Laboratoriotyö 1 FYSA240 (FYS242) Juha Merikoski (työohjeet) ja Sami Kähkönen (tietokoneohjelma) 1999,2005

Koko: px
Aloita esitys sivulta:

Download "Laboratoriotyö 1 FYSA240 (FYS242) Juha Merikoski (työohjeet) ja Sami Kähkönen (tietokoneohjelma) 1999,2005"

Transkriptio

1 ISING-MALLIN MONTE CARLO -SIMULOINTI Laboratoriotyö Statistinen fysiikka FYSA40 (FYS4) Juha Merikoski (työohjeet) ja Sami Kähkönen (tietokoneohjelma) 999,005 Työssä tutustutaan magneettiseen järjestäytymiseen ja termodynaamisten suureiden numeeriseen laskemiseen Monte Carlo -menetelmän avulla. Tutkittava järjestelmä on kaksiulotteinen Ising-ferromagneetti neliöhilassa. Työ tehdään omaan tahtiin pc-luokan tietokoneilla eikä siihen tarvitse varata laboratoriovuoroa.. Ising-malli Ising-mallin idean keksi tiettävästi ensimmäisenä saksalainen fyysikko Wilhelm Lenz ( ). Hänen oppilaansa Ernst Ising ( ) julkaisi vuonna 95 artikkelin, jossa ratkaistiin mallin yksiulotteinen versio ja todettiin, ettei tässä tapauksessa mallissa ole faasitransitiota missään nollasta poikkeavassa lämpötilassa. Valitettavasti Ising päätteli, että näin olisi myös useampiulotteisessa tapauksesa, mikä osoitettiin eksaktisti virhepäätelmäksi 30-luvulla. Merkittävin askel Ising-mallin historiassa otettiin 944, jolloin norjalaissyntyinen Lars Onsager ( ) melkoisen matemaattisen yksilösuorituksen tuloksena julkaisi kaksiulotteisen mallin eksaktin ratkaisun nollakentässä. Mainittakoon, että Onsager sai vuonna 968 kemian Nobel-palkinnon toisesta merkitykseltään vastaavantasoisesta, epätasapainotermodynamiikkaan liittyvästä työstä. Vuoden 944 jälkeen kaksiulotteista mallia nollasta poikkeavassa kentässä samoin kuin kolmeulotteista mallia on yrittänyt ratkaista useampikin fyysikkosukupolvi kumpikin tapaus kuuluu statistisen fysiikan merkittävimpien toistaiseksi ratkaisemattomien ongelmien joukkoon []. Tarkastellaan Kuvan mukaista kaksiulotteista hilaa, jossa kuhunkin hilapisteeseen i on määritelty klassistyyppinen spin-muuttuja, joka voi saada arvot =± ( spin ylös tai spin alas ). Kutsumme näitä olioita jatkossa yksinkertaisesti spineiksi, vaikka varsinaisesti sana spin viittaakin kvanttimekaaniseen ominaisuuteen []. Ideaalisen paramagneetin tapauksessa ulkoisessa magneettikentässä B yhden spinin energia on µb, kun spin ylös -suunta on sama kuin magneettikentän suunta [3]. Tällöin systeemi voittaa energiaa spinien kääntyessä magneettikentän suuntaan. Ising-mallissa oletetaan lisäksi, että jokainen spin vuorovaikuttaa lähinaapuriensa kanssa ja kunkin lähinaapuriparin i, j energia on J S j. Kun spinien välillä on ferromagneettinen kytkentä eli J > 0, tämä vuorovaikutusenergia minimoituu, kun lähekkäin olevat spinit ovat samansuuntaiset. Kaksiulotteisessa neliöhilamallissa kullakin spinillä on neljä naapurispiniä. Näillä määrittelyillä koko systeemin energia mikrotilassa r on E tot r = J i,j S (r) i S (r) j µb S (r) i, () missä N on spinien lukumäärä ja S (r) i on spinin i suunta ko. tilassa. Merkintä i, j tarkoittaa summaamista yli kaikkien lähinaapuriparien siten, että jokainen pari lasketaan kerran. Jälkimmäinen summa käy yli kaikkien spinien. Keskeinen mitattavissa oleva suure on magneettinen momentti spiniä kohti M = µ N N, () koska Ising-mallin tapauksessa ei ole oikein mielekästä määritellä magneettista momenttia tilavuutta kohti, kuten kurssikirjassa [3] on tehty. i Kuva : Kaksiulotteinen Ising-malli. Pisteessä i olevan spinin lähinaapurit on merkitty katkoviivoilla.

2 Muita työssä vastaan tulevia suureita ovat magneettisen momentin itseisarvon keskiarvo M = µ N N, (3) joka on varsinainen järjestyksen mittari tapauksessa J > 0, ja keskimääräinen energia spiniä kohti E = Etot N = J S j µb N i,j. (4) Huomaa, että tapauksessa J 0 kunkin spinin energia riippuu myös naapurispinien tilasta, joten ei ole mahdollista kirjoittaa koko järjestelmän energiaa (ja muita suureita) yksittäisen spinin tilojen avulla, toisin kuin ideaalisen paramagneetin tapauksessa. Määrittelemme vielä M:n ja E:n fluktuaatioita kuvaavat suureet ( M) = (M M) ( E) = (E E). (5). Monte Carlo -menetelmä Statistisessa fysiikassa (edelläkin) on usein kiinnostuksen kohteena lämpötilassa T olevaa järjestelmää kuvaavan termodynaamisen suureen A keskiarvo A = Z r A r e Etot r /kt ; Z = r e Etot r /kt, (6) missä on summattu yli systeemin kaikkien mikrotilojen r ja A r on A:n arvo tilassa r. Monissa fysikaalisesti mielenkiintoisissa järjestelmissä partitiofunktion Z ja keskiarvon (6) eksakti analyyttinen laskeminen on hankalaa ja on käytettävä numeerisia menetelmiä [4]. Koska Ising-mallia ei pystytä yleisessä tapauksessa ratkaisemaan kynällä ja paperilla, tutkitaan sitä usein numeerisesti, tavallisimmin käyttäen Monte Carlo -simulointia, jolla pyritään tuottamaan keskiarvojen laskemista varten edustava otos mallin N mikrotilasta. Lisäksi simulaatiot antavat hyvin havainnollisen kuvan järjestelmän käyttäytymisestä, joten ne voivat täydentää käsistystämme sellaisistakin ilmiöistä, joita pystymme analysoimaan teoreettisesti... Satunnainen otanta Yksi mahdollisuus on luoda satunnaisesti (tietokoneessa satunnaislukugeneraattorin avulla) suuri määrä systeemin tiloja (Kuva ), esimerkiksi tilat r, r,..., r m. Suureen A arvolle näistä laskettu tekijällä exp[ Er tot /kt] painotettu keskiarvo on likiarvo summalle (6). On ilmeistä, että arvio paranee, kun m kasvaa. Suuri osa tiloista r s vaikuttaa kuitenkin hyvin vähän lopputulokseen, koska tilan painokerroin on eksponentiaalisesti vähenevä energian funktio. Tämän vuoksi menetelmä tässä yksinkertaisimmassa muodossa kuluttaa tarkkuuteensa nähden kohtuuttoman paljon tietokoneaikaa... Metropolis-algoritmi Laskenta on huomattavasti tehokkaampaa, jos tilat r s alunalkaen valitaan niiden todennäkäisyyden mukaan. Tällöin pyritään tuottamaan niitä systeemin tiloja, jotka eniten vaikuttavat keskiarvoon (6). Tällainen otanta (importance sampling) voidaan tietokoneessa toteuttaa monella tavalla [4]. Seuraavalla sivulla hahmotellaan tietokoneohjelman käyttämä ns. Metropolis-algoritmi [5] muokattuna Ising-mallille sopivaksi: Kuva : Esimerkkejä tietokonesimuloinnilla tuotetuista Ising-mallin mikrotiloista matalassa ja korkeassa lämpötilassa. Musta neliö = spin ylös, valkoinen = spin alas.

3 Metropolis-algoritmi: (i) Aloitetaan jostain satunnaisesta järjestelmän mikrotilasta. (ii) Valitaan jokin spin, jonka senhetkistä tilaa (spin tai ) yritetään muuttaa. (iii) Toteutetaan tilan muutos todennäköisyydellä w = min{, e Etot /k BT }, missä E tot on koko järjestelmän energian muutos, jos valittua spiniä käännetään. (iv) Palataan kohtaan (ii). Algoritmin kohta (iii) onnistuu seuraavasti: Tuotetaan satunnaislukugeneraattorilla satunnaisluku s [0, ]. Lasketaan spinin käännön todennäköisyys w. Jos sattuu olemaan w > s, käännetään spin; muussa tapauksessa jätetään spinin suunta ennalleen. Se, että algoritmia toistamalla lopulta tuotetaan (6):n mukaisia keskiarvoja, on todistettavissa todennäköisyyslaskennan menetelmin (stokastiikan alkeita: Markovin ketjujen teoria). 3. Työn suoritus Työssä tarvitaan kurssin Statistinen fysiikka alkuosan tietoja. Aluksi kannattaa kerrata kurssikirjasta [] kappale 3., jossa tarkastellaan ideaalista paramagneettia. Kirjan luvun 8 termodynaamiset ideat ovat hyvin käyttökelpoisia ferromagneetin tapauksessa (kirjassa ei kuitenkaan valitettavasti ole esimerkkejä faasimuutoksista magneettisissa systeemeissä vaan ainoastaan fluidisysteemeissä). Kuten luennolla on todettu, ferromagneetin faasidiagrammi on kuitenkin analoginen fluidisysteemin faasidiagrammin kanssa höyrynpainekäyrän osalta (Kuva 3). Magneettien ja fluidien faasimuutoksissa onkin paljon yhtäläisyyksiä. (a).5 (b) B 0 P / P C T / T C T / T C Kuva 3: (a) Ising-mallin faasidiagrammi (T,B)-tasossa. (b) Fluidisisteemin höyrynpainekäyrä. Työssä tarkasteltavat fysikaaliset tilanteet ja suoritettavat tehtävät: 3.0. Tietokoneohjelman käyttöön tutustuminen Tietokoneohjelma antaa aloitusruudussa työn tekijöiden syntymäaikojen perusteella sopivan arvon kytkentävakiolle J. Kirjoita saamasi arvo muistiin (koska joudut kohdassa 3. asettamaan J:n ensin nollaksi) ja käytä sitä kohtien 3. ja 3.3 laskuissa. Kirjoita muistiin myös samalla määräytyvä vaihtuvan tehtävän (kohta 3.5) numero. Automaattisesti alustetaan myös ohjelman käyttämä satunnaislukugeneraattori. Tarkemmat ohjeet ohjelman käyttöä varten ovat kansiossa työn suorituspaikalla. Halutessasi voit kopioda simulointiohjelman exe-version kotimikroosi; ohjelman tulostusparametrit on tosin optimoitu fysiikan laitoksen käyttöympäristön mukaan. Kokeile ohjelman käyttöä ja testaa myös tulostus ennenkuin siirryt varsinaisiin tehtäviin. Kunkin tehtävän kohdalla kannattaa tulostaa pari kuvaa tyypillisistä ohjelman tuottamista spin-konfiguraatioista. Tämä helpottaa myöhemmin selostuksen kirjoittamista. 3.. Ideaalinen paramagneetti J = 0 Tämä tilanne on käsitelty oppikirjassa [3] ja luennolla. Kun spinien välillä ei ole vuorovaikutuksia eli J = 0, saa lauseke () muodon Er tot = µb S (r) i. (7) Tällöin magneettinen momentti lämpötilassa T on ( µb ) M = µ tanh kt 3 (8)

4 ja energia spiniä kohti (huomaa erilainen merkintä kirjassa) on ( E = Etot µb ) N = µb tanh = MB. (9) kt Oppikirjassa on käytetty merkintää x = µb/kt. Piirrä käyrät (8) ja (9) eri kuviin x:n funktiona alueella x = Mitä voit päätellä systeemin käyttäytymisestä lämpötilan funktiona? Laske muutama piste edellä piirtämillesi käyrille osaston mikrotietokoneessa olevalla Monte Carlo -ohjelmalla. Huomaa, että ohjelman käyttämässä yksikköjärjestelmässä on k = ja µ =, mikä on tavallinen käytäntö statistisen fysiikan laskuissa. Tästä seuraa myös, että B ja T ilmaistaan samoissa yksiköissä, samoin myöhemmin J. Sovimme nyt yksinkertaisuuden vuoksi, että kaikki tulokset ilmaistaan yksiköttöminä [6]. Piirrä ohjelman laskemat pisteet samaan kuvaan kaavoista (8) ja (9) laskemiesi käyrien kanssa. Vertaamalla pisteitä teorian ennusteisiin voit varmistaa tässä vaiheessa, että olet saanut tietokoneohjelman toimimaan oikein. 3.. Ferromagneetti J > 0 nollakentässä B = 0 Kun J > 0, spinien välinen vuorovaikutus pyrkii kääntämään naapurispinit samaan suuntaan (ferromagnetismi). Tällöinkin voidaan johtaa tarkat analyyttiset lausekkeet suureille ( 4) kaksiulotteisessa tapauksessa rajalla N, kun B = 0. Teoreettinen tarkastelu on kuitenkin hyvin vaikea [,7], minkä vuoksi turvaudumme jatkossa yksinomaan Monte Carlo -simulointiin. Laske magneettisen momentin itseisarvo M, kun kt/j = ja B = 0 käyttäen ohjelman aiemmin antamaa J:n arvoa. Aseta sama arvo vaaka- ja pystysuuntaiselle kytkennälle eli J x = J y = J. Piirrä tulos parametrin y = kt/j:n funktiona (ohjelmassa siis k = ). Miten M mittaa systeemin järjestäytymisastetta? Kriittinen lämpötila T c tarkoittaa lämpötilaa, jonka yläpuolella spontaani magnetoituma eli magnetoituma nollakentässä häviää. Arvioi kriittinen lämpötila simulaatiotuloksistasi (tarvitset riittävän monta datapistettä) ja vertaa saamaasi arviota teoreettiseen tulokseen: sinh(j/kt c ) = eli T c.69j/k äärettömän kokoiselle kaksiulotteiselle Ising-mallille [7]. Jos haluaisit mallintaa tällä Ising-mallilla raudan ferromagnetismia [6], mikä olisi J:n arvo elektronivoltteina, jos kiderakennekorjaukset voi jättää huomiotta? 3.3. Ferromagneetti J > 0 magneettikentässä B > 0 Toista kohdan 3. laskut, kun B > 0. Valitse kokeillen kaksi sellaista magneettikentän B arvoa, joilla ero edelliseen tapaukseen näkyy selvästi (B:n täytyy olla samaa suuruusluokkaa kuin J). Piirrä tulokset samaan kuvaan. Mikä on J:n ja B:n suhteen vaikutus eri lämpötila-alueilla? 3.4. Antiferromagneetti J < 0 Muuta J negatiiviseksi ja tarkastele ohjelman tuottamia systeemin tiloja eri lämpötiloissa, kun B = 0. Voit myös kokeilla muuttaa kytkentävakioista vain toisen (joko J x tai J y ) etumerkkiä Vaihtuva tehtävä Työpaikalla olevassa kansiossa on joukko numeroituja ja aika ajoin vaihtuvia tehtäviä, joista jokainen työpari suorittaa yhden. Tietokone määrää kunkin parin suoritettavaksi tulevan tehtävän parin syntymäaikojen perusteella ohjelman aloitusruudussa. 4

5 4. Työselostus Työstä laaditaan tiivis kirjallinen selostus, jossa esitellään lyhyesti Ising-malli, tarkastellaan kohdan 3 laskujen tuloksia ja vastataan esitettyihin kysymyksiin. Työn filosofia ja selostuksen sävy on lähinnä kompuutterieksperimentti, ei niinkään teoreettinen tutkielma. Systeemi minimoi vapaan energian F = E T S, jolloin lämpötilan kasvaessa entropia S eli epäjärjestys voittaa. Miten tämä näkyy ohjelman tuottamista systeemin tiloista kussakin kohdassa? Tervetulleita ovat muutkin havainnot systeemin tilojen luonteesta, kuten järjestyksen saarekkeista ja mahdollisesta metastabiiliudesta demonstroi havaintosi kuvin. Yksi mahdollinen pohdiskelun aihe on myös kvalitatiivinen yhtäläisyys Ising-mallissa ja muissa fysikaalisissa systeemeissä tapahtuvien faasimuutosten välillä. Monte Carlo -menetelmää ei tarvitse yksityiskohtaisesti käsitellä selostuksessa. Liite Eräiden ferro- ja antiferromagneettisten materiaalien kriittisiä lämpötiloja (Lähde: Ashcroft & Mermin [6]): Ferromagneetteja T c Antiferromagneetteja T c Fe 043 K MnO K Co 388 K FeO 98 K Ni 67 K KFeF 3 5 K Gd 93 K VS 040 K GdCl 3. K Cr 3 K Kirjallisuus [] Ising-mallin fysiikkaan ja historiaan liittyvää materiaalia työn suorituspaikalla olevassa kansiossa. [] Ising-malli voidaan johtaa aidosti kvanttimekaanisesta Heisenbergin mallista eräille systeemeille pätevänä rajatapauksena. Kyseisellä rajalla malliin jää vain toistensa kanssa kommutoivia operaattoreita, minkä ansiosta mallin statistista mekaniikkaa voidaan tarkastella ilman kvanttimekaniikan koneistoa [Plischke & Bergersen, Equilibrium Statistical Physics, nd edition, World Scientific (994)]. [3] F. Mandl, Statistical Physics, Luku 3. A Paramagnetic Solid in a Heat Bath, Wiley (988). [4] D. W. Heermann, Computer Simulation Methods in Theoretical Physics, Springer (990). [5] Nimi Monte Carlo viittaa luonnollisesti kuuluisaan kasinoon, jossa tuotetaan satunnaislukuja ruletilla, kun taas Metropolis on algoritmin kehittäjän nimi. Alkuperäinen artikkeli [N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller & E. Teller, J. Chem. Phys., 0 (953)] sisältää yksinkertaisen perustelun sille miksi algoritmin voi odottaa toimivan. [6] Ising-mallin parametrit, kuten kytkentävakio J, saavat jonkin tietyn arvon energia- ja lämpötilayksiköissä vasta sitten, kun mallia aletaan soveltaa johonkin realistiseen systeemiin. Esim. raudalle kokeellisesti mitattu kriittinen lämpötila on noin 043 K, mistä saa J:lle arvion. Tarkkaan ottaen asiaan vaikuttaisi jonkin verran myös raudan kiderakenne, joka on bcc-rakenne eikä neliöhila, ja monet muut komplikaatiot, joihin ei ole tarpeen puuttua tässä [Luvut 4 ja 33, Ashcroft & Mermin, Solid State Physics (976)]. [7] Kriittisen pisteen lähellä pätevän skaalauksen M (T c T) /8 ja muiden tunnettujen eksaktien tulosten [R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press (98)] todentaminen Monte Carlo -menetelmällä vaatii pidempiä simulointeja kuin mihin tässä työssä voidaan ryhtyä. 5

FYSA241/K1. Juha Merikoski ja Sami Kähkönen (1999,2005) Janne Juntunen (2006) ja Vesa Apaja (2006-)

FYSA241/K1. Juha Merikoski ja Sami Kähkönen (1999,2005) Janne Juntunen (2006) ja Vesa Apaja (2006-) ISING-MALLIN MONTE CARLO -SIMULOINTI Statistinen fysiikka FYSA1/K1 Juha Merikoski ja Sami Kähkönen (1999,005) Janne Juntunen (00) ja Vesa Apaja (00-) Työssä tutustutaan magneettiseen järjestäytymiseen

Lisätiedot

Fysp240/1 Ising-malli (lyhyt raportti)

Fysp240/1 Ising-malli (lyhyt raportti) Tiia Monto Työ tehty: 19.1. tiia.monto@jyu. 7515 Fysp/1 Ising-malli (lyhyt apotti) Assistentti: Avostellaan (joko hyväksytty tai hylätty) Työ jätetty: Abstact I simulated paamagnet, feomagnet and antifeomagnet

Lisätiedot

Aineen magneettinen luonne mpötilan vaikutus magnetoitumaan

Aineen magneettinen luonne mpötilan vaikutus magnetoitumaan Aineen magneettinen luonne ja lämpl mpötilan vaikutus magnetoitumaan Jaana Knuuti-Lehtinen 3.4.2009 2.4.20092009 1 Johdanto Magnetoitumisilmiö Mistä johtuu? Mitä magnetoitumisessa tapahtuu? Magneettiset

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Statistinen fysiikka, osa A (FYSA241)

Statistinen fysiikka, osa A (FYSA241) Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 0. Käytännön asioita 1 Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2017 Emppu Salonen Lasse Laurson Touko Herranen Toni Mäkelä Luento 11: Faasitransitiot Ke 29.3.2017 1 AIHEET 1. 1. kertaluvun transitioiden (esim.

Lisätiedot

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja. FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 1. Johdanto 1 Ajat, paikat Luennot: 20h ma, ke klo 10.15, FYS1,, 9.1.-22.2 Demot: 10h, ke

Lisätiedot

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:

Lisätiedot

Statistinen fysiikka, osa A (FYSA241)

Statistinen fysiikka, osa A (FYSA241) Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 1 Ajat, paikat 0. Käytännön asioita Ajan tasalla olevat tiedot kurssin kotisivulta

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Muistelua johdanto-osasta: Kvanttimekaniikassa

Lisätiedot

STOKASTISISTA PROSESSEISTA JA SIMULAATIOMENETELMISTÄ

STOKASTISISTA PROSESSEISTA JA SIMULAATIOMENETELMISTÄ STOKASTISISTA PROSESSEISTA JA SIMULAATIOMENETELMISTÄ Simulaatiokurssi 2004 muokattu 25.5.2006 (J.Merikoski) Stokastisten simulaatiomenetelmien yleisiä lähtökohtia. Satunnaismuuttujat, stokastiset prosessit

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit

Lisätiedot

Syventävien opintojen seminaari

Syventävien opintojen seminaari Syventävien opintojen seminaari Sisällys 1 2 3 4 Johdanto Kvanttikenttäteorioiden statistinen fysiikka on relevanttia monella fysiikan alalla Kiinteän olomuodon fysiikka (elektronisysteemit) Kosmologia

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

FYSA2031 Potentiaalikuoppa

FYSA2031 Potentiaalikuoppa FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali

Lisätiedot

Johdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad

Johdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad Johdantoa ALGORITMIT MATEMA- TIIKASSA, MAA Vanhan vitsin mukaan matemaatikko tietää, kuinka matemaattinen ongelma ratkaistaan, mutta ei osaa tehdä niin. Vitsi on ajalta, jolloin käytännön laskut eli ongelman

Lisätiedot

Faasitasapaino Ferromagneetti ja Isingin malli Clausius-Clapeyron Lisää faasimuunnoksista. Statistinen fysiikka, osa A (FYSA241)

Faasitasapaino Ferromagneetti ja Isingin malli Clausius-Clapeyron Lisää faasimuunnoksista. Statistinen fysiikka, osa A (FYSA241) Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 5. Faasitransitiot 1 Olomuodonmuutokset eli faasitransitiot Arkisesti: kvalitatiivinen

Lisätiedot

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen 34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

Hannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus

Hannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus Perusohjeita, symbolista laskentaa Geogebralla Kielen vaihtaminen. Jos Geogebrasi kieli on vielä englanti, niin muuta se Options välilehdestä kohdasta Language suomeksi (finnish). Esittelen tässä muutaman

Lisätiedot

5. Faasitransitiot. Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.

5. Faasitransitiot. Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja. Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 5. Faasitransitiot 1 Olomuodonmuutokset eli faasitransitiot Arkinen määritelmä

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Stanislav Rusak CASIMIRIN ILMIÖ

Stanislav Rusak CASIMIRIN ILMIÖ Stanislav Rusak 6.4.2009 CASIMIRIN ILMIÖ Johdanto Mistä on kyse? Mistä johtuu? Miten havaitaan? Sovelluksia Casimirin ilmiö Yksinkertaisimmillaan: Kahden tyhjiössä lähekkäin sijaitsevan metallilevyn välille

Lisätiedot

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2 infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Faasitasapaino Ferromagneetti, Ising Clausius-Clapeyron Vesi Yhteenvetoa kurssista. FYSA241, kevät Tuomas Lappi

Faasitasapaino Ferromagneetti, Ising Clausius-Clapeyron Vesi Yhteenvetoa kurssista. FYSA241, kevät Tuomas Lappi FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 5. Faasitransitiot 1 Olomuodonmuutokset eli faasitransitiot Arkinen määritelmä terävä muutos

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

Experiment Finnish (Finland) Hyppivät helmet - Faasimuutosten ja epätasapainotilojen mekaaninen malli (10 pistettä)

Experiment Finnish (Finland) Hyppivät helmet - Faasimuutosten ja epätasapainotilojen mekaaninen malli (10 pistettä) Q2-1 Hyppivät helmet - Faasimuutosten ja epätasapainotilojen mekaaninen malli (10 pistettä) Lue yleisohjeet erillisestä kuoresta ennen tämän tehtävän aloittamista. Johdanto Faasimuutokset ovat tuttuja

Lisätiedot

Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot

Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot Sievin lukio Tehtävien ratkaisut tulee olla esim. Libre officen -writer ohjelmalla tehtyjä. Liitä vastauksiisi kuvia GeoGebrasta ja esim. TI-nSpire

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

Fysikaaliset tieteet. Minkälaisia opintokokonaisuuksia saa fysiikasta? Miksi ja miten tehdä fysiikasta sivuaine?

Fysikaaliset tieteet. Minkälaisia opintokokonaisuuksia saa fysiikasta? Miksi ja miten tehdä fysiikasta sivuaine? Fysikaaliset tieteet Minkälaisia opintokokonaisuuksia saa fysiikasta? Miksi ja miten tehdä fysiikasta sivuaine? Oletko fysiikan opiskelija? Tässä olevia kokonaisuuksia ei tarjota sinulle aivan tälläisenään.

Lisätiedot

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1. T-61.020 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke 18.4.2007, 12:1 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.0 1. Käytämme siis jälleen viterbi-algoritmia todennäköisimmän

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Tfy Teoreettinen mekaniikka (5 op) Tfy Fysiikka IV alkuosa A ja Tfy Teoreettinen mekaniikka

Tfy Teoreettinen mekaniikka (5 op) Tfy Fysiikka IV alkuosa A ja Tfy Teoreettinen mekaniikka 7.8.2006/akh Perustetut kurssit Tfy-0 Korvaavat vastaavat opintojaksot Tfy-0.1011 Fysiikka IA (4 op) Tfy-0.101 Fysiikka I alkuosa Tfy-0.1012 Fysiikka IB (4 op) Tfy-0.101 Fysiikka I loppuosa Tfy-0.1023

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

FYSA210/2 PYÖRIVÄ KOORDINAATISTO

FYSA210/2 PYÖRIVÄ KOORDINAATISTO FYSA210/2 PYÖRIVÄ KOORDINAATISTO Johdanto Inertiaalikoordinaatisto on koordinaatisto, jossa Newtonin mekaniikan lait pätevät. Tällaista koordinaatistoa ei reaalimaailmassa kuitenkaan ole. Epäinertiaalikoordinaatisto

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

Kolmannen ja neljännen asteen yhtälöistä

Kolmannen ja neljännen asteen yhtälöistä Solmu /019 7 Kolmannen neljännen asteen yhtälöistä Esa V. Vesalainen Matematik och statistik, Åbo Akademi Tämän pienen artikkelin tarkoituksena on satuilla hieman algebrallisista yhtälöistä. Erityisesti

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN

MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat. Operaatiot. Imperatiivinen laskenta. Muuttujat. Esimerkkejä: Operaattorit.

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat. Operaatiot. Imperatiivinen laskenta. Muuttujat. Esimerkkejä: Operaattorit. 3. Muuttujat ja operaatiot Sisällys Imperatiivinen laskenta. Muuttujat. Nimi ja arvo. Muuttujan nimeäminen. Muuttujan tyyppi.. Operandit. Arvon sijoitus muuttujaan. Aritmeettiset operaattorit. Arvojen

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

3. Muuttujat ja operaatiot 3.1

3. Muuttujat ja operaatiot 3.1 3. Muuttujat ja operaatiot 3.1 Sisällys Imperatiivinen laskenta. Muuttujat. Nimi ja arvo. Muuttujan nimeäminen. Muuttujan tyyppi. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeettiset operaattorit.

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Markov-ketjut pitkällä aikavälillä

Markov-ketjut pitkällä aikavälillä 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä

Lisätiedot

Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot

Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot Sievin lukio Tehtävien ratkaisut tulee olla esim. Libre officen -writer ohjelmalla tehtyjä. Liitä vastauksiisi kuvia GeoGebrasta ja esim. TI-nSpire

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/4+^2 3 4+ 2 Kirjoita muuten sama, mutta ota KAKSI välilyöntiä (SEURAA ALUEMERKINTÄÄ) 4:n jälkeen 3/4 +^2 3 + 4 2 Kopioi

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit

Lisätiedot

Kiinteiden materiaalien magneettiset ominaisuudet

Kiinteiden materiaalien magneettiset ominaisuudet Kiinteiden materiaalien magneettiset ominaisuudet Peruskäsite: Yhdisteessä elektronien orbtaaliliike ja spin vaikuttavat magneettisiin ominaisuuksiin (spinin vaikutus on merkittävämpi) Diamagnetismi Kaikki

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

3. Simulaatioiden statistiikka ja data-analyysi

3. Simulaatioiden statistiikka ja data-analyysi [5B] TIETOKONESIMULAATIOISTA Luennolla esiteltiin fysiikan alan tietokonesimulaatiomenetelmiä. Esimerkkien puitteissa koodejakin katsellen tarkastelimme samalla joitakin vähemmälle huomiolle jääneitä aiheita

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?

Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Psykologia tieteenä. tieteiden jaottelu: TIETEET. EMPIIRISET TIETEET tieteellisyys on havaintojen (kr. empeiria) tekemistä ja niiden koettelua

Psykologia tieteenä. tieteiden jaottelu: TIETEET. EMPIIRISET TIETEET tieteellisyys on havaintojen (kr. empeiria) tekemistä ja niiden koettelua Psykologia tieteenä tieteiden jaottelu: FORMAALIT TIETEET tieteellisyys on tietyn muodon (kr. forma) seuraamista (esim. logiikan säännöt) matematiikka logiikka TIETEET LUONNON- TIETEET fysiikka kemia biologia

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

FYSP1082 / K4 HELMHOLTZIN KELAT

FYSP1082 / K4 HELMHOLTZIN KELAT FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja

Lisätiedot

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot