TTY FYS-1010 Fysiikan työt I JL 4.1 Valon nopeuden mittaus Ilari Leinonen, TuTa, 2. vsk Markus Parviainen, TuTa, 2. vsk.

Koko: px
Aloita esitys sivulta:

Download "TTY FYS-1010 Fysiikan työt I JL 4.1 Valon nopeuden mittaus Ilari Leinonen, TuTa, 2. vsk Markus Parviainen, TuTa, 2. vsk."

Transkriptio

1 TTY FYS-1010 Fysiikan työt I JL 4.1 Valon nopeuden mittaus Ilari Leinonen, TuTa, 2. vsk Markus Parviainen, TuTa, 2. vsk.

2 Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria Valon nopeuden mittaaminen väliaineessa Teoreettiset arvot ja vertailuarvot Työn suoritus 5 4 Mittaustulokset ja havainnot 6 5 Tulosten laskenta Valon nopeus ilmassa Valon nopeus väliaineessa Virhearvio Virhe valon nopeudelle ilmassa Virhe valon nopeudelle väliaineessa Virhe taitekertoimille Yhteenveto 12 Viitteet 14 Liitteet 15 i

3 1 Johdanto Valon nopeus on yksi keskeisimmistä fysikaalisista vakioista, joita tiedämme. Valon nopeutta pidettiin varsin pitkään äärettömänä, mutta vuonna 1679 tanskalainen tähtitieteilijä Ole Rømer mittasi valon nopeudeksi km/s tutkittuaan Jupiterin kuita. Vaikka tulos on n. 30% liian pieni verrattuna kirjallisuusarvoon noin km/s [1], on sen historiallinen merkitys valon nopeuden äärellisyyden todistajana suurempi. Valon nopeuden merkityksestä esimerkkinä metrin virallinen määritelmä on nykyään ilmaistu valon nopeuden avulla. Tässä työssä laskemme valon nopeuden likiarvon hyödyntämällä valon aaltoluonnetta ja tutkimalla heijastetun valon vaihe-eroa sen kuljettua ensin ilmassa, sitten vedessä ja keinohartsissa. Mittauksissa käytettiin oppilaslaboratorion PHYWElaitteistoa, peilejä ja oskilloskooppia. 2 Työn taustalla oleva teoria Valo on tunnetusti sähkömagneettista säteilyä, jolla on aalto-hiukkasdualistisia ominaisuuksia. Hiukkasluonteensa vuoksi se ei tarvitse etenemiseensä väliainetta, ja aaltoluonteensa vuoksi sillä on väliaineesta riippuva aallonpituus ja tietty taajuus. Valon nopeus c, aallonpituus λ ja taajuus f noudattavat aaltoliikeen perusyhtälöä c = λ f (1) Valon nopeuden määrittäminen ajanottoperiaatteella, jossa lähtevän ja saapuvan valonsäteen aikaero mitattaisi, olisi hankalaa valon nopeuden suuruuden vuoksi. Välimatkan tulisi olla todella suuri ja ajanottomenetelmän todella tarkka. Oppilaslaboratoriossa edellisten resurssien puutteen vuoksi valon nopeuden määrittämiseen käytetään valon amplitudimodulaatiota. Tämä tarkoittaa, että valon intensiteettiä muutetaan ajallisesti jaksollisella signaalilla, josta voimme määrittää moduloidulle valoaallolle amplitudin, taajuuden tai vaiheen. Koska näkyvän valon taajuus on niin suuri, n. 500 THz, olisi sen aallon vaihe-eroa mahdoton tarkastella, joten signaalin taajuutena käytettiin työssä 50,10 MHz, jolloin vaihe-erosta saatiin selvempi kuva 1

4 oskilloskoopille [2]. Mittaamalla lähtevän ja palaavan sinisignaalin vaihe-eroa, voidaan selvittää niiden aikaero. Jotta vaihe-erosta saataisiin riittävän suuri, tulee modulointitaajuuden olla riittävän suuri sekä oskilloskoopin taajuusalueella. Amplitudimodulaatiossa on kaksi rinnakkaista signaalia, joista toisella voidaan katsoa olevan vaihekulmana 0, ja toisella ϕ. Toisen signaalin sinifunktion kulmataajuus on ω 1 ja toisen ω 2 [2]. Eli v 1 (t) = A 1 sin(ω 1 t) (2) v 2 (t) = A 2 sin(ω 2 t ϕ), (3) ja amplitudimodulaatiossa moduloidun signaalin yhtälö on näiden signaalien tulo [2] v 1 v 2 = A 1 A 2 sin(ω 1 t)sin(ω 2 t ϕ). (4) Muokataan lauseketta tunnettujen trigonometristen lakien avulla: [ 1 v 1 v 2 = A 1 A 2 2 cos(ω 1t ω 2 t + ϕ) 1 ] 2 cos(ω 1t + ω 2 t ϕ) (5) = Acos[(ω 1 ω 2 )t + ϕ] Acos[(ω 1 + ω 2 )t ϕ]. (6) Huomataan, että sinifunktioiden tulo on esitettävissä kosinifunktioiden summana. Toisen signaalin taajuus on ensimmäisten summa ja toisen taajuus ensimmäisten erotus. Moduloimalla lähtevää ja vastaanotettavaa signaalia uudelleen 50,05 MHz taajuisella sinifunktiolla, saamme edellä mainitut taajuuskomponentit, joiden taajuudet ovat alun taajuuksien summa eli 100,15MHz ja erotus eli 0,05Mhz. Oskilloskoopin taajuusalueen rajallisuuden vuoksi tarkastelemme 50 khz:n taajuista erotusta. Amplitudimoodulaation vaihekulman säilymisen vuoksi huomaamme, että taajuuksien erotuksen vaihe-ero säilyy myös [2]. Myös toisessa signaalihaarassa käytämme vaiheensäätäjää. Se muuttaa signaalin vaihekulmaa niin, että halutessa vaihekulman voi säätää nollaksi muista olosuhteista riippumatta. Tämän ansiosta voimme asettaa peilit mille tahansa etäisyydelle 2

5 mittalaitteistosta ja nollata vaihekulman. Peilejä siirrettäessä ja siten valon kulkemaa matkaa muuttaessa oskilloskoopin näytölle ilmestyy vaihe-eroa kuvaava ellipsi, josta voidaan laskea vaihe-eron muutosta. Tästä taas voimme laskea aikaa, kuinka kauan valolta kuluu matkan lisäykseen [2]. Vaihe-eron mittaaminen oskilloskoopilta tapahtuu niin sanotun X-Y-mittauksen avulla. Siinä lähetetty signaali kuvaa x-akselin poikkeutusta, ja vastaanotettu y-akselin poikkeutusta. Muodostuneesta ellipsistä lasketaan vaihe-ero ( ϕ) suhteilla kaavalla [ 1 ϕ = arcsin 2 (a b + c ] d ), (7) missä a, b, c ja d saadaan ellipsistä kuvan 1 mukaisesti. Kuva 1: Oskilloskoopilta luettava vaihe-eroellipsi [2] Vaihekulman muutoksesta saadaan aikaero t kaavalla 3

6 t = ϕ 2π T = ϕ 2π f, (8) missä f on lähtevän valon modulointitaajuus 50,10MHz [2]. 2.1 Valon nopeuden mittaaminen väliaineessa Valon nopeus on suurin tyhjiössä. Väliaineessa nopeus muuntuu dielektrisyysvakiosta riippuvaisen suhdeluvun 1 κ mukaisesti. Esimerkiksi ilmalle κ = 1,00059, joten voimme pitää valon nopeutta ilmassa suunnilleen samana kuin avaruudessa tyhjiössä [2]. Tässä työssä mittaamme valon nopeuden vedessä ja keinohartsissa. Veteen valo kulkeutuu ikkunoiden kautta, mutta ohuilla ikkunoilla ei ole merkittävää vaikutusta lopputulokseen. Asetamme väliainekappaleen lähtevän valonsäteen radalle ja nollaamme vaihekulman. Merkitsemme peiliparin paikan. Peilipaikkaa sen jälkeen siirretään kauemmaksi, ja kun vaihekulma uudelleen nollautuu, merkitsemme kuljetun matkan x. Valon kulkiessa edestakaisin on valon kulkeman matkan muutos 2 x. Väliaine-esineen pituuden ollessa l m, valon nopeus ilmassa c 0 ja valon nopeus väliaineessa c m, saadaan ensimmäisessä vaihekulman nollakohdassa ja toisessa nollakohdassa t 1 = 2x 1 l m c 0 + l m c m, (9) t 2 = 2x x c 0, (10) Missä t 1 ja t 2 ovat ajat, jotka valolla kuluu matkan kulkemiseen kussakin tapauksessa. Nyt n = c 0 = 2 x + 1, (11) c m l m jota hyödyntäen voimme ratkaista valon nopeuden väliaineessa c m = c 0 (2 x/l m ) + 1. (12) 4

7 2.2 Teoreettiset arvot ja vertailuarvot Teoreettinen arvo valon nopeudelle tyhjiössä saadaan Maxwellin yhtälöistä ja laskemalla kaavalla c 0 = 1 ε0 µ 0, (13) missä tyhjiön permittiivisyys eli ε 0 = 8, F/m ja tyhjiön permeabiliteetti eli µ 0 = 4π 10 7 V s/am [1]. Valon nopeudelle väliaineessa saadaan Maxwellin yhtälöitä hyödyntäen kaava c m = 1 κε0 µ r µ 0 = c 0 κµr c 0 κ = c 0 n, (14) missä µ r on suhteellinen permeabiliteetti, κ dielektrisyysvakio ja n aineen taitekerroin. Suhteellinen permeabiliteetti µ r on läpinäkyvillä aineilla likimain 1 [2]. 3 Työn suoritus Valon nopeus mitattiin fysiikan oppilaslaboratoriossa työlle varatussa tilassa, jossa oli valmiina työhön tarvittavat välineet eli oskilloskooppi, optinen penkki, peilit, linssit ja työssä käytetyt väliaineet. Työssä mitattiin alla olevan kuvan x mukaiset vaihe-eroellipsin arvot a, b, c ja d peilin eri etäisyyksillä valonlähteestä. Vaihe-ero nollattiin peilin etäisyydellä x = 40 cm, ja vaihe-eron arvot mitattiin 5 cm välein väliltä cm. Työssä mitattiin myös valon nopeutta keinohartsisärmiön ja päistään läpinäkyvän vesiputken läpi. Näissä mittauksissa asetettiin väliaine lähtevän valon ja peilin välille, mitattiin peilin ja valon välinen pienin mahdollinen etäisyys x, poistetiin väliaine ja kasvatettiin etäisyyttä siihen asti, että vaihekulma nollautui. Laskuja varten mitattiin myös keinohartsisärmiön ja vesiputken pituudet. 5

8 Kuva 2: Työssä käytetty mittalaitteisto [2] 4 Mittaustulokset ja havainnot Taulukkoon 1 on kirjattu vaihe-eroellipsin suhteet a, b, c ja d suhteessa peilin ja valonlähteen etäisyyteen x. 6

9 Taulukko 1: Mittaustulokset x (cm) a (cm) b (cm) c (cm) d (cm) 45 7,6 63,5 7,8 62, ± 0,1 Huomataan, että etäisyyden kasvaessa b pysyy jotakuinkuin samana, kun taas a ja c kasvavat ja d pienenee. Taulukoihin 2 ja 3 on kirjattu mittaustulokset vesiputken ja keinohartsisärmiön kanssa. 7

10 Taulukko 2: Mittaustulokset vesiputken kanssa x 18,3 cm ± 3,5 cm l putki 102 cm ± 0,1 cm Taulukko 3: Mittaustulokset keinohartsisärmiön kanssa x 8,0 cm ± 0,8 cm l hartsi 29,3 cm ± 0,1 cm Vesiputken ja keinohartsin mittausten virhe on se etäisyysväli, jolla vaihe-ero pysyy suurpiirteisesti nollana, eli toisin sanottuna oskilloskoopin vaihe-eroellipsi pysyy suorana viivana. 5 Tulosten laskenta 5.1 Valon nopeus ilmassa Valon nopeuden määritykseen ilmassa laskettiin aluksi valon kulkeman matkan lisäys x. Lisäys saadaan vähentämällä valon ja peilin välisestä etäisyydestä x 0 = 40 cm ja kertomalla kahdella, sillä valo kulkee matkan kumpaankin suuntaan. Sen jälkeen laskettiin vaihe-ero sijoittamalla ellipsin suhteet a, b, c ja d kaavaan 7. Ajan lisäys t saadaan sijoittamalla vaihe-ero ϕ ja lähtevän valon modulointitaajuus 50,10 MHz kaavaan 8. Taulukkoon 4 on laskettu vaihe- ja aikaerot matkan lisäystä kohden. 8

11 Taulukko 4: Vaihe- ja aikaerot matkan lisäyksillä x x (cm) ϕ (rad) t (ns) 10 0, , , , , , , , , , , , , , , , , , , ,32202 Kuvassa 3 on esitetty matkan lisäys x aikaeron t funktiona. 9

12 Kuva 3: Valon nopeus graafisesti määritettynä Excelin LINREGR-toiminnolla saatiin kuvaajan suoran kulmakertoimeksi x/ t = c 0 noin 0, m/ns = km/s. Valon nopeuden teoreettinen arvo määritellään kaavalla 13, josta arvoksi saadaan noin km/s. 5.2 Valon nopeus väliaineessa Valon nopeuden teoreettista arvoa c 0 hyödyntämällä ja kaavaan 12 sijoittamalla saadaan valon nopeuden arvoksi vedessä noin km/s ja keinohartsissa km/s. Lisäksi kaavan (taitekerroin) avulla veden taitekertoimeksi saadaan 1,35882 ja keinohartsin 1, Työssä mitatun c 0 :n arvoa hyödyntämällä saadaan valon nopeudeksi vedessä km/s ja keinohartsissa km/s. Käyttämällä veden taitekertoimen kirjallisuusarvoa 1,33 saadaan valon nopeudeksi vedessä noin km/s [1]. Keinohartsin koostumusta ei tiedetty, mutta voidaan verrata sitä vaikkapa akryyliin, joka on myös keinohartsin kaltainen polymeeriseos. Valon nopeus akryylissä on noin km/s, joka saadaan käyttämällä 10

13 akryylin taitekerrointa 1,491 [MAOL]. 6 Virhearvio 6.1 Virhe valon nopeudelle ilmassa Valon nopeus määritettiin Excelin LINREGR-toiminnolla, joka palauttaa myös mittauksen keskivirheen. Virheen arvoksi saatiin noin km/s. 6.2 Virhe valon nopeudelle väliaineessa Valon nopeuden funktion maksimivirhe saadaan selville osittaisdifferentioimalla kaava 12 virhettä sisältävien termien suhteen (c 0 oletetaan tarkaksi): c m c m x ( x) + c m l m l m (15) = 2c 0 l m (2 x + l m ) 2 ( x) + 2c 0 x (l m + 2 x) 2 l m. (16) Paikan muutoksen virhe vedessä on ( x) = 0, 035m, joka voidaan muiden mitattujen arvojen kanssa sijoittaa yhtälöön 16. Käytettäessä teoreettista valon nopeuden arvoa saadaan virheeksi 1, m/s. Keinohartsissa saadaan samoin määritettyä virhe paikan muutoksen virheellä ( x) = 0, 008. Maksimivirheeksi hartsille saadaan 3, m/s. Käyttämällä työssä määritettyä valon nopeuden arvoa valon nopeudelle vedessä saadaan virheeksi 1, m/s ja hartsille 3, Virhe taitekertoimille Määritetään taitekertointen maksimivirheet osittaisdifferentioimalla taitekertoimen kaava

14 n n x ( x) + n l m l m (17) = 2 ( x) + 2 x l m. (18) l m Sijoittamalla osittaisdifferentiaaliin arvot, saadaan veden taitekertoimen maksimivirheeksi noin 0, ja keinohartsin noin 0, l 2 m 7 Yhteenveto Taulukkoon 5 on kirjattu lasketut tulokset virherajoineen. Keinohartsin vertailuarvona on käytetty akryylin taitekerrointa. Taulukko 5: Lasketut tulokset ja virherajat Määritetty Kirjallisuusarvo Valon nopeus ilmassa ( ± 9 900) km/s km/s Valon nopeus vedessä (c 0 teoreettinen) ( ± ) km/s km/s Valon nopeus vedessä (c 0 itse määritetty) ( ± ) km/s km/s Valon nopeus keinohartsissa (c 0 teoreettinen) ( ± ) km/s km/s Valon nopeus keinohartsissa (c 0 itse määritetty) ( ± ) km/s km/s Veden taitekerroin 1,35882 ± 0, ,33 Keinohartsin taitekerroin 1,54608 ± 0, ,491 Valon nopeuden mittaus ilmassa vaikuttaa onnistuneen hyvin, sillä kirjallisuusarvo osuu virherajojen sisälle. Samoin valon nopeuden määritys väliaineissa näyttää onnistuneelta samoin perustein, tosin keinohartsissa virherajat ovat huomattavasti suurempia. Myös taitekertointen kirjallisuusarvot ovat virherajojen sisällä, mutta keinohartsin kohdalla taas virherajat ovat tuntuvia. Virhettä työssä aiheutti eniten 12

15 oskilloskoopin paksun viivan tuoma mittausepätarkkuus ja huonokuntoisen Phasesäätönupin tuoma säädön vaikeus. Huomionarvoinen virheen aiheuttaja on myös peilien etäisyyden karkea asteikko. Kaiken kaikkiaan mittausta voidaan pitää onnistuneena, sillä arvot ovat loogisia suuruusluokaltaan ja lähellä kirjallisuusarvoja. 13

16 Viitteet [1] R. Seppänen, S. Tiihonen, M. Kervinen, R. Korpela, L. Mustonen, A. Haavisto, M. Soininen, and K. Varho, MAOL-taulukot, 1st ed. Keuruu: Otava, [2] TTY, FYS Valon nopeuden mittaus, opintomoniste, 2010 (viitattu ), https://moodle2.tut.fi/pluginfile.php/109072/mod_page/content/ 44/4_1_Valon_nopeuden_mittaus_pruju_paeivitetty_ JL.pdf. 14

17 Liitteet 1. Mittauspöytäkirja 15

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

TTY FYS-1010 Fysiikan työt I LP 2.1 Vauhtipyörä Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I LP 2.1 Vauhtipyörä Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 24.3.2016 LP 2.1 Vauhtipyörä 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Hitausmomentin

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk. TTY FYS-1010 Fysiikan työt I 25.1.2010 205348 Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri 205826 Antti Vainionpää, S, 3. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Vaihtosähköpiiri..................................

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

ÄÄNEN JA VALON NOPEUS ILMASSA

ÄÄNEN JA VALON NOPEUS ILMASSA Fysiikan laboratoriotyöt 1 ÄÄNEN JA VALON NOPEUS ILMASSA 1. Työn tavoitteet Ääni on väliaineessa etenevää pitkittäistä mekaanista aaltoliikettä. Äänen etenemistä voidaan kuvata tarkastelemalla joko aallon

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti

Aineopintojen laboratoriotyöt 1. Veden ominaislämpökapasiteetti Aineopintojen laboratoriotyöt 1 Veden ominaislämpökapasiteetti Aki Kutvonen Op.nmr 013185860 assistentti: Marko Peura työ tehty 19.9.008 palautettu 6.10.008 Sisällysluettelo Tiivistelmä...3 Johdanto...3

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA

VALON KÄYTTÄYTYMINEN RAJAPINNOILLA VALON KÄYTTÄYTYMINEN RAJAPINNOILLA 1 Johdanto 1.1 Valon nopeus ja taitekerroin Maxwellin yhtälöiden avulla voidaan johtaa aaltoyhtälö sähkömagneettisen säteilyn (esimerkiksi valon) etenemiselle väliaineessa.

Lisätiedot

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ 25B INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Kuva 1. Michelsonin interferometrin periaate. Michelsoninn interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästää

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ

ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa SATE2010 Dynaaminen kenttäteoria syksy 2010 1 /8 Tehtävä 1. Häviötön linja (70 Ω), joka toimii taajuudella 280 MHz, on päätetty kuormaan Z = 60,3 /30,7 Ω. Käytä Smithin karttaa määrittäessäsi, kuinka suuri

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 Kimmoton törmäys Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 1 1 Tiivistelmä Tutkittiin liikemäärän ja liike-energian muuttumista kimmottomassa törmäyksessä.

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Työ 15B, Lämpösäteily

Työ 15B, Lämpösäteily Työ 15B, Läpösäteily urssi: Tfy-3.15, Fysiikan laoratoriotyöt Ryhä: 18 Pari: 1 Jonas Ala Antti Tenhiälä Selostuksen laati: Jonas Ala Mittaukset tehty:.3.000 Selostus jätetty:..000 1. Johdanto Läpösäteily

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Työ 3: Veden höyrystymislämmön määritys

Työ 3: Veden höyrystymislämmön määritys Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. MA 2.2 Kääntöheiluri Antti Vainionpää, S, 3. vsk.

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. MA 2.2 Kääntöheiluri Antti Vainionpää, S, 3. vsk. TTY FYS-1010 Fysiikan työt I 14.1.2011 205348 Asser Lähdemäki, S, 3. vsk. MA 2.2 Kääntöheiluri 205826 Antti Vainionpää, S, 3. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Fysikaalinen

Lisätiedot

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ...

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ... 4 Alkeisfunktiot 41 Potenssifunktio 42 Polynomit ja rationaalifunktiot 102 Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta 103 Olkoon p()

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Numeerisia ja algebrallisia menetelmiä Calculus Lukion 7 MAA Numeerisia ja algebrallisia menetelmiä Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Numeerisia ja algebrallisia menetelmiä

Lisätiedot

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014

Mittaustuloksen esittäminen Virhetarkastelua. Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 Mittaustuloksen esittäminen Virhetarkastelua Mittalaitetekniikka NYMTES 13 Jussi Hurri syksy 2014 SI järjestelmä Kansainvälinen mittayksikköjärjestelmä Perussuureet ja perusyksiköt Suure Tunnus Yksikkö

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla).

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla). VALOSÄHKÖINEN ILMIÖ 1 Johdanto Valosähköisessä ilmiössä valo, jonka taajuus on f, irrottaa metallilta elektroneja. Koska valo koostuu kvanteista (fotoneista), joiden energia on hf (missä h on Planckin

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset

83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset TAMPEREEN TEKNILLINEN KORKEAKOULU 83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset email: ari.asp@tut.fi Huone: TG 212 puh 3115 3811 1. ESISELOSTUS Vastaanottimen yleisiä

Lisätiedot

1. Elektronin ominaisvarauksen määritystyö Sähkömagnetismi IIZF1031

1. Elektronin ominaisvarauksen määritystyö Sähkömagnetismi IIZF1031 1. Elektronin ominaisvarauksen määritystyö Sähkömagnetismi IIZF1 Juha Jokinen (Selostuksesta vastaava Janne Kivimäki Antti Lahti Teemu Kuivamäki Mittauspäivä: 19..009 Laboratoriotyön selostus 15..009 Electron

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti

Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Tuulen nopeuden mittaaminen

Tuulen nopeuden mittaaminen KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t.

Maxwellin yhtälöt sähkämagneettiselle kentälle tyhjiössä differentiaalimuodossa: E =0, B =0, E = B/ t, B = ɛ o μ o E/ t. Osa 2: OPTIIKKAA 33. Valo ja sen eteneminen 33.1 Aallot ja säteet Kirjan luvussa 32 (kurssi fysp105) opitaan, että sähkömagneettista kenttää kuvaavilla Maxwellin yhtälöillä on aaltoratkaisuja. sim. tyhjiössä

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Radioamatöörikurssi 2012

Radioamatöörikurssi 2012 Radioamatöörikurssi 2012 Sähkömagneettinen säteily, Aallot, spektri ja modulaatiot Ti 6.11.2012 Johannes, OH7EAL 6.11.2012 1 / 19 Sähkömagneettinen säteily Radioaallot ovat sähkömagneettista säteilyä.

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot