TOIMINTAOHJE AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen:

Koko: px
Aloita esitys sivulta:

Download "TOIMINTAOHJE 7.6.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen:"

Transkriptio

1 A sivu 1(4) TOIMINTAOHJE AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä artikkeliin. 2) Ennen tehtävien suorittamista artikkeli kerätään pois. Tämän jälkeen jaetaan tekstiosioon liittyvät tehtävät ja samalla kertaa myös toinen osio, jossa on matematiikan, loogisen päättelyn ja fysiikan/kemian tehtävät. Aikaa molempien osioiden tehtävien tekoon on yhteensä 2 tuntia 45 minuuttia. ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

2 A sivu 2(4) Tuulienergia, tulevaisuuden energialähde? 1. Tuulivoiman historiaa Tuulivoiman ensimmäisistä käyttöönottopaikoista ei historiantutkijoilla ole varmaa tietoa. Purjealusten käyttövoimana tuulta on käytetty kauan ennen historiallisen ajan alkua. Eräät tutkijat arvioivat kiinalaisten käyttäneen tuulimyllyjä veden pumppaamiseen jo vuotta sitten. Persialaisten tiedetään käyttäneen tuulimyllyjä veden pumppaamiseen ja viljan jauhamiseen ennen ajanlaskumme alkua. Eurooppaan tuulimyllyjen käyttö levisi mahdollisesti ristiretkeläisten mukana 1100-luvulla. Euroopan länsiosissa tuulet olivat voimakkaampia ja oikukkaampia kuin itäisen Välimeren alueella ja tuulimyllyjen rakennetta jouduttiin muuttamaan. Alunperin vaakasuuntainen tuulimyllyn akseli sijoitettiin hieman vinoon ja myllyt varustettiin jo 1400-luvulla tornilla. Vanhoissa alankomaalaisissa maalauksissa näkyy luvulla käytettyjä tuulimyllyjä. Näiden avulla vallattiin lisää viljelysmaata: ensin padottiin meren rannikkoa ja näin syntyneitä patoaltaita tyhjennettiin tuulimyllyjen avulla. Suomessa ensimmäinen tuulimylly mainitaan Turusta vuodelta luvun loppupuolen veroluetteloiden mukaan tuulimyllyjä oli käytössä Varsinais-Suomessa, Vaasan seudulla ja Oulun seudulla. Vuoden 1900 paikkeilla Suomessa oli käytössä tuhansia tuulimyllyjä. Näistä vain pieni osa on säilynyt nykypäiviin asti. 2. Tuulivoimalan toimintaperiaate Tuulimyllyjen tai tuulivoimaloiden tuottama energia on alunperin auringon säteilyenergiaa. Auringon lämpösäteilyn teho Suomen leveysasteilla on kesäkuukausina noin 1 kilowatti maanpinnan neliömetriä kohti. Lämpösäteily aiheuttaa maapallolla ilmanpaineen vaihteluita, kun auringon vaikutuksesta lämmennyt ilma kohoaa ylöspäin. Ilmanpaineen erot ja maapallon pyörimisliike yhdessä aiheuttavat tuulet. Tuulimyllyssä tuulen liike-energia muutetaan mekaaniseksi energiaksi, jonka avulla voidaan esimerkiksi pumpata vettä tai jauhaa viljaa. Tuulivoimalassa tuulen mekaaninen energia muutetaan ensin sähköenergiaksi. Sähköenergiaa voidaan siirtää helposti sähköjohtojen avulla haluttuun energian käyttöpaikkaan. Nykyaikaisessa tuulivoimalassa käytetään tuulen energian keräämiseksi useimmiten roottoria, jossa on kolme aerodynaamisesti muotoiltua lapaa. Roottori pystyy muuttamaan siihen osuvan tuulen liike-energiasta pyörimisliikkeen energiaksi teoriassa 60 %, käytännössä enintään 50 %. Vakiintuneeksi rakenneratkaisuksi on muodostunut vaaka-akselinen roottori, jossa roottorin siivet eli lavat pyörivät pystytasossa. Ensimmäiset sähköä tuottavat tuulivoimalat olivat teholtaan varsin vaatimattomia, muutaman kilowatin tehoisia. Seuraus oli, että voimalat olivat tehoonsa nähden sangen kalliita. Nykyisin pystytään teollisesti valmistamaan tuulivoimaloita, joiden teho on yli kilowattia. Tällaiseen voimalaan tarvitaan noin 65 metrin roottorihalkaisija ja noin 60 metrin korkuinen torni. Täysin tyynellä ilmalla voimala ei tietenkään kehitä sähköä. Pienin tuulen nopeus, jolla voimala toimii, on 3 5 m/s. Maksimiteho saavutetaan tuulen nopeuden ollessa noin 15 m/s. Jos tuuli kasvaa yli nopeuden 25 m/s, laitos pysäytetään laiterikkojen estämiseksi.

3 A sivu 3(4) Suuren tuulivoimalan roottori pyörii noin kierrosta minuutissa. Roottorin pyörittämän sähkögeneraattorin pyörimisnopeus on oltava joko tai kierrosta minuutissa. Nopeuksien sovittamiseksi toisiinsa tarvitaan kallis ja huoltoa vaativa vaihdelaatikko, jolla pyörimisnopeus nostetaan generaattorille sopivaksi. Lisäksi tarvitaan ohjaus- ja säätöjärjestelmä, joka kääntää roottorin asennon tuulen suuntaiseksi. Tuulivoimalan generaattorina on perinteisesti käytetty epätahtigeneraattoria, joka ottaa tarvitsemansa magnetoimisvirran siitä sähköverkosta, johon voimalan tuottama sähkö syötetään. Tällaisen generaattorin etuna on edullinen hinta ja luotettavuus. Tällä hetkellä kehitetään ratkaisuja, joissa käytetään roottorin kanssa samalla nopeudella pyörivää moninapaista, vaihtelevalla ja hitaalla pyörimisnopeudella toimivaa generaattoria. Tällöin hankalasta, kalliista ja huoltoa vaativasta vaihdelaatikosta voidaan luopua. Tällaista generaattoria ei kuitenkaan voida suoraan yhdistää sähköverkkoon, vaan generaattorin kehittämä sähkö on ensin muutettava tasasähköksi ja sen jälkeen sellaiseksi vaihtosähköksi, jonka taajuus on tarkasti sama kuin vaihtosähköverkon taajuus. Nykyaikainen tehoelektroniikka tekee tällaisen ratkaisun mahdolliseksi ja hinnaltaan edulliseksi. Tuulivoimalan käyttö voidaan tehdä täysin automaattiseksi. Nykyaikainen tuulivoimala tarvitsee kaksi huoltokäyntiä sekä 3 4 häiriöiden aiheuttamaa korjauskäyntiä vuodessa. Tuulivoimalat rakennetaan yleensä tuulipuistoiksi tuuliolosuhteiltaan edullisille alueille kuten meren rannikoille. Tuulipuistossa voi olla jopa kymmeniä voimaloita. Suurimmat tuulipuistot maailmassa ovat teholtaan jo kilowatin luokkaa. Tämä vastaa suunnilleen asukkaan suomalaisen kaupungin suurinta sähkötehon tarvetta. 3. Tuulienergian kustannukset Voimaloiden rakentaminen on kallis investointi. Jotta rakentamiskustannuksia olisi helpompi verrata, on eri voimalatyyppien rakentamiskustannukset tapana ilmoittaa yhtä rakennettua eli installoitua kilowattia kohti. Laitoksen rakentamiskustannukset saadaan kertomalla kyseinen ominaiskustannus laitoksen teholla kilowatteina lausuttuna. Tuulivoimalan ominaisrakennuskustannukset ovat tällä hetkellä noin 700 euroa installoitua kilowattia kohti, jos laitoksen teho on kilowatin luokkaa. Perinteisen kivihiiltä polttavan lauhdutusvoimalan ominaisrakentamiskustannukset ovat samaa suuruusluokkaa ja ydinvoimalan noin kaksinkertaiset. Tuotetun sähkön hintaa laskettaessa on otettava huomioon, että tuulivoimalan käyttöikä on noin 25 vuotta. Tänä aikana on voimalan tuottamallaan sähköenergialla ansaittava takaisin siihen sijoitettu pääoma. Lisäksi kustannuksissa on mukaan otettava sijoitetun pääoman reaalikorko. Vuotuiseen kunnossapitoon kuluu arviolta 1 2 % tuulivoimalan hankintahinnasta. Tuulivoimalan käyttämä polttoaine, tuuli, joka itse asiassa on auringon säteilyenergiaa, on ilmaista, uusiutuvaa ja saasteetonta. Tuulta ei kuitenkaan ole saatavissa joka hetki. Jos tuuli on liian heikko, ei voimala tuota mitään. Heikolla tuulella voimala tuottaa vain osan maksimitehostaan. Liian voimakkaalla tuulella voimala on pakko pysäyttää laiterikkovaaran takia. Maksimaalisella tehollaan tuulivoimala voi toimia vain osan vuoden tunneista.

4 A sivu 4(4) Tuulivoimalan vuotuinen käyttöaste on tapana ilmoittaa voimalan tehonhuipun käyttöajan avulla. Tällä tarkoitetaan tuntimäärää, joka tuottaisi saman vuotuisen sähköenergian kuin todellinen voimala, jos voimala voisi koko ajan pyöriä maksimitehollaan ilman heikon tuulen tai liian voimakkaan tuulen aiheuttamaa tehon pienenemistä. Vuodessa on tuntia. Suomen rannikolla tyypillinen tehonhuipun käyttöaika tuulivoimalalle on noin tuntia. Maapallon tuulisimmilla alueilla päästään lähes tunnin tehonhuipun käyttöaikaan. Tuulivoimalalla tuotetun sähkön hinta riippuu, paitsi voimalan rakentamiskustannuksista, myös oleellisesti sijaintipaikalla saavutettavasta tehonhuipun käyttöajasta. Mitä pitempi on vuotuinen tehonhuipun käyttöaika, sitä edullisempaa on tuotettu sähkö. Tällä hetkellä Suomen tuulipuistojen tuottaman sähkön keskihinta on noin 0,04 euroa tuotettua kilowattituntia kohti. Hinta ei vielä ole kilpailukykyinen kivihiiltä polttamalla tuotetun sähkön hinnan kanssa. Voimalan ominaisrakennuskustannusten tulisi pudota noin puoleen, jotta päästäisiin samalle hintatasolle kivihiilivoimalan tuottaman sähkön kanssa. 4 Tuulivoimalan ympäristövaikutukset Tuulivoimalan osien valmistaminen vaatii energiaa. Normaalisti tuulivoimala tuottaa sen valmistukseen kulutetun energian takaisin 3 6 kuukaudessa. Tuulivoimala ei aiheuta kasvihuonekaasupäästöjä, ei myöskään hiukkaspäästöjä. Loppuun käytetyn tuulivoimalan alueen maisemointi ja kunnostus on varsin yksinkertaista ja halpaa. Suomen ilmastossa on ongelmana lapojen jäätyminen. Irtoavat jäät voivat pudotessaan aiheuttaa vaaraa. Lisäksi esiintyy meluhaittoja metrin säteellä tuulivoimalasta sekä törmäyshaittoja linnustolle. Ulkonäköhaitat ovat paljolti makuasioita, mutta tuulipuiston vaatima ala on suurempi kuin perinteisen lämpövoimalan. Korkeat tuulipuiston tornit näkyvät yli 10 kilometrin päähän. Pyörivät lavat voivat edelleen aiheuttaa häiriöitä langattomalle tietoliikenteelle. Mm. televisiokuva voi häiriytyä. Tuulivoimaan liittyvä perusongelma on sähkön varastointi. Sähköenergia on energiamuoto, joka on tuotettava kulutushetkellä. Kun ei tuule tai kun tuulee liian kovaa, on sähkö tuotettava muilla voimalatyypeillä. Käytännön ongelmia alkaa esiintyä, kun tuulisähkön osuus ylittää 5 % sähkön kokonaistuotantotehosta. Nykytekniikan aikana ratkaisuna voisivat olla pumppuvoimalat, joissa ylijäämäsähköenergiaa varastoidaan pienen kulutuksen aikana pumppaamalla vettä pumppuvoimalan yläaltaaseen. Suuren sähkönkulutuksen aikana varastoitua vettä juoksutettaisiin vesiturpiinien kautta ala-altaaseen ja siten tuotettaisiin generaattorien avulla sähköä. Tulevaisuuden saasteettomana varastointitekniikkana pidetään vetytekniikkaa. Sähkön ylituotannon aikana tavallista vettä hajotetaan sähkövirran avulla vedyksi ja hapeksi. Syntyvä vety varastoidaan ja poltetaan tarvittaessa kaasuturpiinivoimaloissa. Saadaan sekä sähköä että kaukolämpöä. Polttoprosessi on saasteeton, koska vedyn palaessa syntyy jäteaineena pelkästään vettä.

5 A sivu 5(4) Osio 1 (Tekstin ymmärtäminen) Nimi: Sos.turvatunnus: A VALINTATEHTÄVÄ Vastaa seuraaviin tehtäviin valitsemalla vaihtoehto (rasti ruutuun) -OIKEIN, jos väite on yhtenevä tekstin kanssa -VÄÄRIN, jos väite ei ole yhtenevä tekstin kanssa Arvostelu: 5 oikein: 1 p, 6 oikein: 2 p, 7 oikein: 3 p, 8 oikein: 4 p 1. Tuulimyllyjen käyttö levisi Eurooppaan mahdollisesti ristiretkeläisten mukana. 2. Tuulivoimalla tuotettu energia on alunperin auringon säteilyenergiaa. 3. Tuulivoimalan perinteinen pyörimisnopeutta nostava vaihdelaatikko pyritään uusissa voimalaratkaisuissa korvaamaan tehoelektroniikalla. 4. Suuren tuulivoimalan rakentamiskustannus on noin euroa voimalatehon kilowattia kohti. 5. Tuulivoimalla tuotetun sähkön hinta halpenee, kun tehonhuipun käyttöaika kasvaa. 6. Tuulivoimalan rakentamiseen tarvittavan energian takaisin tuottamiseen kuluu voimalalta kymmenen vuotta. 7. Energian varastointi on perusongelma tuulienergian käytössä. 8. Vetytekniikka voi tulevaisuudessa ratkaista tuulienergian varastointiongelman. OIKEIN VÄÄRIN B KIRJOITUSTEHTÄVÄT Arviointiperusteina ovat asiasisällön luotettavuus, tekstin johdonmukaisuus, kielen virheettömyys sekä tiedon asiasisällön ja olennaisten johtopäätösten välittyminen. Vastausten tulee pohjautua tekstiin. Molemmat kirjoitustehtävät arvioidaan asteikolla 0 3 pistettä.

6 A sivu 6(4) Tehtävä 1: Selosta tuulipuiston ympäristövaikutuksia. Missä suhteessa tuulienergia on ympäristön kannalta edullista? Mitä ongelmia tuulipuistoihin liittyy ympäristön kannalta Suomen ilmastossa? Tehtävä 2: Selosta tuulipuiston tuottaman sähköenergian kustannuksiin vaikuttavia tekijöitä. Mistä erilaisista kustannuksista tuulisähkön hinta muodostuu ja miten tuulisähkön hintaan voidaan vaikuttaa?

7 B sivu 1(7) TOIMINTAOHJE AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE Tehtävien suoritusaika on 2 h 45 min. Osio 1 (Tekstin ymmärtäminen) Osiossa on kaksi osaa A Valintatehtävä (4 pistettä) B Kirjoitustehtävät (6 pistettä) Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) Laskemista sisältävien tehtävien ratkaisuksi ei riitä pelkkä lopputulos, vaan ratkaisun oleelliset laskutoimitukset on kirjoitettava näkyviin vastausarkilla osoitettuun tilaan. Kunkin tehtävän lopullinen vastaus on kirjoitettava merkitylle kohdalle. Tehtävissä 8 10 on kaksi vaihtoehtoa (fysiikka ja kemia). Näistä vaihtoehdoista saa ratkaista vain jommankumman. ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

8 B sivu 2(7) Osion 1 kysymykset ovat vastauslomakkeella. Aloita vastaamalla niihin. Osion 2 kysymykset: 1 1. Pyramidin tilavuus V voidaan laskea kaavasta V = Ah, missä h on pyramidin korkeus 3 ja A on pyramidin pohjan ala. Tehtävänä on suunnitella sellainen kolmisivuinen pyramidi, jonka tilavuus on V = 72 cm 3 ja korkeus on h = 12 cm. Pyramidin pohjan tulee olla tasakylkinen suorakulmainen kolmio. a) Määritä pyramidin pohjan ala kiinnittäen erityistä huomiota vastauksesi yksikköön. (1 piste) b) Piirrä kuva pyramidin pohjakolmiosta sopivassa mittakaavassa. (2 pistettä) 2. Vuonna 2001 tiettyä tuotetta myytiin 450 gramman rasioissa hintaan 35 markkaa rasialta. Vuoden 2002 alussa rasiakokoa pienennettiin 24 prosenttia samalla, kun tuotteen kilohintaa korotettiin 26 prosenttia. a) Määritä uuden rasian myyntihinta euroina ja sentteinä pyöristettynä lähimpään senttiin, kun tiedetään, että 1 on 5,94573 mk. (2 pistettä) b) Kuinka monta prosenttia yhden rasian myyntihinta nousi tai laski? Muutosprosenttia laskettaessa on huomioitava myös sentteihin pyöristyksen vaikutus. Muutosprosentti on ilmoitettava kahden desimaalin tarkkuudella. (1 piste) 3. a) Jos luku x eroaa nollasta, niin lukua x 1 sanotaan luvun x käänteisluvuksi. Kirjoita vastausarkille kaksi sellaista lukua käänteislukuineen, että suuremman luvun käänteisluku on suurempi kuin pienemmän luvun käänteisluku. (1 piste) b) Kohdissa b1 b4 on annettu aina kaksi lauseketta x ja y, joiden arvoa on hankala laskea laskimella. Merkitse vastausarkissa olevan taulukon kullekin vaakariville b1 b4 tarkalleen yksi rasti oikeaan sarakkeeseen sen mukaan, onko vastaavassa kohdassa x > y, x = y tai x < y. Vaikka et tietäisi oikeaa vastausta, niin kannattaa veikata, sillä tässä osiossa ei tarvita perusteluja ja arvostelu suoritetaan seuraavasti: Kaikki 4 kohtaa oikein: 2 pistettä, 3 kohtaa oikein: 1 piste. b1) x = y = b2) x = y = b3) x = 12, y = 1, b4) x = y =

9 B sivu 3(7) 4. Vastausarkilla oleva kuvaaja esittää tietyssä altaassa olevan veden määrää eri aikoina. Altaaseen mahtuu vettä kaikkiaan 1000 kuutiometriä. Altaan täyttäminen aloitettiin kuvan mukaisesti torstaiaamuna klo 6 ja perjantaiaamuna klo 9 kesken täytön käynnistettiin vahingossa lisäksi tyhjennyspumppu. Tästä hetkestä alkaen vettä sekä juoksutettiin altaaseen että pumpattiin pois altaasta. Allas tuli tyhjäksi maanantaiiltana klo 18. Oletetaan, että täyttönopeus ja tyhjennysnopeus ovat vakioita. a) Milloin allas olisi ollut täynnä, mikäli poistopumppua ei olisi vahingossa käynnistetty? Anna vastaukseksi viikonpäivä ja kellonaika tunnin tarkkuudella. Voit ratkaista tehtävän joko laskemalla tai piirtämällä. Tee tarvittavat täydennykset vastausarkilla olevaan kuvaajaan ja varattuun tyhjään tilaan. (1 piste) b) Kuinka monta kuutiometriä vettä poistopumppu pumppaa yhdessä vuorokaudessa? (1 piste) c) Piirrä vastausarkilla olevaan tyhjään ruudukkoon altaan täyttymistä/tyhjenemistä esittävä kuvaaja, mikäli saman altaan täyttäminen aloitetaan tiistaiaamuna klo 6 kaksinkertaisella täyttönopeudella edellä tarkasteltuun täyttönopeuteen verrattuna ja edellä tarkasteltu poistopumppu käynnistetään vahingossa keskiviikkoaamuna klo 6. Tästä eteenpäin allasta siis sekä täytetään että tyhjennetään. Milloin allas on täyttynyt tai tyhjentynyt? (1 piste) 5. Tasavartisen vaa an varret ovat yhtä pitkät, joten vaakakupeista painuu alas se, jossa on painavampi kuorma. Luettele vastausarkilla painot P1 P4 painavimmasta keveimpään, kun tiedossasi on seuraavat punnitustulokset: Arvostelu: Mikäli luettelet vain kaksi painoa oikeassa järjestyksessä, saat yhden pisteen. Mikäli luettelet kolme painoa oikeassa järjestyksessä, saat kaksi pistettä. Mikäli luettelet kaikki neljä painoa oikeassa järjestyksessä, saat kolme pistettä. Mikäli luettelet painot jollakin lailla väärässä järjestyksessä, jäät ilman pisteitä.

10 B sivu 4(7) 6. Seuraavassa on annettu kolme eri aihiota, jotka muodostuvat kuudesta numeroidusta neliöstä siten, että kustakin aihiosta voidaan koota kuutio. Sinun on papereita taittelematta pääteltävä, voidaanko annetuista aihioista 1-3 koota kuvissa a ja b näkyvät kuutiot. On mahdollista, että samasta aihiosta voidaan koota 0, 1 tai 2 kuutioista a ja b. Aihio 1 Aihio 2 Aihio 3 Kuutio a Kuutio b Esitä vastauksesi vastausarkin taulukossa, johon merkitset kirjaimen K (kyllä) tai E (ei) sen mukaan saadaanko aihiosta koottua kuvan mukainen kuutio vai ei. Laita kaikkiin soluihin vastauksesi vaikka veikkaamalla, sillä vääristä vastauksista ei sakoteta. Arvostelu suoritetaan seuraavasti: Kaikki 6 vastausta oikein: 3 pistettä 5 vastausta oikein: 2 pistettä 4 vastausta oikein: 1 piste.

11 B sivu 5(7) 7. Eräässä klubissa on kahdenlaisia jäseniä: - tosikkoja, jotka puhuvat aina totta, - velmuja, joiden jokainen lausuma sisältää valeen. Olet vierailulla klubissa ja vierailun aikana klubin jäsenet vastaavat kukin omien tapojensa mukaan joko totta puhuen tai valehtelemalla. Keskustelun kuluessa voit monesti päätellä, ketkä ovat tosikkoja ja ketkä velmuja. Harjoittelemme tätä päättelemistä ensin seuraavalla ongelmalla: Klubin eteisessä tapaat jäsenet X, Y ja Z. Sinä kysyt X:ltä: Oletko tosikko vai velmu? Tähän X vastaa jotakin, mutta et saa siitä selvää. Kysyt Y:ltä: Mitä X sanoi? ja Y vastaa: X sanoi, että hän on velmu. Silloin Z sanoo: Älä usko Y:tä, hän valehtelee aina klubilla ollessaan! Millaisia jäseniä X, Y ja Z ovat? Ratkaisu: Ei tosikko eikä velmu voi sanoa olevansa velmu, koska silloin tosikko valehtelisi ja velmu puhuisi totta. X siis sanoi olevansa tosikko ja niinpä Y valehteli. Y on siis velmu. Z sanoi Y:n valehtelevan, mikä on totta, joten Z on tosikko. Jäsenen X roolia ei voi mitenkään päätellä käydystä keskustelusta. Sitten varsinaiset tehtävät: a) Ensimmäisessä pöydässä istuu kaksi klubilaista A ja B, joista A sanoo: Me olemme molemmat velmuja. Millaisia jäseniä A ja B ovat? b) Toisessa pöydässä istuu kolme klubilaista I, J ja K. I sanoo, että hänen seuralaisensa J ja K ovat tosikkoja. Varmistuskysymykseesi, onko J todella tosikko, samainen I kuitenkin vastaa "Ei". Millaisia jäseniä I, J ja K ovat? c) Kolmannessa pöydässä istuu kolme jäsentä P, Q ja R. P sanoo: Olemme kaikki velmuja, mutta Q jatkaa sanoen: Yksi meistä kolmesta on tosikko. Millaisia jäseniä P, Q ja R ovat? Kirjoita vastauksesi vastausarkin taulukkoon merkitsemällä kunkin jäsenen kohdalle T tai V sen mukaan, onko jäsen tosikko tai velmu. Tehtävissä a c kaikkien jäsenten roolit voidaan sitovasti päätellä. Vaikka et olisi varma päättelysi oikeellisuudesta, niin veikkaa, sillä vääristä vastauksista ei sakoteta. Arvostelu: Jokaisesta täysin oikeasta kohdasta a c saa yhden pisteen.

12 B sivu 6(7) Tehtävissä 8, 9 ja 10 on kussakin vaihtoehtoisesti ratkaistava kohta A tai B, jotka ovat sekä keskenään että muiden tehtävien kanssa saman arvoiset (3 pistettä). Voit suorittaa valinnan kohtien A ja B välillä kunkin tehtävän kohdalla erikseen. Jos lasket molemmat kohdat, otetaan huomioon se, joka antaa vähemmän pisteitä. 8A. Äänen nopeus ilmassa on verrannollinen absoluuttisen lämpötilan neliöjuureen. Lämpötilassa 20 C äänen nopeus on 343 m/s. Mikä on äänen nopeus lämpötilassa 10 C? (0 C = 273 K). 8B. Lannoitteiden valmistuksen raaka-aineena käytetään apatiittia (Ca 5 (PO 4 ) 3 F). Kuinka monta kilogrammaa puhdasta fosforia ( P ) sisältää 1150 kg apatiittia? Seuraavalla sivulla on liitteenä alkuaineiden jaksollinen järjestelmä. 9A. Eräs moottori kuluttaa tunnissa 1,4 kg bensiiniä ja antaa 3,5 kw tehon. Laske moottorin hyötysuhde, kun bensiinin lämpöarvo on 43 MJ/kg. 9B. Epäjalo sinkkimetalli (Zn) reagoi väkevän suolahapon (HCl) kanssa, jolloin muodostuu vetyä ja sinkkikloridia. Kirjoita reaktioyhtälö ja laske, kuinka suuri tilavuus vetykaasua (H 2 ) muodostuu NTP-olosuhteissa, kun 5,00 g sinkkiä reagoi täydellisesti. NTP- olosuhteet: paine p = 101,3 kpa, lämpötila t = 0 o C. Ideaalikaasun tilanyhtälö: pv = nrt R = 8,314 J /(mol K) Seuraavalla sivulla on liitteenä alkuaineiden jaksollinen järjestelmä. 10A. Pallo heitetään kohtisuoraan ylöspäin ja se putoaa takaisin maahan. Mikä seuraavista graafisista esityksistä kuvaa parhaiten pallon nopeutta ajan funktiona? v v v v t t t t ( a ) ( b ) ( c ) ( d )

13 B sivu 7(7) 10B. Nimeä seuraavat orgaaniset yhdisteet: H 3 C CH 2 CH 3 H 3 C CH = C = CH 2 H 3 C CHCl CH 2 CH 2 OH ( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ALKUAINEIDEN JAKSOLLINEN JÄRJESTELMÄ

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Tekstikoe ja Ongelmanratkaisu HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka)

Kenguru 2012 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

MERELLISEN TUULIVOIMAN TUOMAT HAASTEET. VELMU-seminaari 11.2.2009 Michael Haldin Metsähallitus Pohjanmaan luontopalvelut

MERELLISEN TUULIVOIMAN TUOMAT HAASTEET. VELMU-seminaari 11.2.2009 Michael Haldin Metsähallitus Pohjanmaan luontopalvelut MERELLISEN TUULIVOIMAN TUOMAT HAASTEET VELMU-seminaari 11.2.2009 Michael Haldin Metsähallitus Pohjanmaan luontopalvelut MERELLINEN TUULIVOIMA MISTÄ ON KYSE? Merellinen tuulivoima on meri- ja saaristoalueille

Lisätiedot

Tuulivoima. Energiaomavaraisuusiltapäivä 20.9.2014. Katja Hynynen

Tuulivoima. Energiaomavaraisuusiltapäivä 20.9.2014. Katja Hynynen Tuulivoima Energiaomavaraisuusiltapäivä 20.9.2014 Katja Hynynen Mitä on tuulivoima? Tuulen liike-energia muutetaan toiseen muotoon, esim. sähköksi. Kuva: http://commons.wikimedia.org/wiki/file: Windmill_in_Retz.jpg

Lisätiedot

Tuulivoiman ympäristövaikutukset

Tuulivoiman ympäristövaikutukset Tuulivoiman ympäristövaikutukset 1. Päästöt Tuulivoimalat eivät tarvitse polttoainetta, joten niistä ei synny suoria päästöjä Valmistus vaatii energiaa, mikä puolestaan voi aiheuttaa päästöjä Mahdollisesti

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 02.12.2014 CGr TBo Hankilannevan tuulivoimapuiston välkeselvitys.

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 02.12.2014 CGr TBo Hankilannevan tuulivoimapuiston välkeselvitys. Page 1 of 11 Hankilanneva_Valkeselvitys- CGYK150219- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO HANKILANNEVA Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 02.12.2014

Lisätiedot

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! B 1 (6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE 28.5.2015 OSION 2 TEHTÄVÄT Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) LUE VASTAUSOHJEET C-OSAN (VASTAUSLOMAKKEEN) KANNESTA

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Päivän vietto alkoi vuonna 2007 Euroopan tuulivoimapäivänä, vuonna 2009 tapahtuma laajeni maailman laajuiseksi.

Päivän vietto alkoi vuonna 2007 Euroopan tuulivoimapäivänä, vuonna 2009 tapahtuma laajeni maailman laajuiseksi. TIETOA TUULIVOIMASTA: Maailman tuulipäivä 15.6. Maailman tuulipäivää vietetään vuosittain 15.kesäkuuta. Päivän tarkoituksena on lisätä ihmisten tietoisuutta tuulivoimasta ja sen mahdollisuuksista energiantuotannossa

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Page 1 of 10 Parhalahti_Valkeselvitys_JR15 1211- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO Parhalahti Välkeselvitys Versio Päivä Tekijät Hyväksytty Tiivistelmä Rev01 7.12.2015 YKo

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

3. Koko maassa alkutuotanto työllistää n. 7 % koko maan työvoimasta. 4. Vuonna 1999 maatalous työllisti 200 000 henkilöä.

3. Koko maassa alkutuotanto työllistää n. 7 % koko maan työvoimasta. 4. Vuonna 1999 maatalous työllisti 200 000 henkilöä. LUONNONVARA- JA YMPÄRISTÖALAN VALTAKUNNALLINEN VALINTAKOE 8.6.2004 Viestinnän ja tiedonhankinnan osuus Nimi Henkilötunnus Etukäteismateriaalina on maa- ja metsätalousministeriön Luonnonvarastrategia, MMM:n

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Page 1 of 9 Portin_tuulipuisto_Valkeselvit ys- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO Portti Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 28.09.2015 YKo

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 03.02.2015 CGr TBo Ketunperän tuulivoimapuiston välkeselvitys.

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 03.02.2015 CGr TBo Ketunperän tuulivoimapuiston välkeselvitys. Page 1 of 11 Ketunperä-Välkeselvitys- CG150203-1- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIPUISTO Ketunperä Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 03.02.2015 CGr

Lisätiedot

Ilmastonmuutos ja ilmastomallit

Ilmastonmuutos ja ilmastomallit Ilmastonmuutos ja ilmastomallit Jouni Räisänen, Helsingin yliopiston Fysikaalisten tieteiden laitos FORS-iltapäiväseminaari 2.6.2005 Esityksen sisältö Peruskäsitteitä: luonnollinen kasvihuoneilmiö kasvihuoneilmiön

Lisätiedot

Kenguru 2011 Cadet (8. ja 9. luokka)

Kenguru 2011 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et).

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). MAA1 päässälaskut Nimi: Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). 1. 4 (-5) + (-3) (-6) 2. 1 3 2 5 3 2 3. 5 8 6 7 4. 3 2 3 2 : 3 3 5. 1 0 1 1 1 2 1 3 2 2 2 6. 2 3 3 7. 2 1203 8 400

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x

Lisätiedot

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi)

Kenguru 2013 Student sivu 1 / 7 (lukion 2. ja 3. vuosi) Kenguru 2013 Student sivu 1 / 7 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010

Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010 Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010 Perustettu 1988 Suomen Tuulivoimayhdistys ry Jäsenistö: 100 yritystä Lähes 200 yksityishenkilöä Foorumi tuulivoimayrityksille

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

TAMK, VALINTAKOE (12) 6 (6 p.) 7 (6 p.) - Kokeessa saa olla mukana laskin ja normaalit kirjoitusvälineet.

TAMK, VALINTAKOE (12) 6 (6 p.) 7 (6 p.) - Kokeessa saa olla mukana laskin ja normaalit kirjoitusvälineet. TAMK, VALINTAKOE 24.5.2016 1(12) Sähkö- ja automaatiotekniikan koulutus Insinööri (AMK) Monimuotototeutus NIMI Henkilötunnus Tehtävien pisteet: 1 (10 p.) 2 3 4 5 6 7 8 9 10 11 Yht. (max. 70 p.) OHJEITA

Lisätiedot

Sisällys. Vesi... 9. Avaruus... 65. Voima... 87. Ilma... 45. Oppilaalle... 4 1. Fysiikkaa ja kemiaa oppimaan... 5

Sisällys. Vesi... 9. Avaruus... 65. Voima... 87. Ilma... 45. Oppilaalle... 4 1. Fysiikkaa ja kemiaa oppimaan... 5 Sisällys Oppilaalle............................... 4 1. Fysiikkaa ja kemiaa oppimaan........ 5 Vesi................................... 9 2. Vesi on ikuinen kiertolainen........... 10 3. Miten saamme puhdasta

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. MAA Kurssikoe 9..0 Arto Hekkanen ja Jussi Tyni A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää. Nimi:. Kaikki kohdat ½ pisteen arvoisia. a) x x x (x ) b) 0

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi)

Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi) Kenguru 2013 Junior sivu 1 / 9 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Matematiikan yo-ohjeita 2007

Matematiikan yo-ohjeita 2007 Matematiikan yo-ohjeita 2007 Yleisohjeita Laskimet ja taulukot tuotava tarkastettaviksi vähintään vuorokautta ennen kirjoituspäivää kansliaan. Laskimien muisti tyhjennettävä. Kun tuot tarkastettavaksi

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

VOIMALAITOSTEKNIIKKA MAMK YAMK Tuomo Pimiä

VOIMALAITOSTEKNIIKKA MAMK YAMK Tuomo Pimiä VOIMALAITOSTEKNIIKKA 2016 MAMK YAMK Tuomo Pimiä Voimalaitoksen säätötehtävät Voimalaitoksen säätötehtävät voidaan jakaa kolmeen toiminnalliseen : Stabilointitaso: paikalliset toimilaiteet ja säätimet Koordinointitaso:

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.3.06 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita

Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita 1. Laske 3 21 12 3. a) 27 b) 28 c) 29 d) 30 e) 31 Ratkaisu. 3 21 12 3 = 63 36 = 27. 2. Peräkylän matematiikkakerholla on kaksi tapaa

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Tuulivoima Suomessa Näkökulma seminaari Dipoli 17.9.2008

Tuulivoima Suomessa Näkökulma seminaari Dipoli 17.9.2008 Tuulivoima Suomessa Näkökulma seminaari Dipoli 17.9.2008 Historia, nykypäivä ja mahdollisuudet Erkki Haapanen Tuulitaito Tuulivoimayhdistys 20 vuotta 1970-luvulla energiakriisi herätti tuulivoiman eloon

Lisätiedot

Maatilan Energiahuolto TUULIVOIMA HEINOLA OY. Martti Pöytäniemi, RUOVESI

Maatilan Energiahuolto TUULIVOIMA HEINOLA OY. Martti Pöytäniemi, RUOVESI Ita, kic SSNÄj0KI 3-6.7.2OI3.. TUULIVOIMA HEINOLA OY Martti Pöytäniemi, RUOVESI Talvella 203 käynnistynyt kw:n Bonus voimala sijaitsee Ruoveden Kytövuorella ( m). Maston mitta m ja siiven pituus 22 m.

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. MAA10 Integraalilaskenta. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Integraalilaskenta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Integraalilaskenta (MAA Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Kenguru 2012 Cadet (8. ja 9. luokka) Ratkaisut.

Kenguru 2012 Cadet (8. ja 9. luokka) Ratkaisut. sivu 1 / 16 3 pistettä 1. Kello laitetaan pöydälle viisaripuoli ylöspäin juuri silloin, kun minuuttiviisari osoittaa etelään. Kuinka monen minuutin kuluttua minuuttiviisari seuraavan kerran osoittaa itään?

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

Kenguru 2016 Student lukiosarja

Kenguru 2016 Student lukiosarja sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Miltä työn tekeminen tuntuu

Miltä työn tekeminen tuntuu Työ ja teho Miltä työn tekeminen tuntuu Millaisia töitä on? Mistä tiedät tekeväsi työtä? Miltä työ tuntuu? Mitä työn tekeminen vaatii? Ihmiseltä Koneelta Työ, W Yksikkö 1 J (joule) = 1 Nm Työnmäärä riippuu

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

MAA 2 - POLYNOMIFUNKTIOT

MAA 2 - POLYNOMIFUNKTIOT MAA MAA - POLYNOMIFUNKTIOT 1 On annettu muuttujan x polynomi P(x) = x + x + Mitkä ovat sen termien kertoimet, luettele kaikki neljä (?) Mitä astelukua polynomi on? Mikä on polynomin arvo, kun x = 0 Entä

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2013

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2013 Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2013 MFKA-Kustannus Oy Rautatieläisenkatu 6, 00520 HELSINKI, puh. (09) 1502 378 http://www.mfka.fi

Lisätiedot

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + = Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Energian tuotanto ja käyttö

Energian tuotanto ja käyttö Energian tuotanto ja käyttö Mitä on energia? lämpöä sähköä liikenteen polttoaineita Mistä energiaa tuotetaan? Suomessa tärkeimpiä energian lähteitä ovat puupolttoaineet, öljy, kivihiili ja ydinvoima Kaukolämpöä

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2013 Ecolier sivu 1 / 6 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Avaruusgeometrian perusteita

Avaruusgeometrian perusteita Avaruusgeometrian perusteita Määritelmä: Kolmiulotteisen avaruuden taso on sellainen pinta, joka sisältää kokonaan jokaisen sellaisen suoran, jonka kanssa sillä on kaksi yhteistä pistettä. Ts. taso on

Lisätiedot

Pehmopapereiden matematiikkaa

Pehmopapereiden matematiikkaa Pehmopapereiden matematiikkaa Kuinka paljon vessapaperia kuluu keskimäärin vuodessa? Kuinka paljon talouspaperia on yhdessä rullassa? Onko vessapaperien valmistaminen hyvä bisnes? Otetaan selvää! Työohjeet:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Henkilötunnus Sukunimi Etunimet

Henkilötunnus Sukunimi Etunimet Valintakokeessa on kaksi osaa: Osa 1 sisältää viisi esseetehtävää kansantaloustieteestä. Osasta 1 voi saada 0 30 pistettä. Osa sisältää kuusi matematiikan laskutehtävää. Osasta voi saada 0 30 pistettä.

Lisätiedot

Tuulivoima ja maanomistaja

Tuulivoima ja maanomistaja Tuulivoima ja maanomistaja Ympäristöasiamiespäivät Marraskuu 2012 Markus Nissinen Metsänomistajien liitto Länsi-Suomi Miksi tuulivoimaa? Tarve uusiutuvalle energialle, esim. EU:n tavoite 20-20-20 Tuulivoima

Lisätiedot

Kenguru 2006 sivu 1 Cadet-ratkaisut

Kenguru 2006 sivu 1 Cadet-ratkaisut Kenguru 2006 sivu 1 3 pistettä 1. Kenguru astuu sisään sokkeloon. Se saa käydä vain kolmion muotoisissa huoneissa. Mistä se pääsee ulos? A) a B) b C) c D) d E) e 2. Kengurukilpailu on pidetty Euroopassa

Lisätiedot

Jukka Kontulainen ProAgria Satakunta ry

Jukka Kontulainen ProAgria Satakunta ry Jukka Kontulainen ProAgria Satakunta ry ProAgria Farma ja Satakunta yhdistyvät 1.1.2013 Viljatilojen määrä on kasvanut Valtaosa kuivataan öljyllä Pannut ovat pääsääntöisesti 250-330 kw Kuivauksen investoinnit

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

LASKINTEN JA TAULUKOIDEN TARKISTUS

LASKINTEN JA TAULUKOIDEN TARKISTUS LASKINTEN JA TAULUKOIDEN TARKISTUS Yo-kokeessa käytettävät laskimet ja taulukkokirjat on tuotava aikuislukion kansliaan tarkistettavaksi viimeistään yo-koetta edeltävänä päivänä kello 18 mennessä. Jos

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Tuen tarpeen tunnistaminen

Tuen tarpeen tunnistaminen Tuen tarpeen tunnistaminen Matematiikan arviointi ensimmäinen luokka talvi Esitysohjeet opettajalle Arvioinnin yleisiä periaatteita Tutustu ennen tehtävien esittämistä ohjeisiin ja materiaaliin sekä tarkista,

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2014-2015 MFKA-Kustannus Oy Asememiehenkatu 4, 00520 HELSINKI, puh. 010 322 3162 http://www.mfka.fi

Lisätiedot