta Trips-sopimukselle löytyy harvoja varauksettomia puolustajia. Huolena on kehittyneen ja kehittyvän maailman välisen pääomakuilun syveneminen. Älytöntä patentointia Tuotteiden suunnittelu, patentointi ja kaupallinen hyödyntäminen edellyttää pitkälle kehittynyttä infrastruktuuria, joka kehitysmailta puuttuu. Niinpä myös elollisen materiaalin patentoinnin sallivan Trips-sopimuksen seurauksena on syntynyt surkuhupaisia tilanteita. Eräs monikansallinen yritys patentoi joitain vuosia sitten Intiassa kasvavan basmat-riisilajikkeen ja ryhtyi tämän jälkeen myymään kyseisen lajikkeen siemeniä intialaisviljelijöille kovaan hintaan. Myös monien patenttisuojattujen lääkkeiden vaikuttavat aineet ovat peräisin kehitysmaiden kasvistosta. Riski on se, että heikommat pelurit joutuvat maksamaan entistä enemmän, eivätkä saa vastineeksi mitään. Minusta lainsäätäjien piirissä näkyy jo tietoisuus siitä, että immateriaalioikeuksia ei voi vain loputtomasti vahvistaa, Bruun sanoo.

4 4 Yhtenäistyvän ja alaltaan laajenevan immateriaalilainsäädännön pelätään, vastoin alkuperäistä tarkoitustaan, tukahduttavan vapaan tieteilyn ja taiteilun myös teollisuusmaiden sisällä. Varoittavana esimerkkinä mainitaan usein suuret yhdysvaltalaiset yliopistot, jotka ryhtyivät 1980-luvulla haalimaan suuria patenttisalkkuja. Ideana oli, että yliopistot voisivat vaihtaa omia patenttejaan tutkimuksessa tarvitsemiinsa, muualla patentoituihin menetelmiin. Nokialla on valtava patenttisalkku, jota se käyttää neuvotteluaseena kilpailijoidensa kanssa. Yliopistot eivät voi kuitenkaan toimia kuten suuret firmat. Patentoiminen on kallista, ja vain harva patentti on tuottoisa. Korkeakoulu versus ahnas yritys Miten korkeakoulu voi sitten suojautua alati ahnastuvaa yritysmaailmaa vastaan? Tilaustutkimukset kun ovat kuitenkin tulleet jäädäkseen. En ole pessimistinen Suomen korkeakoulujen pärjäämisen suhteen. Jos ja kun yliopistolla on hyvää osaamista, yritysten välille syntyy kilpailua tästä osaamisesta. Yritysten intressissä on, että tilaustutkimuksenkin pelisäännöt ovat kohtuullisia. Arvokkaasta ollaan myös valmiita maksamaan. Akuutimpi ongelma on yritysten ja yliopistomaailman välisten suhteiden luominen. Tutkijan ja investoijan maailmat ovat vielä liian kaukana toisistaan. Yrityssuhteita hoitava hallinto jää helposti irralliseksi byrokratiaksi, joka koetaan hankalaksi sekä tutkijoiden että yritysten puolelta. Tutkijoiden entistä aktiivisempi kouluttaminen tekijänoikeuskysymysten perusteisiin on välttämätöntä. Jokaisella tutkijalla pitäisi olla käsitys siitä, mitä immateriaalioikeudet ovat. Kyseessä on samanlainen tutkijan perustaito kuin kielitaito. Erityisesti julkaisutoiminnassa suomalaisilla tutkijoilla ja yliopistoilla on Bruunin mielestä vielä pohdittavaa. Tieteellisen julkaisutoiminnan pelisäännöt ovat ison mullistuksen edessä. Jos antaa julkaisun ilmaiseksi pois, voi käydä niin, että joku kustantaja repii siitä suuret rahat ja julkaisun tuottaneen korkeakoulun kirjasto joutuu maksamaan suuria summia oman talon tuotoksista. Esimerkiksi yhdysvaltalainen MIT-yliopisto on päätynyt ratkaisuun, jossa yliopiston julkaisut ovat vapaasti saatavilla korkeakoulun omilta verkkosivuilta, eikä niiden oikeuksia myydä ulkopuolisille. (Yliopisto-lehti 1/2004)

5 5 VASTAUSOSA, osa 1 (tekstin ymmärtäminen) VALINTATEHTÄVÄ Vastaa seuraaviin tehtäviin valitsemalla vaihtoehto (rasti ruutuun) - OIKEIN, jos väite on tekstin mukainen - VÄÄRIN, jos väite ei ole tekstin mukainen Arvostelu: 5 oikein 1 p, 6 oikein 2 p, 7 oikein 3 p, 8 oikein 4 p, 9 oikein 5 p, 10 oikein 6 p, 11 oikein 7 p, 12 oikein 8 p. 1. Immateriaalioikeudella tarkoitetaan henkisen omaisuuden nauttimaa lainsuojaa. OIKEIN VÄÄRIN 2. Ensimmäisiä patentteja tiedetään myönnetyn Ranskassa 1300-luvulla. 3. Patentointia koskevat kansainväliset perussopimukset solmittiin luvun alussa. 4. Aikaisemmin immateriaalioikeuden idea oli, että lainsäädäntö on kansallista eikä niin ollen anna suojaa muunmaalaisille tuotteille. 5. EU:ssa vireillä oleva monitahoinen lakipaketti antaisi suomalaiskeksijälle mahdollisuuden hakea keksinnölleen patentin suoraan EU-tasolta, jolloin kansallinen patenttiviranomainen, patentti- ja rekisterihallitus, tulisi tavallaan tarpeettomaksi. 6. Tietokoneohjelmaa ei voida patentoida koska se ei vertaudu keksintöön. 7. Digitaalisessa muodossa olevia tietokantoja saa kopioida yksityiseen käyttöön. 8. Suunnitteilla oleva EU-laki antaisi mahdollisuuden patentoida tietokoneohjelman yksittäisen ohjelmointi-idean, mikä alan ihmisten mielestä edesauttaisi uusien tietokoneohjelmien kehittämistä. 9. Immateriaalioikeuksilla käytävää kauppaa säätelevä Trips-sopimus on kehitysmaiden mieleen, koska sen turvin voidaan patentoida myös elollista materiaalia kuten kehitysmaissa kasvavia ravinto- ja lääkekasveja. 10. Yhtenäistyvän ja alaltaan laajenevan immateriaalilainsäädännön uskotaan edistävän myös vapaata tieteellistä tutkimusta, koska yliopistoillekin tulee mahdollisuus hankkia patenttisalkkuja. 11. Korkeakoulun julkaisutoiminnan kannalta on ongelmallista, että korkeakoulun kirjasto joutuu maksamaan oman talon tuotoksista, kun korkeakoulussa tuotettu julkaisu annetaan ulkopuoliselle kustantajalle. 12. Yhdysvaltalaisen MIT-yliopiston julkaisut ovat vapaasti saatavilla korkeakoulun omilta verkkosivuilta, eikä niiden oikeuksia myydä ulkopuolisille.

6 1 TEHTÄVÄOSA AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän osan maksimipistemäärä on 8. Osa 2 (Matematiikka + looginen päättely + fysiikka/kemia) Osassa on 9 tehtävää. Jokaisen tehtävän maksimipistemäärä on 3. Laskemista sisältävien tehtävien ratkaisuksi ei riitä pelkkä lopputulos, vaan ratkaisun oleelliset laskutoimitukset on kirjoitettava näkyviin vastausarkilla osoitettuun tilaan. Kunkin tehtävän lopullinen vastaus on kirjoitettava merkitylle kohdalle. Tehtävissä 7-9 on kaksi vaihtoehtoa (fysiikka ja kemia). Näistä vaihtoehdoista saa ratkaista vain jommankumman. ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

7 2 Osan 1 tehtävät ovat vastausosassa. Aloita vastaamalla niihin. Osan 2 tehtävät: 1. a) Sievennä lauseke aa ( + 1) a(1 a). b) Laske lausekkeen x y arvo kun x = 2 ja y = 4. y x 1 1 c) Sievennä lauseke (1 ): 1. m m 2. a) Ratkaise t yhtälöstä v= v0 + at. (1 p.) y w b) Ratkaise w yhtälöstä k =. (2 p.) w 3. Ympyrän säde on 10,0cm. Ympyrän sisään on piirretty suorakulmio, jonka kärjet ovat ympyrän kehällä. Suorakulmion sivujen pituuksien suhde on 1:2. Mikä on suorakulmion pinta-ala? 4. Vuonna 2002 Matin ja Liisan perheessä Matti ansaitsi 45,0 % ja Liisa 55,0 % perheen nettotuloista. Vuonna 2003 Matin nettotulot kasvoivat 7,2 % ja Liisan 9,6 %. Kuinka monta prosenttia oli Matin osuus perheen nettotuloista vuonna Esitä vastaus 0,1 %:n tarkkuudella. 5. Taulukon kirjaimet a, b, c, d, e, f, g ja h ovat kokonaislukuja väliltä 1-10 ja jokaista käytettyä lukua vastaa vain yksi kirjain. Määritä kyseiset luvut, kun riveille ja sarakkeille tulevien kertolaskujen tulokset on annettu. g d h d 24 f c d b 100 h d d f 8 d e a a Veljekset Matti, Keijo, Sami ja Paavo asuvat kotitilallaan Impivaarassa. Tiedetään seuraavat tosiasiat: - Kun Matti on kotona, niin joko Keijo tai Sami on kotona. - Kun Sami on kotona, niin myös Paavo on kotona. - Kun Matti ei ole kotona, niin Paavo on kotona. - Kun Keijo on kotona, on Matti poissa. Kuka tai ketkä veljeksistä ovat aina varmasti kotona?

8 3 Tehtävissä 7, 8 ja 9 on kussakin vaihtoehtoisesti ratkaistava joko kohta A tai kohta B. Jos lasket molemmat kohdat, otetaan huomioon se, joka antaa vähemmän pisteitä. 7 A. Kappaletta, jonka massa on 1,2 kg, vedetään vaakasuoralla alustalla vaakasuoralla 4,2 N voimalla. Kappale saa tällöin kiihtyvyyden 2,1 m/s 2. Laske kitkakerroin. (g = 9,8 m/s 2 ) 7 B. Kuinka monta grammaa suolaa (NaCl) on punnittava valmistettaessa 5,0 litraa suolaliuosta, jonka konsentraatio on 2,5 mol/l? Alkuaineiden jaksollinen järjestelmä on viimeisellä sivulla. 8 A. Vuolukiviuunin lämpötila laskee oheisen kuvan mukaisesti sen jälkeen, kun uunin lämmittäminen on lopetettu. Kuinka suurella teholla uuni tällöin lämmittää ympäristöään? Uunin massa on 2300 kg ja vuolukiven ominaislämpökapasiteetti on 0,98 kj/(kg o C). Lämpötila ( o C) Aika (h) 8 B. Kuinka monta sokerimolekyyliä (C 12 H 22 O 11 ) on 12 gramman sokeripalassa? (N A = 6, /mol) Alkuaineiden jaksollinen järjestelmä on viimeisellä sivulla.

9 4 9 A. Kaksi vastusta, joiden resistanssit ovat 15 Ω ja 30 Ω, kytketään rinnan ja yhdistetään sen jälkeen tasavirtalähteeseen, jonka lähdejännite on 22 V ja sisäinen resistanssi 2,0 Ω. Laske virtapiirissä kulkeva kokonaisvirta (= rinnan kytkettyjen vastusten virtojen summa). 9 B. Alumiinikloridia valmistettaessa tapahtuu seuraava reaktio: Al 2 O C + 3 Cl 2 2 AlCl CO Kuinka monta kilogrammaa alumiinioksidia tarvitaan valmistettaessa 150 kg alumiinikloridia? Alkuaineiden jaksollinen järjestelmä on viimeisellä sivulla.

10 1 Tehtävien vastaukset Osan 1 valintatehtävän oikea rivi: Ruotsinkielinen teksti, oikea rivi: O V V V O V V V V V O O R R F F F F F F R R R F 1. a) 2 2a b) 3 2 c) m 2 2. a) v v0 t = a b) y w = k cm 4. 44,5% 5. a = 3, b= 5, c = 10, d = 1, e= 8, f = 2, g= 6, h= 4 6. Paavo 7 A. 0,14 7 B. 730g 8 A. 6,3 kw 8 B. 2, kpl 9 A. 1,8 A 9 B. 57 kg

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 5.11.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä me r- kintöjä

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE TEHTÄVÄOSA 4..005 AMMATTKORKEAKOULUJEN TEKNKAN JA LKENTEEN VALNTAKOE YLESOHJETA Tehtävien suoritusaika on h 45 min. Osio (Tekstin ymmärtäminen) Osiossa on valintatehtävää. Tämän osion maksimipistemäärä

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE. Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia)

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE. Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) B sivu 1(7) TOIMINTAOHJE 7.6.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE Tehtävien suoritusaika on 2 h 45 min. Osio 1 (Tekstin ymmärtäminen) Osiossa on kaksi osaa A Valintatehtävä (4

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE. Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia)

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE. Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) B sivu 1(5) TOIMINTAOHJE 6.6.2003 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) Laskemista sisältävien tehtävien ratkaisuksi ei riitä

Lisätiedot

Suuntana ulkomaat aineettomien oikeuksien kansainvälisiä kysymyksiä

Suuntana ulkomaat aineettomien oikeuksien kansainvälisiä kysymyksiä Suuntana ulkomaat aineettomien oikeuksien kansainvälisiä kysymyksiä Sanna Aspola, Berggren Oy Ab 26.3.2013 Kansalliset oikeudet kansainvälisellä kentällä Kansainväliset viranomaiset, järjestöt ja sopimukset

Lisätiedot

Immateriaalioikeutta ja tekijyyttä koskevat kysymykset

Immateriaalioikeutta ja tekijyyttä koskevat kysymykset Immateriaalioikeutta ja tekijyyttä koskevat kysymykset Professori Niklas Bruun IPR University Center Tekijyysseminaari 31.8.2005 Tutkimuseettinen neuvottelukunta Tekijyys missä mielessä? Tutkimuksen tekijä?

Lisätiedot

5. Sähkövirta, jännite

5. Sähkövirta, jännite Nimi: LK: SÄHKÖOPPI Tarmo Partanen Laboratoriotyöt 1. Työ 1/7, jossa tutkit lamppujen rinnan kytkennän vaikutus sähkövirran suuruuteen piirin eri osissa. Mitataan ensin yhden lampun läpi kulkevan virran

Lisätiedot

IPR eli aineettomat oikeudet ja yliopistotutkimus

IPR eli aineettomat oikeudet ja yliopistotutkimus IPR eli aineettomat oikeudet ja yliopistotutkimus Suomen Akatemia ja Tiedon julkistamisen neuvottelukunta Helsinki 10.3.2010 Professori Niklas Bruun IPR University Center/Helsingin yliopisto IPR yliopistoissa?

Lisätiedot

TUTKIMUSTIEDON SAATAVUUS JA IMMATERIAALIOIKEUDET. Dosentti Marjut Salokannel Tiedon saatavuus tutkimuksen elinehto -seminaari, 28.5.

TUTKIMUSTIEDON SAATAVUUS JA IMMATERIAALIOIKEUDET. Dosentti Marjut Salokannel Tiedon saatavuus tutkimuksen elinehto -seminaari, 28.5. TUTKIMUSTIEDON SAATAVUUS JA IMMATERIAALIOIKEUDET Dosentti Marjut Salokannel Tiedon saatavuus tutkimuksen elinehto -seminaari, 28.5.2007 Tutkimustiedon luonteesta Tieto on julkishyödyke, joka kasvattaa

Lisätiedot

IPR 2.0 Netti, Brändi ja Nettibrändi

IPR 2.0 Netti, Brändi ja Nettibrändi IPR 2.0 Netti, Brändi ja Nettibrändi VT Ari-Pekka Launne Kolster OY AB Helsinki 31.5.2012 IPR ja Internet mistä on kysymys? Internet on muuttunut muutamien toimijoiden yhteydenpitovälineestä globaaliksi

Lisätiedot

IPR-opas. Immateriaalioikeudet yliopistossa. Kuka omistaa ja kuka voi hyödyntää yliopistossa syntyneitä immateriaalioikeuksia?

IPR-opas. Immateriaalioikeudet yliopistossa. Kuka omistaa ja kuka voi hyödyntää yliopistossa syntyneitä immateriaalioikeuksia? IPR-opas Immateriaalioikeudet yliopistossa Kuka omistaa ja kuka voi hyödyntää yliopistossa syntyneitä immateriaalioikeuksia? Tutkimustuloksia sekä osaamista hyötykäyttöön ja liiketoiminnaksi Kiinnostaako

Lisätiedot

"Oikeusportfolion" rakentaminen ohjelmistoyritykselle

Oikeusportfolion rakentaminen ohjelmistoyritykselle "Oikeusportfolion" rakentaminen ohjelmistoyritykselle Oikeus tietoyhteiskunnassa -kurssi TKK 14.2.2005 Markus Oksanen lakimies, Asianajotoimisto Peltonen, Ruokonen & Itäinen, Helsinki Immateriaalioikeudet

Lisätiedot

PROTOMO JYVÄSKYLÄ 22.3.2010 TEOLLISOIKEUSASIAA

PROTOMO JYVÄSKYLÄ 22.3.2010 TEOLLISOIKEUSASIAA PROTOMO JYVÄSKYLÄ 22.3.2010 TEOLLISOIKEUSASIAA KEKSINNÖLLISYYDEN ARVIOINNISTA 1. CASE: MATTOKAUPPAA NORJASSA - SUOJAUKSEN MERKITYS 2. TÄRKEIMMÄT PELIVÄLINEET LIIKETOIMINNAN TUKEMISEEN 3. IPR -STRATEGIASTA

Lisätiedot

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ 4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos

Lisätiedot

A sivu 1 (4) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

A sivu 1 (4) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE A sivu 1 (4) TEKSTIOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä

Lisätiedot

Tiedolla varmuutta - suojauksella kilpailuetua

Tiedolla varmuutta - suojauksella kilpailuetua Tiedolla varmuutta - suojauksella kilpailuetua - aineeton pääp ääoma liiketoiminnan tukijalkana Vesi-ohjelman vuosiseminaari 22.11.2011 Sisält ltöä: 1) Immateriaalijärjestelm rjestelmä ja innovaatioprosessi

Lisätiedot

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! B 1 (6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE 28.5.2015 OSION 2 TEHTÄVÄT Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) LUE VASTAUSOHJEET C-OSAN (VASTAUSLOMAKKEEN) KANNESTA

Lisätiedot

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on? SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

Aineettomat oikeudet ohjelmistoliiketoiminnassa

Aineettomat oikeudet ohjelmistoliiketoiminnassa Aineettomat oikeudet ohjelmistoliiketoiminnassa Olli Pitkänen Helsinki Institute for Information Technology () Asianajotoimisto Opplex Oy 02-02 1 Aineettomat eli immateriaalioikeudet Englanniksi Intellectual

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Konkreettisia etuja aineettomista oikeuksista

Konkreettisia etuja aineettomista oikeuksista Konkreettisia etuja aineettomista oikeuksista www.kolster.fi Kolster on IPR-asiantuntija Kolster Oy Ab on teollisoikeuksiin tai laajemmin immateriaalioikeuksiin (IPR, Intellectual Property Rights) erikoistunut

Lisätiedot

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Funktiot ja yhtälöt Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Funktiot ja yhtälöt (MAA) Pikatesti ja kertauskokeet Pikatesti

Lisätiedot

Laki hyödyllisyysmallioikeudesta annetun lain muuttamisesta

Laki hyödyllisyysmallioikeudesta annetun lain muuttamisesta Annettu Helsingissä 8 päivänä joulukuuta 1995 Laki hyödyllisyysmallioikeudesta annetun lain muuttamisesta Eduskunnan päätöksen mukaisesti muutetaan hyödyllisyysmallioikeudesta 10 päivänä toukokuuta 1991

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

VAIKUTTAVUUSARVIOINNIN HAASTEET

VAIKUTTAVUUSARVIOINNIN HAASTEET Suomen Akatemia & TEKES seminaari 12.10.2005 VAIKUTTAVUUSARVIOINNIN HAASTEET Arto Mustajoki Helsingin yliopisto Suomen Akatemia Kulttuurin ja yhteiskunnan tutkimuksen toimikunta (Esityksen alkuosassa on

Lisätiedot

IP Landscape. Mika Waris INNORATA 2-2. seminaari 06.10.2009. Mika Waris

IP Landscape. Mika Waris INNORATA 2-2. seminaari 06.10.2009. Mika Waris Mika Waris INNORATA 2-2 seminaari 06.10.2009 Mika Waris Immateriaalijärjestelmä kilpailutekijänä Mika Waris Innovaatioystävällinen ympäristö Keskeinen osa innovaatioympärist ristöä on immateriaalijärjestelm

Lisätiedot

Case Genelec. IPR-seminaari PK-yrityksille. Aki Mäkivirta, tuotekehitysjohtaja 2.2.2015 Kuopio

Case Genelec. IPR-seminaari PK-yrityksille. Aki Mäkivirta, tuotekehitysjohtaja 2.2.2015 Kuopio Case Genelec IPR-seminaari PK-yrityksille Aki Mäkivirta, tuotekehitysjohtaja 2.2.2015 Kuopio Mistä IPR:ää löytyy? Suunnittelu Tuotanto Tuote, mielikuva markkinoilla innovatiivisuus teknologiaosaaminen

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Patenttitietokannoista ja patentista

Patenttitietokannoista ja patentista Patenttitietokannoista ja patentista Erikoiskirjastojen neuvoston syyskokous 21.10.2009 Kristiina Grönlund Patenttikirjasto ja neuvontapalvelut Patentti- ja rekisterihallitus Maksuttomia patenttitietokantoja

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan

Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan Tekniikan valintakokeen laskutehtävät (osio 3): Vastaa kukin tehtävä erilliselle vastauspaperille vastaukselle varattuun kohtaan 1. Kolmiossa yksi kulma on 60 ja tämän viereisten sivujen suhde 1 : 3. Laske

Lisätiedot

Avoin lähdekoodi (Open Source) liiketoiminnassa

Avoin lähdekoodi (Open Source) liiketoiminnassa Avoin lähdekoodi (Open Source) liiketoiminnassa Mikko Amper 12.11.2013 Mitä aloittavan BioICT-yrityksen tulisi tietää IPR:istä, niiden hallinnasta ja patentoinnista? Tässä esityksessä ilmaistut mielipiteet

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

IPR JA KEHITTYVÄT MARKKINAT Kansainvälistyvän pk-yrityksen näkökulma. IPR-lakimies, OTK, MBA Jani Kaulo

IPR JA KEHITTYVÄT MARKKINAT Kansainvälistyvän pk-yrityksen näkökulma. IPR-lakimies, OTK, MBA Jani Kaulo IPR JA KEHITTYVÄT MARKKINAT Kansainvälistyvän pk-yrityksen näkökulma IPR-lakimies, OTK, MBA Jani Kaulo Immateriaalioikeuksiin liittyvät ongelmat kaupan esteinä Noin 7 % kaikista suomalaisyritysten kohtaamista

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

Teollisoikeuksilla kilpailuetua

Teollisoikeuksilla kilpailuetua Teollisoikeuksilla kilpailuetua milloin asiamiehen kokemusta kannattaa hyödyntää? TYP 2014 23.10.2014 Håkan Niemi Kolster Oy Ab Pohjalainen 13.10.2014 Pohjalainen 13.10.2014 Pohjalainen 20.10.2014 2 3

Lisätiedot

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

Tekijänoikeus ja piratismi

Tekijänoikeus ja piratismi Tekijänoikeus ja piratismi Jokaisella on oikeus niiden henkisten ja aineellisten etujen suojaamiseen, jotka johtuvat hänen luomastaan tieteellisestä, kirjallisesta tai taiteellisesta tuotannosta. YK:n

Lisätiedot

Teollisoikeudet (patentit, tavaramerkit ja mallisuoja) liiketoiminnassa Olli Ilmarinen

Teollisoikeudet (patentit, tavaramerkit ja mallisuoja) liiketoiminnassa Olli Ilmarinen Teollisoikeudet (patentit, tavaramerkit ja mallisuoja) liiketoiminnassa Olli Ilmarinen Patentti- ja rekisterihallitus (PRH) Mitä IPR liittyy liiketoimintaan? TAVARAMERKKI PATENTTI MALLI- SUOJA TEKIJÄNOIKEUS

Lisätiedot

AMMATIKKA top 16.11.2006

AMMATIKKA top 16.11.2006 AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.

Lisätiedot

3. Koko maassa alkutuotanto työllistää n. 7 % koko maan työvoimasta. 4. Vuonna 1999 maatalous työllisti 200 000 henkilöä.

3. Koko maassa alkutuotanto työllistää n. 7 % koko maan työvoimasta. 4. Vuonna 1999 maatalous työllisti 200 000 henkilöä. LUONNONVARA- JA YMPÄRISTÖALAN VALTAKUNNALLINEN VALINTAKOE 8.6.2004 Viestinnän ja tiedonhankinnan osuus Nimi Henkilötunnus Etukäteismateriaalina on maa- ja metsätalousministeriön Luonnonvarastrategia, MMM:n

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä.

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä. Lääketieteellisten alojen valintakokeen 009 esimerkkitehtäviä Tehtävä 4 8 pistettä Aineistossa mainitussa tutkimuksessa mukana olleilla suomalaisilla aikuisilla sydämen keskimääräinen minuuttitilavuus

Lisätiedot

Mitä on tekijänoikeus?

Mitä on tekijänoikeus? Tekijänoikeudet Elina Ulpovaara 21.9.2009 2009 Mitä on tekijänoikeus? Tekijänoikeuslaki 8.7.1961/404 Tekijänoikeuden kohde ja sisällys 1 Sillä, joka on luonut kirjallisen tai taiteellisen teoksen, on tekijänoikeus

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Opas tekijänoikeudesta valokuvaan, piirrettyyn kuvaan, liikkuvaan kuvaan, ääneen ja musiikkitallenteisiin sekä tekijänoikeudesta internettiin.

Opas tekijänoikeudesta valokuvaan, piirrettyyn kuvaan, liikkuvaan kuvaan, ääneen ja musiikkitallenteisiin sekä tekijänoikeudesta internettiin. Opas tekijänoikeudesta valokuvaan, piirrettyyn kuvaan, liikkuvaan kuvaan, ääneen ja musiikkitallenteisiin sekä tekijänoikeudesta internettiin. TEKIJÄNOIKEUS (Kopiereg - Derechos d autor - Müəlliflik hüquqları

Lisätiedot

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko.

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko. SUBSTANTIIVIT 1/6 juttu joukkue vaali kaupunki syy alku kokous asukas tapaus kysymys lapsi kauppa pankki miljoona keskiviikko käsi loppu pelaaja voitto pääministeri päivä tutkimus äiti kirja SUBSTANTIIVIT

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

Kuvausluvat ja tekijänoikeudet

Kuvausluvat ja tekijänoikeudet Kuvausluvat ja tekijänoikeudet Ira Helkamäki Mediatekniikan seminaari 24.1.2012 Sisältö Kuvaaminen Julkisella paikalla ja muualla Tekijänoikeudet Valokuvat, musiikki, elokuvat Tekijänoikeusrikkomus Tekijänoikeusyhdistykset

Lisätiedot

Suomi nousuun. Aineeton tuotanto

Suomi nousuun. Aineeton tuotanto Suomi nousuun Aineeton tuotanto Maailman talous on muutoksessa. Digitalisoituminen vie suomalaiset yritykset globaalin kilpailun piiriin. Suomen on pärjättävä tässä kilpailussa, jotta hyvinvointimme on

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE TEHTÄVÄOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän osan maksimipistemäärä

Lisätiedot

Open access -julkaiseminen Oikeudellinen tausta ja tekijänoikeudet

Open access -julkaiseminen Oikeudellinen tausta ja tekijänoikeudet Open access -julkaiseminen Oikeudellinen tausta ja tekijänoikeudet Professori Juha Karhu Lapin yliopisto ja Tutkimuseettinen neuvottelukunta 31.8.2005 Open access idea Tutkimus on kenen tahansa luettavissa

Lisätiedot

Miten suojaat aineettoman omaisuuden yritystoiminnassa?

Miten suojaat aineettoman omaisuuden yritystoiminnassa? Miten suojaat aineettoman omaisuuden yritystoiminnassa? 8:30 Ilmoittautuminen ja aamukahvit 9:00 9:20 Tervetuloa - seminaarin avaus Aineeton oikeus käytännössä ja julkinen rahoitus Tapani Saarenpää, asiantuntija,

Lisätiedot

Oulun yliopisto Pekka Räsänen pekka.rasanen@oulu.fi 04-14-2000 / PR 1. innovaatiopalvelujen tarve innovaatiostrategia innovaatioprosessi

Oulun yliopisto Pekka Räsänen pekka.rasanen@oulu.fi 04-14-2000 / PR 1. innovaatiopalvelujen tarve innovaatiostrategia innovaatioprosessi Oulun yliopisto Pekka Räsänen pekka.rasanen@oulu.fi 04-14-2000 / PR 1 Sisältö innovaatiopalvelujen tarve innovaatiostrategia innovaatioprosessi keksinnön tunnistaminen evaluointi hyödyntämissuunnitelma

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Nettikasvattajan. käsikirja

Nettikasvattajan. käsikirja Nettikasvattajan käsikirja 5+1 ohjetta kasvattajalle 1 Ole positiivinen. Osallistu lapsen nettiarkeen kuten harrastuksiin tai koulukuulumisiin. Kuuntele, keskustele, opi! Pelastakaa Lapset ry:n nettiturvallisuustyön

Lisätiedot

MITÄ BLOGIIN, WIKIIN TAI KOTISIVUILLE SAA LAITTAA?

MITÄ BLOGIIN, WIKIIN TAI KOTISIVUILLE SAA LAITTAA? MITÄ BLOGIIN, WIKIIN TAI KOTISIVUILLE SAA LAITTAA? Tekijänoikeudet ja tietosuoja verkossa Ella Kiesi 26.3.2009 www.oph.fi Osaamisen ja sivistyksen asialla Vaikuttava lainsäädäntö Tekijänoikeuslaki 404/1961

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

JURIDIIKKA YRITYKSEN BRÄNDIN SUOJAAMISEN APUNA

JURIDIIKKA YRITYKSEN BRÄNDIN SUOJAAMISEN APUNA JURIDIIKKA YRITYKSEN BRÄNDIN SUOJAAMISEN APUNA Juhani Ekuri asianajaja, varatuomari ASIANAJOTOIMISTO Esityksen rakenne mikä on brändi? miten brändi suojataan? miten brändin loukkauksilta puolustaudutaan?

Lisätiedot

Tekijänoikeus tuo leivän tekijän pöytään

Tekijänoikeus tuo leivän tekijän pöytään Tekijänoikeus tuo leivän tekijän pöytään Jokaisella on oikeus niiden henkisten ja aineellisten etujen suojaamiseen, jotka johtuvat hänen luomastaan tieteellisestä, kirjallisesta tai taiteellisesta tuotannosta.

Lisätiedot

Asetus hyödyllisyysmallioikeudesta annetun asetuksen muuttamisesta

Asetus hyödyllisyysmallioikeudesta annetun asetuksen muuttamisesta Annettu Helsingissä 22 päivänä joulukuuta 1995 Asetus hyödyllisyysmallioikeudesta annetun asetuksen muuttamisesta Kauppa- ja teollisuusministerin esittelystä muutetaan hyödyllisyysmallioikeudesta 5 päivänä

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe.6.009 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on tuntia (klo 1.00 14.00). Kokeesta saa poistua aikaisintaan klo 1.0..

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 13.11.2008 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Konkreettisia etuja aineettomista oikeuksista

Konkreettisia etuja aineettomista oikeuksista Konkreettisia etuja aineettomista oikeuksista www.kolster.fi IPR-palvelua vuodesta 1874 Kolster Oy Ab on immateriaalioikeuksiin (IPR, Intellectual Property Rights) erikoistunut asiantuntijayritys. Tehtävämme

Lisätiedot

EKOLOGISUUS. Ovatko lukiolaiset ekologisia?

EKOLOGISUUS. Ovatko lukiolaiset ekologisia? EKOLOGISUUS Ovatko lukiolaiset ekologisia? Mitä on ekologisuus? Ekologisuus on yleisesti melko hankala määritellä, sillä se on niin laaja käsite Yksinkertaisimmillaan ekologisuudella kuitenkin tarkoitetaan

Lisätiedot

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Benjamin sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi)

Kenguru 2014 Junior sivu 1 / 8 (lukion 1. vuosikurssi) Kenguru 2014 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

Mikä tekijänoikeus? 1/10. Sivut vaihtuvat nuolinäppäimillä. Sovelluksesta pääset pois Esc näppäimellä.

Mikä tekijänoikeus? 1/10. Sivut vaihtuvat nuolinäppäimillä. Sovelluksesta pääset pois Esc näppäimellä. Mikä tekijänoikeus? 1/10 Sivut vaihtuvat nuolinäppäimillä. Sovelluksesta pääset pois Esc näppäimellä. Tekijänoikeus ja piratismi toinen oppitunti Mikä tekijänoikeus? 1/10 Tekijänoikeus ja piratismi Jokaisella

Lisätiedot

Tutkijan identifiointi kyselyn tuloksia. Hanna-Mari Puuska, CSC Tieteen tietotekniikan keskus Oy 30.8.2013 hanna-mari.puuska@csc.

Tutkijan identifiointi kyselyn tuloksia. Hanna-Mari Puuska, CSC Tieteen tietotekniikan keskus Oy 30.8.2013 hanna-mari.puuska@csc. n tuloksia Hanna-Mari Puuska, CSC Tieteen tietotekniikan keskus Oy 30.8.2013 hanna-mari.puuska@csc.fi Tutkijan identifiointi -kysely Webropol-kysely lähetettiin yliopistoille ja korkeakouluille kesäkuussa

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET Pisteytys on pyritty tekemään pelkistetyksi, jotta kaikki korjaajat päätyisivät samaan arvosteluun.

Lisätiedot

PEFC-merkintä puu- ja paperituotteiden hyvän alkuperän osoittajana

PEFC-merkintä puu- ja paperituotteiden hyvän alkuperän osoittajana PEFC-merkintä puu- ja paperituotteiden hyvän alkuperän osoittajana Huhtikuu 2012 PEFC Suomi Suomen Metsäsertifiointi ry 1 Mitä ympäristömerkit ovat? Tarkoitus Ympäristömerkkien tarkoitus on ohjata ostopäätöksiä

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Kansalliskirjaston ATThankkeet

Kansalliskirjaston ATThankkeet Kansalliskirjaston ATThankkeet Esa-Pekka Keskitalo Asiantuntijaseminaari 28.4.2015 Avoin tiede tarkoittaa avoimien toimintamallien käyttämistä tieteellisessä tutkimuksessa. Keskeinen tavoite on tutkimustulosten,

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 4.11.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue huolellisesti artikkeli "Saako salama potkua avaruudesta?". Lukuaikaa on 20

Lisätiedot

KUKA OMISTAA TIEDON? WTO, teollis- ja tekijänoikeudet ja luonnon monimuotoisuus

KUKA OMISTAA TIEDON? WTO, teollis- ja tekijänoikeudet ja luonnon monimuotoisuus 3 KUKA OMISTAA TIEDON? WTO, teollis- ja tekijänoikeudet ja luonnon monimuotoisuus Teollis- ja tekijänoikeudet (intellectual property rights) ovat oikeuksia hengen tuotteisiin. Tekijänoikeuksilla viitataan

Lisätiedot

Mitä aloittavan BioICT-yrityksen tulisi tietää IPR:istä, niiden hallinnasta ja patentoinnista? IPR University Center

Mitä aloittavan BioICT-yrityksen tulisi tietää IPR:istä, niiden hallinnasta ja patentoinnista? IPR University Center Mitä aloittavan BioICT-yrityksen tulisi tietää IPR:istä, niiden hallinnasta ja patentoinnista? IPR University Center Pääsihteeri Marja-Leena Mansala Immateriaalioikeuden kehys 15.11.2013 IPR University

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! TEKSTIOSA 6.6.2005 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

5.2 Ensimmäisen asteen yhtälö

5.2 Ensimmäisen asteen yhtälö 5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme

Lisätiedot

PATENTOINNIN ROOLI YRITYKSEN LIIKETOIMINNASSA

PATENTOINNIN ROOLI YRITYKSEN LIIKETOIMINNASSA PATENTOINNIN ROOLI YRITYKSEN LIIKETOIMINNASSA Erkki Yli-Juuti VP, Product, Standardization and IPR Strategy Broadcom Communications Finland 1 ONKO PATENTEILLA MERKITYSTÄ? Patentti on oikeus kieltää muita

Lisätiedot

Puzzle SM 2005 15. 25.7.2005. Pistelasku

Puzzle SM 2005 15. 25.7.2005. Pistelasku Puzzle SM 005 5. 5.7.005 Pistelasku Jokaisesta oikein ratkotusta tehtävästä saa yhden () pisteen, minkä lisäksi saa yhden () bonuspisteen jokaisesta muusta ratkojasta, joka ei ole osannut ratkoa tehtävää.

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

BIOTEKNOLOGIA JA IMMATERIAALIOIKEUDET

BIOTEKNOLOGIA JA IMMATERIAALIOIKEUDET BIOTEKNOLOGIA JA IMMATERIAALIOIKEUDET Marjut Salokannel 10.10.2012 Immateriaalioikeudellinen suoja ja bioteknologia Tosiseikat ja ideat vapaasti käytettävissä, paitsi jos liikesalaisuus Keksinnöt => patentit

Lisätiedot