Laskennallisen kombinatoriikan 17 perusongelmaa

Koko: px
Aloita esitys sivulta:

Download "Laskennallisen kombinatoriikan 17 perusongelmaa"

Transkriptio

1 Laskeallise kobiatoriika 17 perusogelaa Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, joukkoje je. lukuääriä, o taustalla joki uutaista peruslaskutavoista tai laskuogelista. Tässä esitellää lyhyesti 17 tällaista allia. Mallit o uotoiltu tehtäviksi ratkaisuiee. Muutaat ratkaisut eivät oikeastaa ratkaise esitettyä ogelaa, vaa atavat käyttöö erkiä, jolla ratkaisu voisi ilaista, sekä palautuskaava. 1. Motako k: alkio jooa voidaa uodostaa :stä eri alkiosta? Ratkaisu. Jokaiselle k:lle paikalle voidaa valita, toisista valioista riippuatta, joki :stä eri alkiosta. Mahdollisuuksia o siis } {{ } = k. k kpl 2. Motako k: eri alkio jooa voidaa uodostaa :stä eri alkiosta? Ratkaisu. Esiäie alkio voidaa valita :llä tavalla, seuraavaa jää 1 ahdollisuutta je. Eri jooja tulee oleaa ( 1) ( k +1)=! ( k)! kappaletta. 3. Motako k: alkio joukkoa voidaa uodostaa :stä eri alkiosta? Ratkaisu. Edellise perusteella k eri alkiota voidaa laittaa jooo k! eri tavalla. Jos x o kysytty joukkoje äärä, voidaa edellise uero( tulos ) laskea yös uodossa x k!.! Yhtälöstä xk! = ( k)! ratkaistaa x =! k!( k)! =. k 4. Motako eri jooa voidaa uodostaa :stä ollastaja:stä ykkösestä? ( Ratkaisu. ) Valitaa :lle ollalle paikat + : paika joukosta. Tää voidaa tehdä + tavalla.. Motako sellaista : olla ja : ykköse jooa o, issä ei esiiy peräkkäisiä ykkösiä? Ratkaisu. Kirjoitetaa ollaa jooo. Esiäistä ollaa ee, ollie välissä ja viieise olla jälkee o yhteesä ( + 1 paikkaa. ) Jokaisessa joko o yksi ykköe tai +1 ei yhtää ykköstä. :llä ykköselläo eri ahdollisuutta täyttää äitä paikkoja. Jos >+ 1, joo ei ole ahdollie. 6. Moellako tavalla :stä alkiosta voidaa valita k alkiota, jos saa alkio voidaa valita useita kertoja, utta kaikki alkiot o valittava aiaki kerra? Ratkaisu. Ajatellaa k:ta lokeroa rivissä. Esiäisii lokeroihi laitetaa esiäiset alkiot, sitte laitetaa paksupi väliseiä, sitte seuraavii toiset je. Eri valitoje äärä ilaisevat paksupie väliseiie äärät. Väliseiiä( tarvitaa ) 1 kappaletta k 1 ja iide ahdollisia paikkoja o k 1. Eri valitoja o siis. 1

2 2 7. Moellako tavalla :stä alkiosta voidaa valita k alkiota, jos saa alkio voidaa valita useita kertoja? Ratkaisu. Lukuäärä o saa kui jos olisi valittava ( k + alkiota ) ( ja valiassa ) tulisi + k 1 + k 1 olla ukaa kaikkie : alkio aiaki kerra, siis =. 1 k 8. Moellako tavalla erilaista palloa voidaa sijoittaa :ää erilaisee laatikkoo? Ratkaisu. Esiäie pallo voidaa sijoittaa :llä eri tavalla, toie edellisestä riippuatta yös :llä eri tavalla je. Tapoja o siis kappaletta. 9. Moellako tavalla idettistä palloa voidaa sijoittaa :ää erilaisee laatikkoo? Ratkaisu. Olkoot laatikot A, B,..., X, issä kirjaiia o kappaletta. Tehtävä o saa kui uodostaa : alkio joo kirjaiista, ku kuki kirjai voi esiityä ielivaltaise ( ota ) kertaa (tietysti eitää kertaa). Kohda 7 perusteella eri tapoja o Moellako tavalla idettistä palloa voidaa sijoittaa :ää erilaisee laatikkoo, jos yksikää laatikko ei saa jäädä tyhjäksi? Ratkaisu. Tehtävä o saa( kui jos) sijoitettaisii ( ) idettistä palloa :ää erilaisee 1 1 laatikkoo. Ratkaisu o siis = Moellako tavalla erilaista palloa voidaa sijoittaa :ää erilaisee laatikkoo, jos j:tee laatikkoo tulee sijoittaa j palloa ( = )? Ratkaisu. Esiäisee( laatikkoo ) voidaa sijoittaa ikä hyväsä palloje 1 -alkioie osajoukko. Tapoja o siis.jostää o tehty, toisee laatikkoo voi sijoittaa jäljelle 1 ( ) 1 jääeide ikä tahasa 2 -alkioise osajouko; äitä tapojao je. Tapoja o kaikkiaa! 1!( 1 )! sillä ( )=. ( 1 )! 2!( 1 2 )! ( ( )! 1!( ( ))! ( )! = 1! 2!! =, 1, 2,..., 12. Jos joo uodostuu :stä eri sybolista 1, 2,...,, se pituus o, jaj esiityy joossa j kertaa, ii oeeko eri järjestyksee joo voidaa kirjoittaa?! Ratkaisu. Tehtävä o saa kui edellie; vastaus o siis 1! 2!!. 2

3 . Moellako tavalla erilaista palloa voidaa sijoittaa :ää erilaisee laatikkoo, jos ikää laatikko ei saa jäädä tyhjäksi? Ratkaisu. Lukuäärä o ( ) = T (, ). 1, 2,..., = 1, 2,..., Voidaa osoittaa, että T toteuttaa palautuskaava ku 1 <<. T (, ) =(T ( 1, 1) + T ( 1, )), Motako -kirjaiista saaa voidaa uodostaa :stä kirjaiesta, jos jokaista kirjaita o käytettävä aiaki kerra? Ratkaisu. Tehtävä o saa kui edellie. 1. Moellako tavalla erilaista alkiota voidaa jakaa :ksi osajoukoksi, joide koot ovat 1, 2,...,? Ratkaisu. Jos osajoukot olisivat iettyjä, lukuäärä olisi ( ) 1, 2,...,. Olkoo 1- alkioisia joukkoja r 1, 2-alkioisia joukkoja r 2 je. Koska joukkoje järjestyksellä eiole väliä, tehtävä vastaus o ( ) 1, 2,...,. r 1!r 2!r 3! 16. Moellako tavalla alkiota voidaa jakaa :ksi epätyhjäksi osajoukoksi? Ratkaisu. Ku verrataa ueroo ja otetaa huoioo, että joukoteivät yt ole 1 iettyjä, saadaa vastaukseksi T (, ).! 17. Moellako tavalla positiivie kokoaisluku voidaa lausua : positiivise kokoaisluvu suaa? Ratkaisu. Kysyttyä lukua erkitää P (, ). Sillä ei ole yksikertaista lauseketta, utta voidaa osoittaa, ettäpätee palautuskaava ku 1 <<. P (, ) =P ( 1, 1) + P (, ),

4 4 Muutaa kobiatorie laskutehtävä 1. Motako viisikirjaiista saaa voi uodostaa aakkosista A, B, C,...,V,W,X,Y,Z, Å, Ä Ö? 2. Motako viisikirjaiista saaa voi uodostaa aakkosista A, B, C,...,V,W,X,Y,Z, Å, Ä Ö, jos saa kaikkie kirjaiie o oltava eri kirjaiia? 3. Motako viisikirjaiista saaa voi uodostaa aakkosista A, B, C,...,V,W,X,Y,Z, Å, Ä Ö, jos saassa ei saa olla kahta saaa peräkkäistä kirjaita? 4. Motako viisikirjaiista saaa voi uodostaa aakkosista A, B, C,...,V,W,X,Y,Z, Å, Ä Ö, jos saa kirjaite o oltava o oltava eri kirjaiia ousevassa tai laskevassa aakkosjärjestyksessä?. Autoje rekisterituuksissa o kaksi tai kole kirjaita aakkostosta A, B, C, E, F, G, H, I, J, K, L, M, N, O, P, R, S, T, U, V, X, Y, Z ja luku väliltä 1,..., 999. Moiko auto voi saada eri rekisterituukse? 6. Moellako tavalla kole autoa voidaa pysäköidä seitseälle vierekkäiselle pysäköitipaikalle ii, että jokaise kahde auto välii jää aiaki yksi tyhjä paikka? 7. Moellako tavalla voidaa valita kole ueroa joukosta {0, 1, 2,..., 9}, jos joukossa ei saa olla peräkkäisiä ueroita? 8. Motako ousevaa jooa a 1 a 2 a 9 a 10 voidaa uodostaa jouko {1, 2,..., 20} luvuista? 9. Todista, että luku(2)! o jaollie luvulla (!) Sehä yt voidaa tehdä tuhaella ja yhdellä tavalla! Etsi bioikertoiie avulla asia, joka voidaa tehdä tasa 1001:llä eri tavalla. 11. Moellako tavalla 2 korttia voidaa jakaa eljälle pelaajalle A, B, C ja D, ii että jokaiesaakorttia? 12. Muua sua ( ) ( ) ( ) ( ) 2 uotoo ( ) x. y. Pokerikäsi o viide eri korti joukko 2 korti stadardipakasta, jossa o eljä korti aata. Laske a) pokerikäsie lukuäärä; b) sellaiste pokerikäsie lukuäärä, joissa kaikki kortit ovat saaa aata ( väri ); c) sellaiste käsie lukuäärä, jossa kaikki kortit ovat saaa aata ja peräkkäisiä ueroita; ässä voi saada joko uero 1 tai uero 14 ( värisuora ); d) sellaiste käsie lukuäärä, joissa o eljä saaueroista korttia ( eloset ); e) sellaiste käsie lukuäärä, joissa o kaksi saaueroista korttia

5 ja kole aiitusta uerosta eroavaa utta saaueroista korttia ( täyskäsi ); f) sellaiste käsie lukuäärä, joissa o kole saaueroista korttia, utta jossa kaksi uuta korttia ovat keskeää eriueroisia ja eriueroisia kui kole saaueroista ( koloset ), g) sellaiste käsie lukuäärä, joissa o viisi peräkkäistä ueroa ja ässä voi olla uero 1 tai uero 14 ( suora ); h, i) Ku olet päässyt äi hyvää alkuu, voit vielä laskea käsie kaksi paria ja pari lukuäärä. Laskutehtävie ratkaisuja 1. Aakkosia o 29, ja ku jokaiselle saa viidelle paikalle voi valita kirjaie 29:lla eri tavalla, valitoja voi tehdä kaikkiaa 29 = kappaletta. 2. Esiäie kirjai voidaa valita 29:llä eri tavalla, seurava 28:lla je. Eri valitoja o = kappaletta. 3. Esiäie kirjai voidaa valita 29:llä eri tavalla. Toiseksi kirjaieksi kelpaa ikä tahasa uu kui esiäiseksi valittu kirjai. Vaihtoehtoja o siis 28. Kolaeksi kirjaieksi kelpaa ikä hyväsä uu kui toiseksi valittu kirjai. Vaihtoehtoja o taas 28. Näi jatkae todeta, että ehdo täytäviä viisikirjaiisia saoja o = kappaletta. 4. Jokaie viide eri kirjaie( joukko ) voidaa asettaa ousevaa tai laskevaa aakkosjärjestyksee. Saoja o siis 2 = = = ! kappaletta.. [Oletteko koskaa äheet suoalaista rekisterikilpeä, jossa olisi kirjai D?] Jos esitetyt ehdot pitävät paikkasa, tuukse kirjaiosa Esiäie ja toie kirjai voidaa valita kupiki 23:llä eri tavalla ja kolas 24:llä eri tavalla, koska kolae kirjaie puuttuie o yös yksi ahdollisuus. [Itse asiassa kirjai o vai perävauuje tuuksissa, ja e voivat alkaa yös olla yös W:llä, utta jätetää tää ottaatta huoioo.] Kirjaiet voidaa siis valita = eri tavalla. Nuero-osaa o 999 valitaahdollisuutta. Erilaisia tuuksia voi siis olla = kappaletta. 6. 1, ratkaisu. Ajatellaa kole auto vieree jäävää eljää tilaa laatikkoia, joihi sijoitetaa eljää palloa, joista kuki erkitsee yhtä vapaata paikkaa. Autoje välii tulevat laatikot eivät saa jäädä tyhjiksi, utta autoje ulkopuolella olevat kaksi laatikkoa voivat olla tyhjiäki. Jos autoje välissä olevissa kahdessa laatikoissa o kaksi palloa, loput kaksi palloa voidaa sijoittaa kolella tavalla: kaksi vasepaa laitaa, yksi olepii laitoihi tai kaksi oikeaa laitaa. Jos välilaatikoissa o kole palloa, e voivat olla kahdella eri tavalla. Viieie pallo voi seki olla kahdessa paikassa, jote tällaisia ahdollisuuksia o 2 2 = 4. Jos viiei kaikki eljä palloa sijoitetaa kahtee välilaatikkoo, ii ahdollisuuksia o kole: vaseapuoleisessa laatikossa o 1, 2 tai 3 palloa. Kaikkiaa vaihtoehtoja o siis = 10 kappaletta.

6 6 2. ratkaisu. Neljää vierekkäisee tyhjää paikkaa liittyy viisi viereistä paikkaa, joissa jokaisessa ( ) o auto tai ei ole autoa. Eri tapoja sijoitaa kole autoa äille paikoille o = Seitseä ei-valittava uero vieressä o kahdeksa paikkaa, joissa voi olla ( ) tai olla 8 oleatta yksi valittavista kolesta uerosta. Kahdeksa alkio joukolla o =6 3 osajoukkoa. 8. Jos 1 a 1 a 2 a 9 a 10 10, ii a 1 <a 2 +1<a 3 +2<...<a ja jos 1 b 1 <b 2 <... < b 10 19, ii 1 b 1 b 2 1 b b Tehtävässä kysytjä jooja o siis yhtä ota kui aidosti ousevia jooja 1 b 1 <b 2 <... < b 10 19; ( äitä ) oyhtä ota kui joukolla {1, 2,..., 19} o kyealkioisia 19 osajoukkoja eli = (2)! (!) 2 = (2)!!(2 )! = ( ) 2. Bioikertoiet ovat kokoaislukuja. ( ) = Etsitää bioikerroi =7 11. Luvu o oltava. k Piee kokeilu jälkee huoaa, että = =7 11 kelpaa. Tasa tavalla voi siis esierkiksi valita eljä eri pizza täytettä, jos vaihtoehtoja o Ajatellaa kortit aettavaksi järjestyksessä ( esia:lle, ) sitte B:lle, sitte C:lle ja 2 lopuksi D:lle. A:lle voidaa jakaa kaikkiaa erilaista joukkoa. B: koletoista ( ) 39 korttia voidaa tää jälkee valita 39:stä ahdollisesta, ja eri vaihtoehtoja o. ( ) 26 Nyt jäljellä o vielä 26korttia,jaC:lle iistä voidaa ataa eri tavalla. D: o tyytyie jäljelle jääeisii korttii. Eri tapoja tehdä jako o siis ( ) 2 ( ) ( ) = 2!! 39! 39!! 26! 26!!! = 2! (!) 4 = eli yli viisikyetätuhatta kvadriljooaa. [O elkei ahdotota, että kuolla sekoitetuista pakoista voisi tulla idettiset bridgejaot. Mutta kuollie sekoittaie o oa ogelasa.]

7 7 ( ) ( ) 12. Käytetää hyväksi bioikertoiie perusoiaisuutta =. Tehtävä k k sua o siis saa ku ( ) ( ). k k k=0 Tää havaito tekee ahdolliseksi ataa tehtävä sualle kobiatorise tulkia. Ajatellaa joukkoa, jossa o 2 alkiota, esierkiksi A = {1, 2,..., 2}. Jaetaa joukko kahdeksi osajoukoksi, joissa oleissa o alkiota, esierkiksi B = {1, 2,..., } ja C = { +1,+2,..., 2}. Nyt jokaie A: osajoukko E o uotoa (E B) (E C). Lasketaa kaikkie A: osajoukkoje lukuäärä ii, että kaikilla k = 0, 1,..., lasketaa sellaiset A: osajoukot E, ( joissa ) ( E B) o k-alkioie ja E C o ( k)- alkioie. Tällaisia joukkoja o juuri kappaletta. Koska A:lla o kaikkiaa ( ) k k ( ) 2 2 -alkioista osajoukkoa, o tehtävässä kysytty sua.. ( a) Pokerikäsiä ) oyhtä ota kui 2: alkio joukolla o viisialkioisia osajoukkoja, 2 siis = kappaletta. b) Tapoja valita yksi eljästä väristä o 4 ja tapoja ( ) valita Viide korti joukko kortista o = 148. c) Värille o 4 vaihtoehtoa ja aliaueroiselle kortille 10. Erilaisia värisuoria o 40. d) Neljästi esiityvä uero voi olla ikä hyväsä vaihtoehdostajaviidesikä hyväsä lopuista 48 kortista. Vaihtoehtoja siis 48 = 642. e) Se uero, joka esiityy kolesti, voidaa valita tavalla ja eljästä saaueroisesta kortista voidaa valita kole eljällä tavalla. Se ueroa, jota o kaksi, voidaa valita ( 12:lla ) tavalla ja tapoja valita e kaksi, jotka eljästä vaihtoehdosta otetaa ukaa, o = 6. Erilaisia täyskäsiä o = 1872 kappaletta. 4 2 f) Tapoja valita kole saaueroista korttia o 4 = 2. Neljäs kortti voi olla ikä hyväsä 48:sta uuueroisesta. Viideelle kortille o sitte 44 eri vaihtoehtoa. Nyt kuiteki eriueroiset yhdistelät tulee lasketuiksi kahdesti, jote koloskäsiä o siis /2 = erilaista. g) Ali uero voidaa valita 10:llä eri tavalla. Korttie värit voidaa valita ueroista riippuatta. Viide korti värit voidaa valita kuki toisista riippuatta eljällä eri tavalla. Värivalitoja o siis 4 = 2 10 = Erilaisia suoria o kappaletta. (Jos lasketaa värisuorat ( pois, ) jää jäljelle tavallista suoraa. h) Parikorttie ueroyhdistelälle o =6 vaihtoehtoa ja 2 kuassaki parissa aat voi taas valita kuudella tavalla. Viides kortti o ikä tahasa parikorttie uerosta eroava. Mahdollisuuksia o 44 erilaista. Kaksi paria -käsiä o siis = kappaletta. i) Parikortilla o uerovaihtoehtoa ja 6 aayhdistelävaihtoehtoa. Kolas kortti o joki 48 uusta, eljäs joki 44:stä uusta ja viides joki 40:stä uusta. Nyt kuiteki saa yhdistelä tulee lasketuksi kuudessa eri järjestyksessä. Vaihtoehtoja o siis /6 = kappaletta. Tai: Tapoja valita korttipari o 6 = 78 kappaletta. Muide kole korti ueroyhdisteliä o

8 8 ( ) 12 yhtä ota kui kahdetoista alkio joukolla kolialkioisia osajoukkoja, siis = kappaletta. Jokaie äistä kolesta kortista voi olla eljää eri aata. Vaihtoehtoja o 4 3 = 64. Kaikkiaa vaihtoehtoja o = kappaletta. Laskettuje lukuäärie perustella voi äärittää pokeri erilaiste käsie todeäköisyyksiä. Pelitilae o oiutkaisepi. Esierkiksi tieto oista korteista uuttaa vastustajie käsie todeäköisyyksiä: jos itsellä o ässäpari, uilla pelaajilla ei voi olla ässäelosia. Jos pakassa o jokeri, lukuäärät uuttuvat.

Laskennallisen kombinatoriikan perusongelmia

Laskennallisen kombinatoriikan perusongelmia Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 4 / vko 40

Diskreetin matematiikan perusteet Laskuharjoitus 4 / vko 40 Diskreetin ateatiikan perusteet Laskuharjoitus 4 / vko 40 Tuntitehtävät 31-32 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 35-36 loppuviikon harjoituksissa. Kotitehtävät 33-34 tarkastetaan loppuviikon

Lisätiedot

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770. JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...

Lisätiedot

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

Diskreetin matematiikan perusteet Esimerkkiratkaisut 5 / vko 12

Diskreetin matematiikan perusteet Esimerkkiratkaisut 5 / vko 12 Diskreetin ateatiikan perusteet Esierkkiratkaisut 5 / vko 1 Tuntitehtävät 51-5 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 55-56 loppuviikon harjoituksissa. Kotitehtävät 53-54 tarkastetaan loppuviikon

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät

Ryhmän osajoukon generoima aliryhmä ja vapaat ryhmät Ryhmä osajouko geeroima aliryhmä ja vapaat ryhmät LuK-tutkielma Joose Heioe Matemaattiste tieteide tutkito-ohjelma Oulu yliopisto Kevät 2017 Sisältö Johdato 2 1 Ryhmät ja aliryhmät 2 1.1 Ryhmä.................................

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio

TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio 1..018 TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio Esimerkki 1: Sinulla on 5 erilaista palloa. Kuinka monta erilaista kahden pallon paria voit muodostaa, kun valintajärjestykseen a) kiinnitetään

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Sähkömagneettisten järjestelmien lämmönsiirto DEE-54 Sähköageettiste järjestelie läösiirto Lueto 7 Sähköageettiste järjestelie läösiirto Risto Mikkoe..4 Läöjohtuise leie osittaisdiffereretiaalihtälö t E g c p Sähköageettiste järjestelie läösiirto

Lisätiedot

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,

Lisätiedot

3 Lukujonot matemaattisena mallina

3 Lukujonot matemaattisena mallina 3 Lukujoot matemaattisea mallia 3. Aritmeettie ja geometrie joo 64. a) Lukujoo o aritmeettie joo, joka yleie jäse o a 3 ( ) 4 34 4 4 b) Lukujoo o geometrie joo, joka yleie jäse o c) Lukujoo o geometrie

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide

Lisätiedot

1 Eksponenttifunktion määritelmä

1 Eksponenttifunktion määritelmä Ekspoettifuktio määritelmä Selvitimme aikaisemmi tällä kurssilla, millaie potessisarja säilyy derivoiissa muuttumattomaa. Se perusteella määritellää: Määritelmä. Ekspoettifuktio exp : R R määritellää lausekkeella

Lisätiedot

Palaset irroittaa toisistaan voidaan järjestää uudestaan siten, että ne muodostavat seuraavan laisen

Palaset irroittaa toisistaan voidaan järjestää uudestaan siten, että ne muodostavat seuraavan laisen Seeia Torstai. 8. 000 iboacci lukujoolla tarkoitetaa jooa, joka. ja. luku ovat ykkösiä, ja uut luvut saadaa laskealla kaksi edellistä lukua yhtee. Se o saaut iesä 00 luvulla eläee iboaccicsi kutsutu Leoardo

Lisätiedot

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa

Lisätiedot

RATKAISUT: 15. Aaltojen interferenssi

RATKAISUT: 15. Aaltojen interferenssi Physica 9. paios (6) : 5. a) Ku kaksi tai useapia aaltoja eteee saassa äliaieessa, aaltoje yhteisaikutus issä tahasa pisteessä o yksittäiste aaltoje sua. b) Ku aallot kohtaaat, haaitaa iide yhteisaikutus.

Lisätiedot

3 x < < 3 x < < x < < x < 9 2.

3 x < < 3 x < < x < < x < 9 2. Matematiika johdatokurssi Kertaustehtävie ratkaisuja 1. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x + 1. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

Tekijä Pitkä Matematiikka 11 ratkaisut luku 3

Tekijä Pitkä Matematiikka 11 ratkaisut luku 3 83 Tekijä Pitkä matematiikka 7..07 a) Osoitetaa sijoittamalla, että yhtälö toteutuu, ku x =. + 6= 0 6 6= 0 0= 0 tosi Luku x = toteuttaa yhtälö x + x 6= 0. b) Osoitetaa ratkaisemalla yhtälö. x + x 6= 0

Lisätiedot

3 x < < 3 x < < x < < x < 9 2.

3 x < < 3 x < < x < < x < 9 2. Matematiika johdatokurssi Kertaustehtävie ratkaisuja. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x +. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x < 9. Itse

Lisätiedot

3 10 ei ole rationaaliluku.

3 10 ei ole rationaaliluku. Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Kombinatoriikka. Iiro Honkala 2015

Kombinatoriikka. Iiro Honkala 2015 Kombiatoriikka Iiro Hokala 2015 Sisällysluettelo 1. Haoi torit 1 2. Lokeroperiaate 3 3. Tuloperiaate 3 4. Permutaatioista ja kombiaatioista 4 5. Toistokombiaatioista 5 6. Biomikertoimista 5 7. Multiomikertoimista

Lisätiedot

Oppimistavoite tälle luennolle

Oppimistavoite tälle luennolle Oppiistavoite tälle lueolle Yksikköoperaatiot ja teolliset prosessit CHEM-A00 (5 op) Tislaus ja uutto Yärtää erotusprosessie suuittelu perusteet Tutea tislaukse ja uuto toiitaperiaatteet Tutea tpillisipiä

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k = Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin yliopisto Harjoitus 3, ratkaisuehdotuksia Todeäköisyyslasketa I, kesä 207 Helsigi yliopisto/avoi yliopisto Harjoitus 3, ratkaisuehdotuksia. Aikaisemma viiko teemaa. Edessäsi o kaksi laatikkoa A ja B. Laatikossa A o 8 palloa, joista puolet valkoisia.

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x =

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x = TAMMI PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ PARITTOMAT RATKAISUT 7 Tiedosto vai hekilökohtaisee käyttöö. Kaikelaie sisällö kopioiti kielletty. a) g( ) = 5 + 6 Koska g o eljäe astee polyomi, ii

Lisätiedot

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1 40 Luku 6 Kysyntä Edellisessä luvussa näie, että ratkaisealla kuluttajan valintaongelan pitäällä paraetrit (p, p, ) yleisinä, saae eksplisiittisen kysyntäfunktion kuallekin hyödykkeelle. Ilaisie kysyntäfunktiot

Lisätiedot

Ehdollinen todennäköisyys

Ehdollinen todennäköisyys Ehdollie todeäköisyys Kerrataa muutama todeäköisyyslaskea laskusäätö. Tapahtuma E komplemettitapahtuma E o "E ei tapahdu". Koska todeäköisyyksie summa o 1, P ( E = 1 P (E. Joskus o helpompi laskea komplemettitapahtuma

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Vuosien Baltian tie -kilpailutehtävien ratkaisuja

Vuosien Baltian tie -kilpailutehtävien ratkaisuja f Vuosie 000 08 Baltia tie -kilpailutehtävie ratkaisuja 00.. Koska (x+y+z) =(x+y+z)(x +y +z +xy+xz+yz) =x +y +z +xy + x y+y z+yz +x z+xz +6xyz, havaitaa, ettäkutehtävä yhtälöide vasemmista puolista kaksi

Lisätiedot

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut: Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreeti matematiika perusteet Yhteeveto, osa I 1 Joukko-oppi ja logiikka Iduktioperiaate G. Gripeberg 2 Relaatiot ja fuktiot Aalto-yliopisto 3. huhtikuuta 2014 3 Kombiatoriikka ym. G. Gripeberg

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu 81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje

Lisätiedot

2. laskuharjoituskierros, vko 5, ratkaisut

2. laskuharjoituskierros, vko 5, ratkaisut 2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike

VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike 15/1 VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhde vapausastee vaieeva pakkovärähtely, roottori epätasapaio ja alusta liike ROOTTORIN EPÄTASAPAINO Kute sessiossa VMS13 tuli esille, aiheuttaa pyörivie koeeosie epätasapaio

Lisätiedot

TILASTOT: johdantoa ja käsitteitä

TILASTOT: johdantoa ja käsitteitä TILASTOT: johdatoa ja käsitteitä TOD.NÄK JA TILASTOT, MAA10 Tilastotietee tehtävää o esittää ja tulkita tutkimuskohteesee liittyvää havaitoaieistoa eli tilastoaieistoa. Tutkitaa valittua joukkoa ja se

Lisätiedot

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p MAA9 Koe.5.0 Jussi Tyi Tee koseptii pisteytysruudukko! Muista kirjata imesi ja ryhmäsi. Valitse kuusi tehtävää!. a) Ratkaise yhtälö si x. Ilmoita vastaus radiaaeia! b) Määritä paljoko o cos. Ilmoita tarkka

Lisätiedot

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreeti matematiika perusteet Yhteeveto, osa I G. Gripeberg Aalto-yliopisto 12. maaliskuuta 2015 G. Gripeberg (Aalto-yliopisto) MS-A0402 Diskreeti matematiika perusteet Yhteeveto, 12. osa maaliskuuta

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

Matriisilaskentaa tilastotieteilijöille

Matriisilaskentaa tilastotieteilijöille Matriisilasketaa tilastotieteilijöille Matriisilasketaa tilastotieteilijöille Ilkka Melli.. Vektorit.. Vektoriavaruudet ja vektorialiavaruudet.3. Lieaarie riippuvuus ja riippuattouus.4. Lieaariset yhtälöt.5.

Lisätiedot

Puzzle-SM Karsintakierros. 11. huhtikuuta 7. toukokuuta

Puzzle-SM Karsintakierros. 11. huhtikuuta 7. toukokuuta Puzzle-SM Karsintakierros. huhtikuuta 7. toukokuuta Karsintatehtäviä on viisitoista, joista uutaassa on a- ja b-kohta. Nää puzzlet ovat työlääpiä kuin loppukilpailutehtävät, koska ratkonta-aikaa on oninkertaisesti.

Lisätiedot

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x) BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 5, Kevät Ideaalisen normaalimoodin pnp-transistorin kollektorivirta on.

Puolijohdekomponenttien perusteet A Ratkaisut 5, Kevät Ideaalisen normaalimoodin pnp-transistorin kollektorivirta on. OY/PJKOMP R5 7 Puolijohdekooettie erusteet 57A Ratkaisut 5, Kevät 7. (a) deaalise oraalioodi -trasistori kollektorivirta o,6 L -9 D Ł L - C 3,6 5-6,9...A» 8, A L 6-4 s - Ø qu Œex º Ł k T deaalise oraalioodi

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

Keskijännitejohdon jännitteen alenema

Keskijännitejohdon jännitteen alenema Keskijäitejohdo jäittee aleea Kiviraa johtolähtö Ei ole ieltä laskea jäittee aleeaa pääuutajalta asti vaa lasketaa se P097: ltä. Xpoweri ukaa jäite uutaolla P097 o 0575,8V. Jäitteealeea uutao P097-P157

Lisätiedot

3.6. Geometrisen summan sovelluksia

3.6. Geometrisen summan sovelluksia Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa

Lisätiedot

Luento 7 Luotettavuus Koherentit järjestelmät

Luento 7 Luotettavuus Koherentit järjestelmät Lueto 7 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio Aalto-yliopisto perustieteide korkeakoulu PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi Määritelmä Tarkasteltava

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802 Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 7. Kombinatoriikka 7.1 Johdanto Kombinatoriikka tutkii seuraavan kaltaisia kysymyksiä: Kuinka monella tavalla jokin toiminto voidaan suorittaa? Kuinka monta tietynlaista

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Lueto 6 Luotettavuus Koheretit järjestelmät Ja-Erik Holmberg Systeemiaalyysi laboratorio PL 00, 00076 Aalto ja-erik.holmberg@riskpilot.fi ja-erik.holmberg@aalto.fi Määritelmä Tarkasteltava yksikö luotettavuus

Lisätiedot

8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan?

8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan? 8.2. Permutaatiot Esim. 1 irjaimet, ja asetetaan jonoon. uinka monta erilaista järjes-tettyä jonoa näin saadaan? Voidaan kuvitella vaikka niin, että hyllyllä on vierekkäin kolme laatikkoa (tai raiteilla

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 39

Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 39 Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 39 Tuntitehtävät 21-22 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 25-26 loppuviikon harjoituksissa. Kotitehtävät 23-24 tarkastetaan loppuviikon

Lisätiedot

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa. S-114.46 Fysiikka V (Sf) Tetti 16.5.00 välikokee alue 1. Oletetaa, että protoi ja elektroi välie vetovoia o verraollie suureesee r ( F =- kr) eikä etäisyyde eliö kääteisarvoo ( F =-k / r ). Käytä kulaliikeäärä

Lisätiedot

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k 1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje

Lisätiedot

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1.

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1. S-445 FSIIKK III (ES) Syksy 004, LH 5 Ratkaisut LHSf5-* Osoita, että van der Waalsin kaasun tilavuuden läötilakerroin on R ( b ) R a b Huoaa, että läötilakerroin on annettu oolisen tilavuuden = / ν avulla

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

lim Jännitystila Jännitysvektorin määrittely (1)

lim Jännitystila Jännitysvektorin määrittely (1) Jännitstila Tarkastellaan kuvan ukaista ielivaltaista koliulotteista kaaletta, jota kuoritetaan ja tuetaan siten, että se on tasaainossa. Kaaleen kuoritus uodostuu sen intaan kohdistuvista voiajakautuista,

Lisätiedot

Kiinteätuottoiset arvopaperit

Kiinteätuottoiset arvopaperit Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

Todennäköisyyslaskenta I. Heikki Ruskeepää Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus

Lisätiedot

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! MATA17 Sami Yrjäheikki Harjoitus 7 1.1.018 Tehtävä 1 Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! (a) Jokaie jatkuva fuktio f : R R o tasaisesti jatkuva. (b) Jokaie jatkuva fuktio f : [0, 1[ R

Lisätiedot

3.2 Sijaintiluvut. MAB5: Tunnusluvut

3.2 Sijaintiluvut. MAB5: Tunnusluvut MAB5: Tuusluvut 3.2 Sijaitiluvut Sijaitiluvut ovat imesä mukaiset: e etsivät muuttuja tyypillise arvo, jos sellaie o olemassa, tai aiaki luvu, joka lähellä muuttuja arvoja o eite. Sijaitiluvut jaetaa kahtee

Lisätiedot

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f 0, ku x < 0 Vastaus: Kertymäfuktio o F( x) = x, ku 0 x 0 0, ku x > 0 Todeäköisyydet ovat molemmat 0. Laudatur MAA ratkaisut kertausharjoituksii Tilastoje esittämie 3. a) Tietty kasvi b) Kukkie lukumäärä

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi

Lisätiedot

! 7! = N! x 8. x x 4 x + 1 = 6.

! 7! = N! x 8. x x 4 x + 1 = 6. 9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun

Lisätiedot

η = = = 1, S , Fysiikka III (Sf) 2. välikoe

η = = = 1, S , Fysiikka III (Sf) 2. välikoe S-11445 Fysiikka III (Sf) välikoe 710003 1 Läpövoiakoneen kiertoprosessin vaiheet ovat: a) Isokorinen paineen kasvu arvosta p 1 arvoon p b) adiabaattinen laajeneinen jolloin paine laskee takaisin arvoon

Lisätiedot

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims 75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva

Lisätiedot