Laskuharjoitus 3 palautus mennessä

Koko: px
Aloita esitys sivulta:

Download "Laskuharjoitus 3 palautus 11. 11. 2003 mennessä"

Transkriptio

1 Laskuharjoitus 3 palautus mennessä Tehtävä 1: Entsyymikinetiikkaa Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): 1. A:n sitoutuminen saa konformaatiossa aikaan muutoksen, joka mahdollistaa B:n sitoutumisen. 2. A:n sitouduttua B voi sitoutua ja sitoutuu. 3. A ja B muuttuvat entsyymin katalysoimassa reaktiossa P:ksi ja Q:ksi. 4. P ja Q irtoavat entsyymistä. Koska entsyymi katalysoi kahden substraatin reaktiota, ei se kaikissa oloissa noudata Michaelisin ja Mentenin kinetiikkaa. Kuitenkin pitämällä A:n konsentraatiota vakiona ja vaihtelemalla B:n konsentraatiota voimme approksimaationa käyttää Michaelisin ja Mentenin yhtälöä v [ S] [ S] = vmax, K M + kun asetamme, että [S]=[B]. a) Edellä mainitussa mittausjärjestelyssä saimme seuraavat tulokset: [B] /mm 1/[B] /mm -1 v /(mms -1 ) 1/v /(mm -1 s) 1, 1, 4,9,24 1,5,67 6,5,154 2,,5 8,5,118 3,,33 11,9,84 5,,2 16,5,61 1,1 23,7,42 2,5 3,8,32 Määritä K M ja v max. b) Kun inhibiittoria I oli läsnä vakiokonsentraatio [I], niin saatiin seuraavat tulokset: [B] /mm 1/[B] /mm -1 v /(mms -1 ) 1/v /(mm -1 s) 1, 1, 3,2,313 1,5,67 4,5,222 2,,5 5,9,169 3,,33 8,2,122 5,,2 12,1,83 1,1 18,8,53 2,5 25,6,39

2 Onko inhibitio kilpailevaa, kilpailematonta (eli sekamuotoista) vai entsyymin ja substraatin kompleksiin kohdistuvaa? VASTAUS a)+b) y =.2899x /v y =.1842x ilman inhibiittoria inhibiittorin kera Linear (ilman inhibiittoria) Linear (inhibiittorin kera) /[S] Tehdään esim. Excelillä tai laskimen yms. avulla suoran sovitus pienimmän neliösumman menetelmää käyttäen. Sovitusta varten tiedot tulee piirtää 1/v vs. 1/[S] -koordinaatistoon. Tämä johtuu siitä, että näin saada linearisoitua Michaelisin ja Mentenin yhtälö. [ S] v = vmax K S M + [ ] Siis 1/v =K M /v max 1/[S] +1/v max. Kun y-akselilla on 1/v ja x-akselilla 1/[S], on siis yhtälö muotoa y=k M /v max x+1/v max, missä 1/v max on vakiotermi ja K M /v max on kulmakerroin. Näin saadaan selvitettyä sovituksen tulosten avulla vakiosta v max ja edelleen kulmakertoimesta K M /v max K M -arvo, jotka siis ilman inhibiittoria ovat 41 mm/s ja 7,6 mm ja inhibiittorin kera 4 mm/s ja 11,6 mm. Kuvaajasta nähdään, että suorien leikkauspiste on likimain y-akselilla annettujen arvojen tarkkuuden puitteissa, kun taas kulmakerroin on selvästi eri. Kyseessä on siis todennäköisesti yksinkertainen kilpaileva inhibitio. c) Olisiko inhibitiomekanismi sama, jos meillä olisi mittauksessamme vakiokonsentraatio B:tä ja vaihtelisimme A:n konsentraatiota (siis olisi [S]=[A]) ja jos käyttäisimme samaa inhibiittoria I? Mikä se olisi ellei se olisi sama ja miksi? Edellisessä tapauksessa tilanne oli: EA=E' eli entsyyminä toimii entsyymin ja A:n kompleksi ja lisäksi B=S. Siis E'+S<=>E'S E+P. Inhibiittori siis kilpaili B:n kanssa. Toisaalta A:n ollessa valitsemamme substraatti eli substraatti, jonka suhteen työskentelemme, ei B:n kilpaileva inhibiittori kilpaile sen kanssa. Käytännössä siis nyt A=S ja E+S<=>ES E+P, missä ES on siis entsyymin ja A:n muodostama kompleksi, johon B tai sen kilpaileva inhibiittori (joka siis sitoutuu samaan kohtaan kuin B) sitoutuu. Lähinnä siis inhibition voisi olettaa olevan entsyymin ja substraatin kompleksiin kohdistuvaa, koska matemaattisen käsittelymme kannalta EA on tässä tapauksessa entsyymin ja substraatin kompleksi, kun taas edellisessä kohdassa se oli E'B.

3 d) Mikä inhibitiomekanismi tulisi c-kohdan tapauksessa kyseeseen, jos reaktion kulussa tai reaktiomekanismissa A:n ja B:n sitoutumisjärjestyksellä ei olisi väliä? Miksi? Tässä tilanteessa B ja näin ollen myös sen kanssa samasta sitoutumispaikasta kilpaileva inhibiittori voivat sitoutua myös ennen A:ta eli ennen entsyymin ja substraatin kompleksin muodostumista. Täten inhibitio olisi sekamuotoista (tai kilpailematonta eli nonkompetitiivista, jos sitoutumisvakio olisi sama ennen ja jälkeen). Tehtävä 2: Lipidikaksoiskalvon potentiaaliprofiilit Lipidikaksoiskalvossa on useita ryhmiä, joilla on varauksia tai osittaisvarauksia. Niinpä kalvon sähköistä potentiaalia kuvaava käyrä on melko monimutkainen. Oheisessa kuvassa on esitetty karkea malli kalvon eri potentiaalista. Tärkein potentiaaleista lienee transmembraanipotentiaali, johon usein viitataankin pelkällä membraani- tai kalvopotentiaalinimityksellä. Transmembraanipotentiaali aiheutuu ionien erilaisesta jakautumisesta solun sisä- ja ulkopuolen välillä ja on siis ulko- ja sisätilavuuksien potentiaalien välinen erotus. Lisäksi kalvon pinnalla voi olla varautuneita ryhmiä esim. negatiivisesti varautuneiden ryhmien vuoksi tähän viitataan pintapotentiaalinimityksellä. Nuo negatiiviset ryhmät myös rikastavat kationeja kalvon läheisyyteen, joten kauempana kalvon pinnasta ovat kationit näennäisesti neutraloineet varauksen. Koska rasvahappoketjut, esterisidokset, lipidien pääryhmät ja lipidin ja veden rajapinnan vesimolekyylit ovat kaksoiskalvoksi järjestäymisen vuoksi joutuneet eisatunnaiseen orientaatioon, on kalvolla myös ns. dipolipotentiaali, jonka muutos tapahtuu lähinnä juuri rajapinnassa. Keskimäärin kalvossa on yleensä enemmän dipolien positiivisia osittaisvarauksia suuntautuneena kalvon hydrofobiseen osaan päin ja enemmän dipolien negatiivisia osittaisvarauksia suuntautuneena vesifaasiin päin. Hahmottele karkea potentiaaliprofiili seuraavissa tapauksissa. 1) Alkutila pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama sisäpuoli on negatiivisesti varautunut eli transmembraanipotentiaali negatiivinen 2) Transmembraanipotentiaalin neutraloituminen pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama transmembraanipotentiaali = (vastaa karkeasti esim. aktiopotentiaalitilanteen yhtä vaihetta) 3) Ulkopuolelle lisätty dipoli: pian lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1) kalvon ulkopuolelle on lisätty ainetta, joka sitoutuu nopeasti kaksoiskalvon ulkopuoliseen lehdykkään, muttei vielä ole ehtinyt flip-flopin kautta tasapainottua kalvon eri lehdyköihin; tämä aine alentaa tehokkaasti dipolipotentiaalia sillä puolella kalvoa, jolla se on

4 4) Ulkopuolelle lisätty dipoli: kauan aikaa lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1) tilanteen 3) dipolipotentiaalia alentavan aineen pitoisuus kaksoiskalvon lehdyköissä on ehtinyt tasapainottua Olisiko piirtämiesi kuvien perusteella mielestäsi mahdollista, että joidenkin jänniteherkkien kanavien jännitesensorit saattaisivat aktivoitua myös tilanteessa 3? Jos olisi, niin miksi? [Kuvapohjat piirtämisen helpottamiseksi.] 1) 2) 3) 4) Kuva 1 on siis sama kuin alkutilanne. Kuvassa 2 on muuten sama tilanne, mutta transmembraanipotentiaali=. Kuvassa 3 on likimain sama transmembraanipotentiaali (pitäisi olla täsmälleen, mutta piirrokseen tuli pieni heitto) kuin kuvassa 1. Kuvan vasemmalla puolen eli solukalvon ulkopuolella on kuitenkin dipolipotentiaali pienentynyt. Kuvassa 4 puolestaan dipolipotentiaalia alentavan aineen pitoisuus kalvon eri lehdyköissä (leaflets) on ehtinyt tasoittua ja se alentaa dipolipotentiaalia molemmin puolin. Mielenkiintoista on se, että kalvon poikki kulkeva potentiaaliprofiili (joskus nimellä diffusion potential) muuttuu hyvin samalla tavalla tilanteissa 2 ja 3. Jos siis jänniteherkän kanavan jännitesensori on kalvon sisässä, niin sen liikkeiden tulisi olla samanlaisia tilanteissa 2 ja 3 ja kanavan avautumisen tulisi tapahtua samalla tavoin.on vielä epäselvää, tapahtuuko näin todella, mutta yksi kokeellinen työ tukee arviota, että lindaani-niminen hyönteismyrkky aktivoi jänniteherkkiä Ca 2+ -kanavia alentamalla dipolipotentiaalia (Silvestroni ym., 1997, Partition of the organochlorine insecticide lindane into the human sperm surface induces membrane depolarization and Ca2+ influx, Biochem. J. 321: ).

5 Tehtävä 3: Peptidiantibiootin kalvovuorovaikutukset Mene sivulle ja valitse Databases: Swiss-Prot and TrEMBL. Kirjoita hakusanaksi "magainin" kohtaan Search Swiss-Prot and TrEMBL for. Hakutulokseksi saat afrikkalaisen kynsisammakon tuottaman polypeptidin, josta sen ihon puolustukseen osallistuvia antibioottisia peptideitä pilkotaan. Vastaavia antibioottisia peptideitä on useimmilla ellei kaikilla eläimillä antibioottipeptideitä löytyy esimerkiksi ihmisen syljestä ja kyynelnesteestä. Valitse näytöltä "Magainin II copy A" ja saat antibioottipeptidi magainin II:lle kuuluvan sekvenssin väritettyä punaiseksi koko sekvenssin joukosta. Poimi sekvenssi talteen esimerkiksi Notepadiin. Toimi vastaavasti kolmikirjainlyhenteille merkityn sekvenssin osalta. Imuroi koneelle ohjelma WinPep osoitteesta ja asenna se. Asennettuasi valitse "File" "New" ja liitä Notepadista (yksikirjaiminen) aminohapposekvenssi avautuvaan sekvenssi-ikkunaan. Valitse "Analyze" ja "Physicochemical properties". Mikä on sekvenssin perusteella arvioitu isoelektrinen piste? Mitä se kertoo peptidin varauksesta ph:ssa 7,35? Isoelektriseksi pisteeksi saadaan pi=1,8, mikä tarkoittaa sitä, että se on positiivisesti varautunut ph:ssa 7,35. (Helppo muistisääntö positiivisen ja negatiivisen varautumisen suunnan muistamiseksi on se, että pienemmässä ph:ssa on enemmän protoneja H +, joista siis Le Chatelier'n periaatteen mukaisesti tarttuu suurempi määrä molekyyliin, joten se saa positiivisen varauksen, jos ph<pi. Vastaavasti tietysti varaus on negatiivinen, jos ph>pi. Voit oppikirjasta tarkistaa esim. isolektrisen fokusoinnin periaatteen.) Hae osoitteesta haluamamme hydropaattisuusasteikko. Kyseessä on Raon ja Argosin v julkaisema asteikko, joka kuvaa sitä, miten usein kyseisiä aminohappoja suhteellisesti esiintyy integraalisten membraaniproteiinien membraaniin hautautuneissa osissa. Kokeile tehdä ProtScale-ohjelman ikkunassa ko. sekvenssistä transmembraaniheeliksin etsinnässä käytetty lasku, valitse esim. Window size = 5 sivun alalaidasta. Paina "Submit". Tryptofaanin 1. kuvaa suunnilleen arvoa, jolla aminohappo tyypillisesti esiintyy lipidin ja veden välisessä rajavyöhykkeessä. Membraaniympäristössä magainin II:n tiedetään muodostavan α-heeliksin. Kun otetaan huomioon, että kalvon paksuus on n. 2 aminohapon muodostaman α-heeliksin verran, niin miten todennäköiseksi # arvioisit tuloksen perusteella sen, että yksittäinen magainin II -peptidin muodostama α-heeliksi kulkee kalvon puolelta toiselle transmembraaniheeliksinä? # Tarkkuudeksi riittää ihan hyvin mikä tahansa Stetson Harrison -menetelmän* antama tulos. *Sama kuin Stetson-menetelmä eli hatusta vetäminen, mutta Harrisonin nimi antaa lisää uskottavuutta.

6 Koska peptidin keskeltä ei löydy yhtenäistä hydrofobista aluetta, niin lienee epätodennäköistä, että se kulkisi membraanin läpi, etenkin kun hydrofobiset jaksot ovat enimmäkseen peptidin päissä. Palaa nyt WinPepiin. Valitse "Options" "Preferences" "Helical Wheel Options". Valitse Raon ja Argosin asteikon arvojen perusteella aminohapoille värit: punainen (hydrofobinen) arvoilla >1, violetti arvoilla,5 1, ja sininen arvoilla <,5. Valitse sitten "Analyze" "Helical Wheel". Lisäpisteitä voit saada tekemällä esimerkiksi Excelillä seuraavat laskut. Keskimäärin aminohappojen kulma α- heeliksissä (akselin suunnasta katsottuna) on n. 1 eli n. 3,6 aminohappoa/kierros. Tee taulukko esimerkiksi seuraavan sivun esimerkin tavalla käyttäen magainin II:n aminohapposekvenssiä ja Raon ja Argosin hydropaattisuusasteikkoa. Tee uusi sarake, jossa olet vähentänyt kokonaiset kierrokset eli kaikki kulmat palautettu välille 36 astetta (nimeksi esim. "reduced angle"). Huomaa, että =36. [Taulukon bulk angle -arvot kannattaa kirjoittaa käsin tai sitten laskea kaavalla, mutta valita sen jälkeen "copy", "paste special" ja "values" ja kopioida ne pelkkinä arvoina.] Valitse nyt otsikkoineen kokoalue taulukossa, jossa tietosi ovat. Valitse "Data", "Sort", "Sort by:" reduced angle, ascending. Näin saat aminohapot järjestykseen. Laske keskiarvo ±2 kulmista joka kulmalle, jolla on jokin aminohappo. Tee sitten kuvaaja, jossa kuvaat hydropaattisuusarvon kulman funktiona ("Insert", "Chart", "XY Scatter"). Jälleen arvo 1, kuvaa n. suunnilleen veden ja lipidin rajapinnalle tyypillistä arvoa, suuremmat hydrofobisia ja pienemmät hydrofiilisiä. Mitä arvioisit ns. helical wheel -kuvaajan ja mahdollisesti tekemäsi Excel-kuvaajan perusteella peptidin muodostaman α-heeliksin orientaatiosta ja sijainnista lipidikaksoiskalvossa? Saadaan oheinen kuva:

7 Vastaavasti Excelillä amino acid amino acid amino hydropathicity bulk angle reduced angle averaged number acid 1 G Gly E Glu F Phe F Phe S Ser F Phe A Ala I Ile I Ile G Gly L Leu V Val K Lys G Gly M Met K Lys H His G Gly K Lys K Lys N Asn A Ala S Ser

8 Magainin II hydropathicity Series Reduced angle Oheisista kuvaajista nähdään, että katsottaessa α-heeliksiä pitkin heeliksin akselia on toinen puoli α- heeliksistä jokseenkin hydrofobinen ja toinen puoli hydrofiilinen. Näin ollen tuntuisi varsin luontevalta, että yksittäisenä kalvossa ollessaan magainiini makaa ikään kuin kyljellään. Olisiko muunlainen orientaatio/järjestäytyminen kenties mahdollinen, jos kalvossa on paljon peptideitä? Miten tällainen järjestäytyminen saattaisi selittää peptidin soluja tappavan vaikutuksen? Yksi mahdollisuus olisi, että magainiinien α-heeliksit kääntyvät transmembraaniheelikseiksi siten, että polaariset ovat suuntautuneet lipideistä poispäin muodostaen reiän kalvoon. Tämä johtaisi hypoosmoottisissa olosuhteissa solun hajoamiseen veden virratessa solun sisään, hyperosmoottisissa oloissa solu taas kuivuisi ja kaikissa olosuhteissa menettäisi ravinteita. Huomautettakoon, etät magainiinin varsinaisesta toimintamekanismista on eri näkymyksiä, joista tämä reikämalli on vain yksi eikä edes suosituin tätä nykyä. amino acid number amino acid amino acid hydropathicity bulk angle 1 G Gly I Ile G Gly K Lys F Phe L Leu H His S Ser A Ala jne. jne. jne. jne. jne.

9 Tehtävä 4: Aineiden kuljetus solukalvon puolelta toiselle Yksi solukalvon keskeisistä rooleista on diffuusion esteenä toimiminen eli solun rajaaminen. Joitakin aineita halutaan kuitenkin päästää solun kalvon läpi. Niinpä solukalvossa on mm. passiivisia kanavaproteiineja, jotka päästävät valikoivasti aineita soluun, ja aktiivisia pumppuja, jotka kemiallista sidosenergiaa hyödyntäen synnyttävät pitoisuusgradientteja. (Lue esim. Lehningerin luvut 12 ja 14.) Pumppuja voi periaatteessa tarkastella entsyymeinä, jotka kytkevät energeettisesti hyvin epäedullisen reaktion (eli nettosiirtymisen pitoisuusgradienttia vastaan) energeettisesti hyvin edulliseen reaktioon (esim. ATP:n hydrolyysi ADP:ksi ja PO ioniksi) ja tehden kokonaisreaktiosta näin energeettisesti edullisen. Ajatellaan seuraavaksi pelkästään aineen siirtymistä kalvon puolelta toiselle. Lehningerissä annetaan reaktioiden yleiseksi vapaaenergian muutokseksi G= G' +RTln([P]/[S]), missä G' on standardiolojen vapaaenergian ero tuotteelle ja lähtöaineelle, R on yleinen kaasuvakio, T on lämpötila absoluuttisella asteikolla ja [P] ja [S] ovat tuotteen ja lähtöaineen pitoisuudet tässä järjestyksessä. Koska kalvon puolelta toiselle pumppaamisessa ei itse molekyyli muutu (eivätkä tietenkään määritellyt standardiolosuhteet muutu) ja ennen kaikkea koska siis K=1, on G' =. Toisaalta reaktion tuote on esimerkiksi aineita soluun sisään kuljetettaessa sisällä oleva molekyyli ja lähtöaine ulkona oleva molekyyli. Näin ollen päästään varauksettomien molekyylien tapauksessa Lehningerissä (ja muissa biokemian kirjoissa) mainittuun muotoon G=RTln(c s /c u ). a) Miten suuri konsentraatiosuhde olisi mahdollista saavuttaa 1 %:n hyötysuhteella pumpulle, joka pumppaa yhden varauksettoman molekyylin solun sisään yhden ATP:n fosfodiesterisidoksen hydrolyysienergiaa hyödyntäen? ATP:n hydrolyysille tyypillisissä solunsisäisissä olosuhteissa G = -51,8 kj/mol, kuten Lehningerissä kerrotaan. Entä mikä olisi tulos 2 %:n hyötysuhteella? Yhteen kytketyissä reaktioissa uuden reaktion täytyy olla spontaani, jotta sitä tapahtuisi. Ts. ATP:n hajoamiseen liittyvän vapaaenergian G ATP ja pumppaamiseen käytettävän vapaaenergian G PUMP tulee toteuttaa ehto G KOK = G ATP + G PUMP. Jos hyötysuhde η otetaan vielä huomioon, niin saadaan G KOK =η G ATP + G PUMP ja rajatapauksena siis η G ATP + G PUMP = eli G PUMP =-η G ATP. Toisaalta G PUMP =RTln(c s /c u ), joten η G ATP cs RT = e c u G ATP =-518 J/mol, R=8,31 J/(mol K) ja olkoon T=31 K (37 ºC). Kun η=1, on c s /c u =5,4 1 8, ja kun η=,2, on c s /c u =55,8. Jos kyseessä on varauksellinen yhdiste, niin asia on monimutkaisempi. Lukiossa fysiikkaa ja/tai kemiaa lukeneille lienee tuttua, että varauksellisen yhdisteen siirtyessä potentiaalista toiseen siirtymiseen liittyy energian muutos. Toisaalta varaukset luovat ympärilleen potentiaalienergiakentän. Potentiaali V=E p /Q eli potentiaalienergia jaettuna varauksella. Jotta saataisiin ionien potentiaalista toiseen liittyvä energia, täytyy siis potentiaaliero kertoa siirtyvällä varauksella, joka yleensä lasketaan moolia kohti, ts. E p =UQ=zFU, missä z=ionin valenssi ja F on Faradayn vakio 96485,31 C/mol (eli N A alkeisvarausta). Näin ollen saadaan ionin siirtymiselle kalvon puolelta toiselle G=RTln(c s /c u )+zfu, missä U on potentiaaliero sisä- ja ulkopuolen välillä. Mainittakoon, että tasapainossa tietenkin G= ja niinpä tasapainossa zfu=-rt ln(c s /c u )=RT ln(c u /c s ) eli

10 RT c U = ln zf c u s Tämä on Nernstin yhtälö, jota käytetään huomattavan paljon membraanipotentiaalin yhteydessä, koska tietenkin membraanipotentiaali=u. Tästä enemmän fysiologian tai sähkökemian kursseilla. Karkeana solukalvon mallina voidaan toisaalta pitää levykapasitaattoria, jossa kapasitaattorin pinta-ala on solun pinta-ala ja kalvon hiilivedylle ε r =2. Levykondensaattorin kapasitanssi C on C=ε ε r A/d, missä A siis on solun pinta-ala ja d on solukalvon paksuus. Laskua varten ajattele solu palloksi, jonka säde r=5 µm. Solukalvon paksuudeksi d voidaan ottaa esim. 3 nm. Ulkopuolen tilavuuden voi olettaa niin suureksi, ettei sen ionikonsentraatio muutu. Siis c u =vakio. Olkoot ionit monovalentteja eli z=1. Kondensaattorille C=Q/U, missä U on jälleen potentiaaliero, Q on varaus ja C=kapasitanssi. Varaus Q=(c s -c u )zfv, missä V=solun tilavuus. b) Johda näitä yksinkertaistavia likiarvoistuksia käyttäen lauseke vapaaenergian muutokselle sisällä olevan ionipitoisuuden funktiona. Kannattaa laskea välivaiheet numeerisesti (esim. kapasitanssilla arvo). Yhtälö on edelleen melko hankalaa muotoa suoraan ratkaistavaksi, joten voit tehdä esim. Excelillä kuvaajan, jossa kuvaat G:n c s /c u :n funktiona sopivin välein. Ellet osaa kopioida lausekkeita Excelissä ja luoda c s :lle arvoja Excelin kaavojen avulla (esim. arvo sarakkeessa A2=A1+1), niin pyydä apua esim. osoitteesta Määritä piirtämältäsi kuvaajalta, millä arvolla nyt saavutetaan a-kohdan 2 ja 1 %:n hyötysuhdetta vastaava arvo. Kannattaa tehdä kaavat, joihin voit helposti muuttaa c u :n arvoa. 1º Olkoon c u =1-2 M. 2º Olkoon c u =1-7 M. Ensimmäinen vastaa lähinnä solunulkoisen K + :n ja jälkimmäinen [H + ]:n (tai [H 3 O + ]:n) pitoisuutta. Miten arvioisit eri pumppujen kykyä synnyttää gradientteja tällaisissa oloissa? Entä mikä on c s -c u näille tilanteille? Miten selität eron? Johtaminen: Oletetaan, että solun ulkopuolinen tila on niin paljon suurempi, että pitoisuus siellä pysyy vakiona riippumatta siitä, miten paljon solu pumppaa ioneita sisäänsä. Varaukselle toisaalta Q=(c s -c u )zfv ja toisaalta U=Q/C, joten G=RTln(c s /c u )+zfu= RTln(c s /c u )+zfq/c= RTln(c s /c u )+zf(c s -c u )zfv/c= RTln(c s /c u )+(zf) 2 (c s -c u )V/C, missä pallon tilavuus V=4/3 πr 3 ja C=ε ε r A/d, joten G= RTln(c s /c u )+4(zF) 2 (c s -c u )πr 3 d/(3ε ε r A). Toisaalta tässä pallon ala A=4πr 2, joten cs 4( zf) ( cs cu ) πr d cs ( zf) ( cs cu ) rd G = RT ln RT ln 2 c + = + u 3ε ε r 4πr c u 3ε ε r Jo kaavan muodosta nähdään, että termien keskinäinen suhteellinen riippuvuus on erilainen, kun c u ja c s ovat erilaiset.

11 Kohta 1 delta G cs/cu Kohta delta G cs/cu Kuvissa y-akselilla G yksiköissä kj/mol ja x-akselilla c s /c u. Koska varaus on paljon tärkeämpi määräävä tekijä kuin sinänsä pitoisuusero, määrää c s -c u funktion suuruuden. Näin ollen on c s /c u paljon suurempi samalla G:n arvolla, jos c u on pienempi. Mikäli varausta ei neutraloi jokin muu ioni (esim. Na + ulkopuolella ja K + sisäpuolella) eli jos pumppu joutuu pumppaamalla kasvattamaan transmembraanipotentiaalia, niin se ei siihen kovin hyvin pysty. c) Mitä tapahtuu, jos ioneja pumppaava pumppu joutuu (kaikkien pumpun kannalta olennaisten reaktanttien ollessa läsnä) ionigradienttiin, joka vastaa suurempaa energiaa kuin ATP ADP+P i reaktion vapaaenergia? Periaatteessa pumppukin on luonteeltaan entsyymi, joten se ei vaikuta reaktion tasapainoon. Näin ollen reaktio alkaa kulkea toiseen suuntaan. Mitokondrioiden sisäkalvolla aerobisen eli happea hyväksi käyttävän aineenvaihdunnan varsinainen ATP:n tuotanto perustuu osaltaan tällaiseen ilmiöön. Elektroninsiirtoketju tuottaa noin kahden yksikön ph-gradientin eli n. 1-kertaisen H + -konsentraation kalvon toiselle puolelle. Kalvossa oleva ATP-syntaasi eli H + -ATPaasi katalysoi reaktion, jossa protoni siirtyy kalvon poikki ja samalla ADP:sta ja P i :sta syntetisoidaan ATP:ia. Jos olosuhteet ovat toiset

12 (lähinnä siis keinotekoisissa systeemeissä), niin kyseinen pumppu käyttääkin ATP:ia pumpatakseen protoneita. (Jos vertaat kuvaan 2, niin huomaa, että 51,8 kj/mol perustuu solun sytoplasmassa oleviin ATP:n, ADP:n ja P i :n pitoisuuksiin ja että vastaava suhde 149 perustuu oletukseen ph-arvosta 7 (mitokondrioissa 6 ja 4) ja mitokondrion kokoa suurempaan 5 µm:n säteeseen.)

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia)

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) Elämän edellytykset: Solun täytyy pystyä (a) replikoitumaan (B) katalysoimaan tarvitsemiaan reaktioita tehokkaasti ja selektiivisesti eli sillä on oltava

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Henkilötunnus - Biokemian/bioteknologian valintakoe. Sukunimi Etunimet Tehtävä 1 Pisteet / 20

Henkilötunnus - Biokemian/bioteknologian valintakoe. Sukunimi Etunimet Tehtävä 1 Pisteet / 20 elsingin yliopisto/tampereen yliopisto enkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24. 5. 2004 Etunimet Tehtävä 1 Pisteet / 20 Solujen kalvorakenteet rajaavat solut niiden ulkoisesta ympäristöstä

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on:

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on: Esimerkki Pourbaix-piirroksen laatimisesta Laadi Pourbaix-piirros, jossa on esitetty metallisen ja ionisen raudan sekä raudan oksidien stabiilisuusalueet vesiliuoksessa 5 C:een lämpötilassa. Ratkaisu Tarkastellaan

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Projektityö M12. Johdanto

Projektityö M12. Johdanto Projektityö M12 Johdanto Projektityö sisältää kuutta tehtävää, kuitenkin ne kaikki koskevat saman yhtälön ratkaisua. Yhtälö on sin x 2 =e 2x (1.1) Sen ratkaisu voidaan käsitellä tutkimalla funktio y=e

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20 Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24.5.2006 Etunimet Tehtävä 5 Pisteet / 20 Glukoosidehydrogenaasientsyymi katalysoi glukoosin oksidaatiota

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3] Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.3.06 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin.

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3. Yhtälöt Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3.1 Ensimmäisen asteen yhtälöt Ratkaise yhtälö. 3 x ( x 3) 4x 5 Kirjoita tehtävä sellaisenaan, maalaa se ja käytä Interactive

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi HARJOITUKSET II 1. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. a) Mitä tarkoitetaan biopolymeerilla? Mihin kolmeen ryhmään biopolymeerit voidaan jakaa? (1,5 p) Biopolymeerit ovat luonnossa esiintyviä / elävien solujen muodostamia polymeerejä / makromolekyylejä.

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

= = = 1 3.

= = = 1 3. 9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

Luku 8. Reaktiokinetiikka

Luku 8. Reaktiokinetiikka Luku 8 Reaktiokinetiikka 234 8.1 Reaktion nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista

Lisätiedot

4.3 Kehäkulma. Keskuskulma

4.3 Kehäkulma. Keskuskulma 4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

7A.2 Ylihienosilppouma

7A.2 Ylihienosilppouma 7A.2 Ylihienosilppouma Vetyatomin perustilan kentän fotoni on λ 0 = 91,12670537 nm, jonka taajuus on f o = 3,289841949. 10 15 1/s. Tämä spektriviiva on kaksoisviiva, joiden ero on taajuuksina mitattuna

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot