Laskuharjoitus 3 palautus mennessä

Koko: px
Aloita esitys sivulta:

Download "Laskuharjoitus 3 palautus 11. 11. 2003 mennessä"

Transkriptio

1 Laskuharjoitus 3 palautus mennessä Tehtävä 1: Entsyymikinetiikkaa Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): 1. A:n sitoutuminen saa konformaatiossa aikaan muutoksen, joka mahdollistaa B:n sitoutumisen. 2. A:n sitouduttua B voi sitoutua ja sitoutuu. 3. A ja B muuttuvat entsyymin katalysoimassa reaktiossa P:ksi ja Q:ksi. 4. P ja Q irtoavat entsyymistä. Koska entsyymi katalysoi kahden substraatin reaktiota, ei se kaikissa oloissa noudata Michaelisin ja Mentenin kinetiikkaa. Kuitenkin pitämällä A:n konsentraatiota vakiona ja vaihtelemalla B:n konsentraatiota voimme approksimaationa käyttää Michaelisin ja Mentenin yhtälöä v [ S] [ S] = vmax, K M + kun asetamme, että [S]=[B]. a) Edellä mainitussa mittausjärjestelyssä saimme seuraavat tulokset: [B] /mm 1/[B] /mm -1 v /(mms -1 ) 1/v /(mm -1 s) 1, 1, 4,9,24 1,5,67 6,5,154 2,,5 8,5,118 3,,33 11,9,84 5,,2 16,5,61 1,1 23,7,42 2,5 3,8,32 Määritä K M ja v max. b) Kun inhibiittoria I oli läsnä vakiokonsentraatio [I], niin saatiin seuraavat tulokset: [B] /mm 1/[B] /mm -1 v /(mms -1 ) 1/v /(mm -1 s) 1, 1, 3,2,313 1,5,67 4,5,222 2,,5 5,9,169 3,,33 8,2,122 5,,2 12,1,83 1,1 18,8,53 2,5 25,6,39

2 Onko inhibitio kilpailevaa, kilpailematonta (eli sekamuotoista) vai entsyymin ja substraatin kompleksiin kohdistuvaa? VASTAUS a)+b) y =.2899x /v y =.1842x ilman inhibiittoria inhibiittorin kera Linear (ilman inhibiittoria) Linear (inhibiittorin kera) /[S] Tehdään esim. Excelillä tai laskimen yms. avulla suoran sovitus pienimmän neliösumman menetelmää käyttäen. Sovitusta varten tiedot tulee piirtää 1/v vs. 1/[S] -koordinaatistoon. Tämä johtuu siitä, että näin saada linearisoitua Michaelisin ja Mentenin yhtälö. [ S] v = vmax K S M + [ ] Siis 1/v =K M /v max 1/[S] +1/v max. Kun y-akselilla on 1/v ja x-akselilla 1/[S], on siis yhtälö muotoa y=k M /v max x+1/v max, missä 1/v max on vakiotermi ja K M /v max on kulmakerroin. Näin saadaan selvitettyä sovituksen tulosten avulla vakiosta v max ja edelleen kulmakertoimesta K M /v max K M -arvo, jotka siis ilman inhibiittoria ovat 41 mm/s ja 7,6 mm ja inhibiittorin kera 4 mm/s ja 11,6 mm. Kuvaajasta nähdään, että suorien leikkauspiste on likimain y-akselilla annettujen arvojen tarkkuuden puitteissa, kun taas kulmakerroin on selvästi eri. Kyseessä on siis todennäköisesti yksinkertainen kilpaileva inhibitio. c) Olisiko inhibitiomekanismi sama, jos meillä olisi mittauksessamme vakiokonsentraatio B:tä ja vaihtelisimme A:n konsentraatiota (siis olisi [S]=[A]) ja jos käyttäisimme samaa inhibiittoria I? Mikä se olisi ellei se olisi sama ja miksi? Edellisessä tapauksessa tilanne oli: EA=E' eli entsyyminä toimii entsyymin ja A:n kompleksi ja lisäksi B=S. Siis E'+S<=>E'S E+P. Inhibiittori siis kilpaili B:n kanssa. Toisaalta A:n ollessa valitsemamme substraatti eli substraatti, jonka suhteen työskentelemme, ei B:n kilpaileva inhibiittori kilpaile sen kanssa. Käytännössä siis nyt A=S ja E+S<=>ES E+P, missä ES on siis entsyymin ja A:n muodostama kompleksi, johon B tai sen kilpaileva inhibiittori (joka siis sitoutuu samaan kohtaan kuin B) sitoutuu. Lähinnä siis inhibition voisi olettaa olevan entsyymin ja substraatin kompleksiin kohdistuvaa, koska matemaattisen käsittelymme kannalta EA on tässä tapauksessa entsyymin ja substraatin kompleksi, kun taas edellisessä kohdassa se oli E'B.

3 d) Mikä inhibitiomekanismi tulisi c-kohdan tapauksessa kyseeseen, jos reaktion kulussa tai reaktiomekanismissa A:n ja B:n sitoutumisjärjestyksellä ei olisi väliä? Miksi? Tässä tilanteessa B ja näin ollen myös sen kanssa samasta sitoutumispaikasta kilpaileva inhibiittori voivat sitoutua myös ennen A:ta eli ennen entsyymin ja substraatin kompleksin muodostumista. Täten inhibitio olisi sekamuotoista (tai kilpailematonta eli nonkompetitiivista, jos sitoutumisvakio olisi sama ennen ja jälkeen). Tehtävä 2: Lipidikaksoiskalvon potentiaaliprofiilit Lipidikaksoiskalvossa on useita ryhmiä, joilla on varauksia tai osittaisvarauksia. Niinpä kalvon sähköistä potentiaalia kuvaava käyrä on melko monimutkainen. Oheisessa kuvassa on esitetty karkea malli kalvon eri potentiaalista. Tärkein potentiaaleista lienee transmembraanipotentiaali, johon usein viitataankin pelkällä membraani- tai kalvopotentiaalinimityksellä. Transmembraanipotentiaali aiheutuu ionien erilaisesta jakautumisesta solun sisä- ja ulkopuolen välillä ja on siis ulko- ja sisätilavuuksien potentiaalien välinen erotus. Lisäksi kalvon pinnalla voi olla varautuneita ryhmiä esim. negatiivisesti varautuneiden ryhmien vuoksi tähän viitataan pintapotentiaalinimityksellä. Nuo negatiiviset ryhmät myös rikastavat kationeja kalvon läheisyyteen, joten kauempana kalvon pinnasta ovat kationit näennäisesti neutraloineet varauksen. Koska rasvahappoketjut, esterisidokset, lipidien pääryhmät ja lipidin ja veden rajapinnan vesimolekyylit ovat kaksoiskalvoksi järjestäymisen vuoksi joutuneet eisatunnaiseen orientaatioon, on kalvolla myös ns. dipolipotentiaali, jonka muutos tapahtuu lähinnä juuri rajapinnassa. Keskimäärin kalvossa on yleensä enemmän dipolien positiivisia osittaisvarauksia suuntautuneena kalvon hydrofobiseen osaan päin ja enemmän dipolien negatiivisia osittaisvarauksia suuntautuneena vesifaasiin päin. Hahmottele karkea potentiaaliprofiili seuraavissa tapauksissa. 1) Alkutila pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama sisäpuoli on negatiivisesti varautunut eli transmembraanipotentiaali negatiivinen 2) Transmembraanipotentiaalin neutraloituminen pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama transmembraanipotentiaali = (vastaa karkeasti esim. aktiopotentiaalitilanteen yhtä vaihetta) 3) Ulkopuolelle lisätty dipoli: pian lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1) kalvon ulkopuolelle on lisätty ainetta, joka sitoutuu nopeasti kaksoiskalvon ulkopuoliseen lehdykkään, muttei vielä ole ehtinyt flip-flopin kautta tasapainottua kalvon eri lehdyköihin; tämä aine alentaa tehokkaasti dipolipotentiaalia sillä puolella kalvoa, jolla se on

4 4) Ulkopuolelle lisätty dipoli: kauan aikaa lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1) tilanteen 3) dipolipotentiaalia alentavan aineen pitoisuus kaksoiskalvon lehdyköissä on ehtinyt tasapainottua Olisiko piirtämiesi kuvien perusteella mielestäsi mahdollista, että joidenkin jänniteherkkien kanavien jännitesensorit saattaisivat aktivoitua myös tilanteessa 3? Jos olisi, niin miksi? [Kuvapohjat piirtämisen helpottamiseksi.] 1) 2) 3) 4) Kuva 1 on siis sama kuin alkutilanne. Kuvassa 2 on muuten sama tilanne, mutta transmembraanipotentiaali=. Kuvassa 3 on likimain sama transmembraanipotentiaali (pitäisi olla täsmälleen, mutta piirrokseen tuli pieni heitto) kuin kuvassa 1. Kuvan vasemmalla puolen eli solukalvon ulkopuolella on kuitenkin dipolipotentiaali pienentynyt. Kuvassa 4 puolestaan dipolipotentiaalia alentavan aineen pitoisuus kalvon eri lehdyköissä (leaflets) on ehtinyt tasoittua ja se alentaa dipolipotentiaalia molemmin puolin. Mielenkiintoista on se, että kalvon poikki kulkeva potentiaaliprofiili (joskus nimellä diffusion potential) muuttuu hyvin samalla tavalla tilanteissa 2 ja 3. Jos siis jänniteherkän kanavan jännitesensori on kalvon sisässä, niin sen liikkeiden tulisi olla samanlaisia tilanteissa 2 ja 3 ja kanavan avautumisen tulisi tapahtua samalla tavoin.on vielä epäselvää, tapahtuuko näin todella, mutta yksi kokeellinen työ tukee arviota, että lindaani-niminen hyönteismyrkky aktivoi jänniteherkkiä Ca 2+ -kanavia alentamalla dipolipotentiaalia (Silvestroni ym., 1997, Partition of the organochlorine insecticide lindane into the human sperm surface induces membrane depolarization and Ca2+ influx, Biochem. J. 321: ).

5 Tehtävä 3: Peptidiantibiootin kalvovuorovaikutukset Mene sivulle ja valitse Databases: Swiss-Prot and TrEMBL. Kirjoita hakusanaksi "magainin" kohtaan Search Swiss-Prot and TrEMBL for. Hakutulokseksi saat afrikkalaisen kynsisammakon tuottaman polypeptidin, josta sen ihon puolustukseen osallistuvia antibioottisia peptideitä pilkotaan. Vastaavia antibioottisia peptideitä on useimmilla ellei kaikilla eläimillä antibioottipeptideitä löytyy esimerkiksi ihmisen syljestä ja kyynelnesteestä. Valitse näytöltä "Magainin II copy A" ja saat antibioottipeptidi magainin II:lle kuuluvan sekvenssin väritettyä punaiseksi koko sekvenssin joukosta. Poimi sekvenssi talteen esimerkiksi Notepadiin. Toimi vastaavasti kolmikirjainlyhenteille merkityn sekvenssin osalta. Imuroi koneelle ohjelma WinPep osoitteesta ja asenna se. Asennettuasi valitse "File" "New" ja liitä Notepadista (yksikirjaiminen) aminohapposekvenssi avautuvaan sekvenssi-ikkunaan. Valitse "Analyze" ja "Physicochemical properties". Mikä on sekvenssin perusteella arvioitu isoelektrinen piste? Mitä se kertoo peptidin varauksesta ph:ssa 7,35? Isoelektriseksi pisteeksi saadaan pi=1,8, mikä tarkoittaa sitä, että se on positiivisesti varautunut ph:ssa 7,35. (Helppo muistisääntö positiivisen ja negatiivisen varautumisen suunnan muistamiseksi on se, että pienemmässä ph:ssa on enemmän protoneja H +, joista siis Le Chatelier'n periaatteen mukaisesti tarttuu suurempi määrä molekyyliin, joten se saa positiivisen varauksen, jos ph<pi. Vastaavasti tietysti varaus on negatiivinen, jos ph>pi. Voit oppikirjasta tarkistaa esim. isolektrisen fokusoinnin periaatteen.) Hae osoitteesta haluamamme hydropaattisuusasteikko. Kyseessä on Raon ja Argosin v julkaisema asteikko, joka kuvaa sitä, miten usein kyseisiä aminohappoja suhteellisesti esiintyy integraalisten membraaniproteiinien membraaniin hautautuneissa osissa. Kokeile tehdä ProtScale-ohjelman ikkunassa ko. sekvenssistä transmembraaniheeliksin etsinnässä käytetty lasku, valitse esim. Window size = 5 sivun alalaidasta. Paina "Submit". Tryptofaanin 1. kuvaa suunnilleen arvoa, jolla aminohappo tyypillisesti esiintyy lipidin ja veden välisessä rajavyöhykkeessä. Membraaniympäristössä magainin II:n tiedetään muodostavan α-heeliksin. Kun otetaan huomioon, että kalvon paksuus on n. 2 aminohapon muodostaman α-heeliksin verran, niin miten todennäköiseksi # arvioisit tuloksen perusteella sen, että yksittäinen magainin II -peptidin muodostama α-heeliksi kulkee kalvon puolelta toiselle transmembraaniheeliksinä? # Tarkkuudeksi riittää ihan hyvin mikä tahansa Stetson Harrison -menetelmän* antama tulos. *Sama kuin Stetson-menetelmä eli hatusta vetäminen, mutta Harrisonin nimi antaa lisää uskottavuutta.

6 Koska peptidin keskeltä ei löydy yhtenäistä hydrofobista aluetta, niin lienee epätodennäköistä, että se kulkisi membraanin läpi, etenkin kun hydrofobiset jaksot ovat enimmäkseen peptidin päissä. Palaa nyt WinPepiin. Valitse "Options" "Preferences" "Helical Wheel Options". Valitse Raon ja Argosin asteikon arvojen perusteella aminohapoille värit: punainen (hydrofobinen) arvoilla >1, violetti arvoilla,5 1, ja sininen arvoilla <,5. Valitse sitten "Analyze" "Helical Wheel". Lisäpisteitä voit saada tekemällä esimerkiksi Excelillä seuraavat laskut. Keskimäärin aminohappojen kulma α- heeliksissä (akselin suunnasta katsottuna) on n. 1 eli n. 3,6 aminohappoa/kierros. Tee taulukko esimerkiksi seuraavan sivun esimerkin tavalla käyttäen magainin II:n aminohapposekvenssiä ja Raon ja Argosin hydropaattisuusasteikkoa. Tee uusi sarake, jossa olet vähentänyt kokonaiset kierrokset eli kaikki kulmat palautettu välille 36 astetta (nimeksi esim. "reduced angle"). Huomaa, että =36. [Taulukon bulk angle -arvot kannattaa kirjoittaa käsin tai sitten laskea kaavalla, mutta valita sen jälkeen "copy", "paste special" ja "values" ja kopioida ne pelkkinä arvoina.] Valitse nyt otsikkoineen kokoalue taulukossa, jossa tietosi ovat. Valitse "Data", "Sort", "Sort by:" reduced angle, ascending. Näin saat aminohapot järjestykseen. Laske keskiarvo ±2 kulmista joka kulmalle, jolla on jokin aminohappo. Tee sitten kuvaaja, jossa kuvaat hydropaattisuusarvon kulman funktiona ("Insert", "Chart", "XY Scatter"). Jälleen arvo 1, kuvaa n. suunnilleen veden ja lipidin rajapinnalle tyypillistä arvoa, suuremmat hydrofobisia ja pienemmät hydrofiilisiä. Mitä arvioisit ns. helical wheel -kuvaajan ja mahdollisesti tekemäsi Excel-kuvaajan perusteella peptidin muodostaman α-heeliksin orientaatiosta ja sijainnista lipidikaksoiskalvossa? Saadaan oheinen kuva:

7 Vastaavasti Excelillä amino acid amino acid amino hydropathicity bulk angle reduced angle averaged number acid 1 G Gly E Glu F Phe F Phe S Ser F Phe A Ala I Ile I Ile G Gly L Leu V Val K Lys G Gly M Met K Lys H His G Gly K Lys K Lys N Asn A Ala S Ser

8 Magainin II hydropathicity Series Reduced angle Oheisista kuvaajista nähdään, että katsottaessa α-heeliksiä pitkin heeliksin akselia on toinen puoli α- heeliksistä jokseenkin hydrofobinen ja toinen puoli hydrofiilinen. Näin ollen tuntuisi varsin luontevalta, että yksittäisenä kalvossa ollessaan magainiini makaa ikään kuin kyljellään. Olisiko muunlainen orientaatio/järjestäytyminen kenties mahdollinen, jos kalvossa on paljon peptideitä? Miten tällainen järjestäytyminen saattaisi selittää peptidin soluja tappavan vaikutuksen? Yksi mahdollisuus olisi, että magainiinien α-heeliksit kääntyvät transmembraaniheelikseiksi siten, että polaariset ovat suuntautuneet lipideistä poispäin muodostaen reiän kalvoon. Tämä johtaisi hypoosmoottisissa olosuhteissa solun hajoamiseen veden virratessa solun sisään, hyperosmoottisissa oloissa solu taas kuivuisi ja kaikissa olosuhteissa menettäisi ravinteita. Huomautettakoon, etät magainiinin varsinaisesta toimintamekanismista on eri näkymyksiä, joista tämä reikämalli on vain yksi eikä edes suosituin tätä nykyä. amino acid number amino acid amino acid hydropathicity bulk angle 1 G Gly I Ile G Gly K Lys F Phe L Leu H His S Ser A Ala jne. jne. jne. jne. jne.

9 Tehtävä 4: Aineiden kuljetus solukalvon puolelta toiselle Yksi solukalvon keskeisistä rooleista on diffuusion esteenä toimiminen eli solun rajaaminen. Joitakin aineita halutaan kuitenkin päästää solun kalvon läpi. Niinpä solukalvossa on mm. passiivisia kanavaproteiineja, jotka päästävät valikoivasti aineita soluun, ja aktiivisia pumppuja, jotka kemiallista sidosenergiaa hyödyntäen synnyttävät pitoisuusgradientteja. (Lue esim. Lehningerin luvut 12 ja 14.) Pumppuja voi periaatteessa tarkastella entsyymeinä, jotka kytkevät energeettisesti hyvin epäedullisen reaktion (eli nettosiirtymisen pitoisuusgradienttia vastaan) energeettisesti hyvin edulliseen reaktioon (esim. ATP:n hydrolyysi ADP:ksi ja PO ioniksi) ja tehden kokonaisreaktiosta näin energeettisesti edullisen. Ajatellaan seuraavaksi pelkästään aineen siirtymistä kalvon puolelta toiselle. Lehningerissä annetaan reaktioiden yleiseksi vapaaenergian muutokseksi G= G' +RTln([P]/[S]), missä G' on standardiolojen vapaaenergian ero tuotteelle ja lähtöaineelle, R on yleinen kaasuvakio, T on lämpötila absoluuttisella asteikolla ja [P] ja [S] ovat tuotteen ja lähtöaineen pitoisuudet tässä järjestyksessä. Koska kalvon puolelta toiselle pumppaamisessa ei itse molekyyli muutu (eivätkä tietenkään määritellyt standardiolosuhteet muutu) ja ennen kaikkea koska siis K=1, on G' =. Toisaalta reaktion tuote on esimerkiksi aineita soluun sisään kuljetettaessa sisällä oleva molekyyli ja lähtöaine ulkona oleva molekyyli. Näin ollen päästään varauksettomien molekyylien tapauksessa Lehningerissä (ja muissa biokemian kirjoissa) mainittuun muotoon G=RTln(c s /c u ). a) Miten suuri konsentraatiosuhde olisi mahdollista saavuttaa 1 %:n hyötysuhteella pumpulle, joka pumppaa yhden varauksettoman molekyylin solun sisään yhden ATP:n fosfodiesterisidoksen hydrolyysienergiaa hyödyntäen? ATP:n hydrolyysille tyypillisissä solunsisäisissä olosuhteissa G = -51,8 kj/mol, kuten Lehningerissä kerrotaan. Entä mikä olisi tulos 2 %:n hyötysuhteella? Yhteen kytketyissä reaktioissa uuden reaktion täytyy olla spontaani, jotta sitä tapahtuisi. Ts. ATP:n hajoamiseen liittyvän vapaaenergian G ATP ja pumppaamiseen käytettävän vapaaenergian G PUMP tulee toteuttaa ehto G KOK = G ATP + G PUMP. Jos hyötysuhde η otetaan vielä huomioon, niin saadaan G KOK =η G ATP + G PUMP ja rajatapauksena siis η G ATP + G PUMP = eli G PUMP =-η G ATP. Toisaalta G PUMP =RTln(c s /c u ), joten η G ATP cs RT = e c u G ATP =-518 J/mol, R=8,31 J/(mol K) ja olkoon T=31 K (37 ºC). Kun η=1, on c s /c u =5,4 1 8, ja kun η=,2, on c s /c u =55,8. Jos kyseessä on varauksellinen yhdiste, niin asia on monimutkaisempi. Lukiossa fysiikkaa ja/tai kemiaa lukeneille lienee tuttua, että varauksellisen yhdisteen siirtyessä potentiaalista toiseen siirtymiseen liittyy energian muutos. Toisaalta varaukset luovat ympärilleen potentiaalienergiakentän. Potentiaali V=E p /Q eli potentiaalienergia jaettuna varauksella. Jotta saataisiin ionien potentiaalista toiseen liittyvä energia, täytyy siis potentiaaliero kertoa siirtyvällä varauksella, joka yleensä lasketaan moolia kohti, ts. E p =UQ=zFU, missä z=ionin valenssi ja F on Faradayn vakio 96485,31 C/mol (eli N A alkeisvarausta). Näin ollen saadaan ionin siirtymiselle kalvon puolelta toiselle G=RTln(c s /c u )+zfu, missä U on potentiaaliero sisä- ja ulkopuolen välillä. Mainittakoon, että tasapainossa tietenkin G= ja niinpä tasapainossa zfu=-rt ln(c s /c u )=RT ln(c u /c s ) eli

10 RT c U = ln zf c u s Tämä on Nernstin yhtälö, jota käytetään huomattavan paljon membraanipotentiaalin yhteydessä, koska tietenkin membraanipotentiaali=u. Tästä enemmän fysiologian tai sähkökemian kursseilla. Karkeana solukalvon mallina voidaan toisaalta pitää levykapasitaattoria, jossa kapasitaattorin pinta-ala on solun pinta-ala ja kalvon hiilivedylle ε r =2. Levykondensaattorin kapasitanssi C on C=ε ε r A/d, missä A siis on solun pinta-ala ja d on solukalvon paksuus. Laskua varten ajattele solu palloksi, jonka säde r=5 µm. Solukalvon paksuudeksi d voidaan ottaa esim. 3 nm. Ulkopuolen tilavuuden voi olettaa niin suureksi, ettei sen ionikonsentraatio muutu. Siis c u =vakio. Olkoot ionit monovalentteja eli z=1. Kondensaattorille C=Q/U, missä U on jälleen potentiaaliero, Q on varaus ja C=kapasitanssi. Varaus Q=(c s -c u )zfv, missä V=solun tilavuus. b) Johda näitä yksinkertaistavia likiarvoistuksia käyttäen lauseke vapaaenergian muutokselle sisällä olevan ionipitoisuuden funktiona. Kannattaa laskea välivaiheet numeerisesti (esim. kapasitanssilla arvo). Yhtälö on edelleen melko hankalaa muotoa suoraan ratkaistavaksi, joten voit tehdä esim. Excelillä kuvaajan, jossa kuvaat G:n c s /c u :n funktiona sopivin välein. Ellet osaa kopioida lausekkeita Excelissä ja luoda c s :lle arvoja Excelin kaavojen avulla (esim. arvo sarakkeessa A2=A1+1), niin pyydä apua esim. osoitteesta Määritä piirtämältäsi kuvaajalta, millä arvolla nyt saavutetaan a-kohdan 2 ja 1 %:n hyötysuhdetta vastaava arvo. Kannattaa tehdä kaavat, joihin voit helposti muuttaa c u :n arvoa. 1º Olkoon c u =1-2 M. 2º Olkoon c u =1-7 M. Ensimmäinen vastaa lähinnä solunulkoisen K + :n ja jälkimmäinen [H + ]:n (tai [H 3 O + ]:n) pitoisuutta. Miten arvioisit eri pumppujen kykyä synnyttää gradientteja tällaisissa oloissa? Entä mikä on c s -c u näille tilanteille? Miten selität eron? Johtaminen: Oletetaan, että solun ulkopuolinen tila on niin paljon suurempi, että pitoisuus siellä pysyy vakiona riippumatta siitä, miten paljon solu pumppaa ioneita sisäänsä. Varaukselle toisaalta Q=(c s -c u )zfv ja toisaalta U=Q/C, joten G=RTln(c s /c u )+zfu= RTln(c s /c u )+zfq/c= RTln(c s /c u )+zf(c s -c u )zfv/c= RTln(c s /c u )+(zf) 2 (c s -c u )V/C, missä pallon tilavuus V=4/3 πr 3 ja C=ε ε r A/d, joten G= RTln(c s /c u )+4(zF) 2 (c s -c u )πr 3 d/(3ε ε r A). Toisaalta tässä pallon ala A=4πr 2, joten cs 4( zf) ( cs cu ) πr d cs ( zf) ( cs cu ) rd G = RT ln RT ln 2 c + = + u 3ε ε r 4πr c u 3ε ε r Jo kaavan muodosta nähdään, että termien keskinäinen suhteellinen riippuvuus on erilainen, kun c u ja c s ovat erilaiset.

11 Kohta 1 delta G cs/cu Kohta delta G cs/cu Kuvissa y-akselilla G yksiköissä kj/mol ja x-akselilla c s /c u. Koska varaus on paljon tärkeämpi määräävä tekijä kuin sinänsä pitoisuusero, määrää c s -c u funktion suuruuden. Näin ollen on c s /c u paljon suurempi samalla G:n arvolla, jos c u on pienempi. Mikäli varausta ei neutraloi jokin muu ioni (esim. Na + ulkopuolella ja K + sisäpuolella) eli jos pumppu joutuu pumppaamalla kasvattamaan transmembraanipotentiaalia, niin se ei siihen kovin hyvin pysty. c) Mitä tapahtuu, jos ioneja pumppaava pumppu joutuu (kaikkien pumpun kannalta olennaisten reaktanttien ollessa läsnä) ionigradienttiin, joka vastaa suurempaa energiaa kuin ATP ADP+P i reaktion vapaaenergia? Periaatteessa pumppukin on luonteeltaan entsyymi, joten se ei vaikuta reaktion tasapainoon. Näin ollen reaktio alkaa kulkea toiseen suuntaan. Mitokondrioiden sisäkalvolla aerobisen eli happea hyväksi käyttävän aineenvaihdunnan varsinainen ATP:n tuotanto perustuu osaltaan tällaiseen ilmiöön. Elektroninsiirtoketju tuottaa noin kahden yksikön ph-gradientin eli n. 1-kertaisen H + -konsentraation kalvon toiselle puolelle. Kalvossa oleva ATP-syntaasi eli H + -ATPaasi katalysoi reaktion, jossa protoni siirtyy kalvon poikki ja samalla ADP:sta ja P i :sta syntetisoidaan ATP:ia. Jos olosuhteet ovat toiset

12 (lähinnä siis keinotekoisissa systeemeissä), niin kyseinen pumppu käyttääkin ATP:ia pumpatakseen protoneita. (Jos vertaat kuvaan 2, niin huomaa, että 51,8 kj/mol perustuu solun sytoplasmassa oleviin ATP:n, ADP:n ja P i :n pitoisuuksiin ja että vastaava suhde 149 perustuu oletukseen ph-arvosta 7 (mitokondrioissa 6 ja 4) ja mitokondrion kokoa suurempaan 5 µm:n säteeseen.)

Laskuharjoitus 3 palautus 11. 11. 2003 mennessä. Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa):

Laskuharjoitus 3 palautus 11. 11. 2003 mennessä. Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): Laskuharjoitus 3 palautus 11. 11. 2003 mennessä Tehtävä 1: Entsyymikinetiikkaa Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): 1. A:n sitoutuminen saa konformaatiossa aikaan muutoksen,

Lisätiedot

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia)

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) Elämän edellytykset: Solun täytyy pystyä (a) replikoitumaan (B) katalysoimaan tarvitsemiaan reaktioita tehokkaasti ja selektiivisesti eli sillä on oltava

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Vastaa lyhyesti selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Vastaa lyhyesti selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1 1) Tunnista molekyylit (1 piste) ja täytä seuraava taulukko (2 pistettä) a) b) c) d) a) Syklinen AMP (camp) (0.25) b) Beta-karoteeni (0.25 p) c) Sakkaroosi (0.25 p) d) -D-Glukopyranoosi (0.25 p) 2 Taulukko.

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Peptidi ---- F ----- K ----- V ----- R ----- H ----- A ---- A. Siirtäjä-RNA:n (trna:n) (3 ) AAG UUC CAC GCA GUG CGU (5 ) antikodonit

Peptidi ---- F ----- K ----- V ----- R ----- H ----- A ---- A. Siirtäjä-RNA:n (trna:n) (3 ) AAG UUC CAC GCA GUG CGU (5 ) antikodonit Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24.5.2006 Etunimet Tehtävä 3 Pisteet / 20 Osa 1: Haluat selvittää -- F -- K -- V -- R -- H -- A peptidiä

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Valitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto

Valitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto Versio k15 Näin laadit ilmastodiagrammin Libre Officen taulukkolaskentaohjelmalla. Ohje on laadittu käyttäen Libre Officen versiota 4.2.2.1. Voit ladata ohjelmiston omalle koneellesi osoitteesta fi.libreoffice.org.

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. a) Mitä tarkoitetaan biopolymeerilla? Mihin kolmeen ryhmään biopolymeerit voidaan jakaa? (1,5 p) Biopolymeerit ovat luonnossa esiintyviä / elävien solujen muodostamia polymeerejä / makromolekyylejä.

Lisätiedot

PROTEIINIEN MUOKKAUS JA KULJETUS

PROTEIINIEN MUOKKAUS JA KULJETUS PROTEIINIEN MUOKKAUS JA KULJETUS 1.1 Endoplasmakalvosto Endoplasmakalvosto on organelli joka sijaitsee tumakalvossa kiinni. Se on topologisesti siis yhtä tumakotelon kanssa. Se koostuu kahdesta osasta:

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

Laskuharjoitus 1 palautus 21. 10. 2003 mennessä Juha-Matti Alakoskela, jmalakos@cc.helsinki.fi

Laskuharjoitus 1 palautus 21. 10. 2003 mennessä Juha-Matti Alakoskela, jmalakos@cc.helsinki.fi Laskuharjoitus 1 palautus 21. 10. 2003 mennessä Juha-Matti Alakoskela, jmalakos@cc.helsinki.fi Yleistä Kurssin maksimipistemäärä on 44. Kaikista mahdollisista pisteistä 36 on jaossa kurssin tentissä, 4

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

2.3. Lausekkeen arvo tasoalueessa

2.3. Lausekkeen arvo tasoalueessa Monissa käytännön tilanteissa, joiden kaltaisista kappaleessa Epäyhtälöryhmistä puhuttiin, tärkeämpää kuin yleinen mahdollisten ratkaisujen etsiminen, on löytää tavalla tai toisella jotkin tavoitteet täyttävät

Lisätiedot

Juha Haataja 4.10.2011

Juha Haataja 4.10.2011 METROPOLIA Taulukkolaskenta Perusteita Juha Haataja 4.10.2011 Lisätty SUMMA.JOS funktion käyttö (lopussa). Tavoite ja sisältö Tavoite Taulukkolaskennan peruskäytön hallinta Sisältö Työtila Omat kaavat,

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Suora. Hannu Lehto. Lahden Lyseon lukio

Suora. Hannu Lehto. Lahden Lyseon lukio Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

KAAVAT. Sisällysluettelo

KAAVAT. Sisällysluettelo Excel 2013 Kaavat Sisällysluettelo KAAVAT KAAVAT... 1 Kaavan tekeminen... 2 Kaavan tekeminen osoittamalla... 2 Kaavan kopioiminen... 3 Kaavan kirjoittaminen... 3 Summa-funktion lisääminen... 4 Suorat eli

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi HARJOITUKSET II 1. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Luku 21. Kemiallisten reaktioiden nopeus

Luku 21. Kemiallisten reaktioiden nopeus Luku 21. Kemiallisten reaktioiden nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista tasapainoreaktiota:

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

1 Funktiot, suurin (max), pienin (min) ja keskiarvo

1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1. Avaa uusi työkirja 2. Tallenna työkirja nimellä perusfunktiot. 3. Kirjoita seuraava taulukko 4. Muista taulukon kirjoitusjärjestys - Ensin kirjoitetaan

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 014 Insinöörivalinnan kemian koe 8.5.014 MALLIRATKAISUT ja PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä.

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä. Lääketieteellisten alojen valintakokeen 009 esimerkkitehtäviä Tehtävä 4 8 pistettä Aineistossa mainitussa tutkimuksessa mukana olleilla suomalaisilla aikuisilla sydämen keskimääräinen minuuttitilavuus

Lisätiedot

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006 TKK, TTY, LTY, Y, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 1.5.006 1. Uraanimetallin valmistus puhdistetusta uraanidioksidimalmista koostuu seuraavista reaktiovaiheista: (1) U (s)

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot