MAANVASTAISET ALAPOHJARAKENTEET - KOSTEUSTEKNINEN MITOITTAMINEN JA KORJAAMINEN

Koko: px
Aloita esitys sivulta:

Download "MAANVASTAISET ALAPOHJARAKENTEET - KOSTEUSTEKNINEN MITOITTAMINEN JA KORJAAMINEN"

Transkriptio

1 TAMPEREEN TEKNILLINEN KORKEAKOULU JULKAISU121 TALONRAKENNUSTEKNIIKKA Virpi Leivo - Jukka Rantala MAANVASTAISET ALAPOHJARAKENTEET - KOSTEUSTEKNINEN MITOITTAMINEN JA KORJAAMINEN R a k e n n u s t e k n i i k a n o s a s t o T a m p e r e

2 TAMPEREEN TEKNILLINEN KORKEAKOULU Talonrakennustekniikka alapohjarakenteet kosteustekninen mitoittaminen ja korjaaminen Virpi Leivo Jukka Rantala UDK ISBN (nid.) ISBN (PDF) ISSN Rakennustekniikan osasto Tampere 2002

3

4 1 SISÄLLYSLUETTELO 1 JOHDANTO Soveltamisala Määritelmiä Maanvastaiset alapohjarakenteet MAANVASTAISEN ALAPOHJARAKENTEEN LÄMPÖ- JA KOSTEUSTEKNINEN TOIMINTA Kosteuden olomuodot ja siirtymistavat Maanvaraisen alapohjarakenteen olosuhteet MAANVASTAISTEN ALAPOHJARAKENTEEN SUUNNITTELU Suunnittelun reunaehdot Suunnittelussa tarkasteltavat tapaukset Rakenteiden valinta MAANVASTAISTEN ALAPOHJARAKENTEIDEN KORJAAMINEN Yleisimmät vauriot ja vaurioitumismekanismit Korjausten suunnittelu Korjausvaihtoehdot...28 Lähdeluettelo LIITTEET LIITE 1: Maanvaraisen alapohjarakenteen lämpötila-, kyllästyskosteus- ja vesihöyrypitoisuuskäyrien määrittely tasapainotilanteessa...35 LIITE 2, Laskentaesimerkki 1: Pinnoitteen vaihtaminen läpäiseväksi...38 LIITE 2, Laskentaesimerkki 2: Tuulettuva lattiarakenne, diffuusiotarkastelu...40 LIITE 2, Laskentaesimerkki 3: Tuulettuva lattiarakenne, kapillaarinen tarkastelu...42

5 2 1 JOHDANTO 1.1 Soveltamisala Tämä julkaisu Maanvastaiset alapohjarakenteet kosteustekninen suunnittelu ja korjaaminen on tarkoitettu pohjamaan, täyttö- ja salaojituskerroksen tai muun karkearakeisen maamateriaalin kanssa pysyvästi kosketuksissa olevan rakennusosan, kuten maanvaraisen laatan, kosteusteknisen mitoituksen oppaaksi. 1.2 Määritelmiä Diffuusio eli vesihöyryn diffuusio tarkoittaa kaasuseoksessa vakiokokonaispaineessa tapahtuvaa vesihöyrymolekyylien liikettä, joka pyrkii tasoittamaan kaasuseoksen höyryn osapaine-erot. Huokosluku tarkoittaa maan huokostilavuuden ja kiinteän maa-aineksen tilavuuden suhdetta, e. Hygroskooppinen tasapainokosteus tarkoittaa sitä kosteuspitoisuutta, joka stationääritilassa sitoutuu huokoiseen aineeseen ympäristön tietyssä suhteellisessa kosteudessa ja lämpötilassa. Hygroskooppisuus tarkoittaa huokoisen aineen kykyä sitoa itseensä kosteutta ilmasta ja luovuttaa sitä takaisin ilmaan. Kapillaarinen tasapainokosteus tarkoittaa vesipitoisuutta, jonka huokoinen materiaali saavuttaa kapillaarivoimien vaikutuksesta ollessaan yhteydessä vapaaseen vedenpintaan. Kapillaarinen tasapainokosteus ilmaistaan yleensä kapillaarisen nousukorkeuden tai huokosalipaineen funktiona. Kapillaarikatkokerros tarkoittaa maanvastaisen alapohjarakenteen alla olevaa veden kapillaarisen nousun katkaisevaa kerrosta. Kapillaarisuus tarkoittaa ominaisuutta, jonka avulla huokoinen aine kykenee imemään nestettä vapaan nestepinnan yläpuolelle ja pitämään sen siellä. Kapillaarivesi on maamassaan pintajännitysvoimien vaikutuksesta pohjavedenpinnan yläpuolelle noussutta vettä. Kondensoituminen tarkoittaa vesihöyryn tiivistymistä rakenteissa vedeksi tai jääksi, kun ilman vesihöyrypitoisuus on saavuttanut kyseisessä kohdassa kyllästyskosteuden (RH=100%). Kondensoitumista tapahtuu yleensä materiaalien rajapinnoissa. Kosteus tarkoittaa kemiallisesti sitoutumatonta vettä kaasumaisessa, nestemäisessä tai kiinteässä olomuodossa.

6 3 Kosteuspitoisuus tarkoittaa haihtumiskykyisen veden määrää [kg/m 3 ] huokoisessa materiaalissa. Vrt. vesipitoisuus. Kuivatus on vesien johtamista päällysrakenteen pinnalta pintakuivatuksella tai maan sisällä salaojin ja salaojituskerroksin. Maanvastaisella tarkoitetaan maata vastaan olevaa rakennusosaa erittelemättä sitä, siirtääkö rakennusosa kuormia maarakenteelle. Esimerkiksi kantava alapohja, joka on kosketuksissa alapuolisen salaojituskerroksen kanssa, on maanvastainen. Maanvaraisella tarkoitetaan rakennusosaa, joka siirtää kuormia alapuoliselle maalle. Maanvarainen rakennusosa on aina myös maanvastainen. Pintavesi vettä. on maanpinnalla olevaa, maanpintaa pitkin virtaavaa tai katolta tulevaa Pohjavesi on vettä, joka on täysin kyllästänyt maa- tai kalliovyöhykkeen. Vesi voi olla myös paineellista. Rakeisuuskäyrä ilmaisee, miten suuri suhteellinen osuus, prosentteina ilmaistuna, tutkittavassa maalajissa on tiettyä raekokoa pienempiä rakeita, eli miten suuri on tätä raekokoa vastaavan seulan läpäisyprosentti. Rakennuskosteus tarkoittaa rakennusvaiheen aikana tai sitä ennen rakenteisiin tai rakennusaineisiin joutunutta rakennuksen käytönaikaisen tasapainokosteuden ylittävää kosteutta, jonka tulee poistua. Usein käytetään myös termiä rakennekosteus, jolla tarkoitetaan samaa. Routa on maassa, maan huokosissa olevan veden jäätymisen takia kovettunut eli jäätynyt maakerros. Salaojituskerros tarkoittaa maaperän kuivattamiseksi pintamaan alle tehtyä vettä johtavaa rakennetta tai karkearakeista maa-aineskerrosta, jota pitkin vesi voi siirtyä kuivatettavalta alueelta valumalla tai pumppaamalla. Huom. Salaojituskerroksen tehtävänä ei ole katkaista kapillaarista nousua. Kts. Kapillaarikatkokerros. Salaojajärjestelmä tarkoittaa salaojaputkien, salaojituskerrosten, salaojakaivojen, tarkastusputkien ja kokoojakaivojen muodostamaa sekä tarvittaessa padotusventtiiliä tai pumppauksella varustettua järjestelmää rakennuksen pohjan tai vastaavan kuivattamiseksi. Salaojaputki tarkoittaa salaojituskerroksessa käytettävää putkea, johon vesi pääsee ympäristöstä putken seinämässä olevien reikien kautta. Salaojitus vrt. salaojajärjestelmä. Suhteellinen kosteus =ilman suhteellinen kosteus RH ilmoittaa kuinka paljon ilmassa on vesihöyryä kyllästyspitoisuuteen verrattuna tietyssä lämpötilassa.

7 4 Stationääritila eli jatkuvuustila tarkoittaa tilaa, jossa systeemiin tuodaan ja sieltä poistuu vakiomäärä ainetta ja lämpöenergiaa samassa ajassa. Stationääritilassa lämpötilat ja eri aineiden pitoisuudet ovat saavuttaneet tasapainotilan eivätkä muutu ajan kuluessa. Tiiviysasteella tai sullonta-asteella määritetään maa-aineksen tiiviyttä suhteessa sen tiiveimpään mahdolliseen sullontatilaan. Tiiviysaste annetaan maa-aineksen kuivatilavuuspainon suhteena kuivatilavuuspainoon tiiveimmässä tilassa prosentteina ilmaistuna, D [%]. Vajovesi eli gravitaatiovesi on painovoiman vaikutuksesta rakenteessa hitaasti alaspäin liikkuvaa vettä. Valuma-alue on maanpinnan korkeussuhteiden perusteella määritetty alue, jolta pintavedet virtaavat alueen alimpaan kohtaan. Vesihöyry tarkoittaa vettä kaasumaisessa olomuodossa. Vesihöyryn konvektio tarkoittaa kaasuseoksen sisältämän vesihöyryn siirtymistä kaasuseoksen mukana sen liikkuessa kokonaispaine-eron vaikutuksesta. Konvektio syntyy ulkopuolisen voiman, pakotettu konvektio tai lämpötilaeron, luonnollinen konvektio vaikutuksesta. Vesihöyrynläpäisevyys (δ v tai δ p ) ilmoittaa vesimäärän, joka stationääritilassa läpäisee aikayksikössä pintayksikön suuruisen ja pituusyksikön paksuisen homogeenisen ainekerroksen, kun ainekerroksen eri puolilla olevien ilmatilojen vesihöyrypitoisuuksien ero tai vesihöyryn osapaine-ero on yksikön suuruinen. Vesihöyrynvastus (Z v tai Z p ) ilmaisee tasapaksun ainekerroksen tai tällaisista muodostuvan tasapaksun kerroksellisen rakenteen vastakkaisilla pinnoilla vallitsevien vesihöyrypitoisuuksien, tai vesihöyryn osapaineiden eron ja ainekerroksen tai rakenteen läpi jatkuvuustilassa pinta-alayksikköä kohti diffuntoituvan vesihöyryvirran. Vesihöyrynosapaine (p) ilmoittaa ilmassa olevan vesihöyryn paineen. Kts. myös vesihöyrypitoisuus. Vesihöyrypitoisuus (v) ilmoittaa ilmassa olevan vesihöyrymäärän. Ilmassa olevan vesihöyryn määrä voidaan ilmoittaa joko vesihöyrypitoisuutena tai vesihöyrynosapaineena. Vesihöyrypitoisuuksien ero pyrkii tasoittumaan diffuusiolla. Vesipitoisuus tarkoittaa maa-aineksessa olevan veden massan ja kuivan maa-aineksen massan suhdetta prosentteina ilmaistuna, w [%]. Vrt. kosteuspitoisuus.

8 5 1.3 Maanvastaiset alapohjarakenteet Maanvastaisten alapohjarakenteiden kosteustekninen toiminta poikkeaa huomattavasti rakennusvaipan muiden osien toiminnasta. Alapohja on rakenteena kosketuksissa lämpimän ja kostean salaoja- ja täyttökerrosten tai pohjamaan kanssa. Maa on kosteuslähde, jonka aiheuttama kosteusrasitus liittyville rakenteille on jatkuvaa ja jonka vaikutus on otettava huomioon rakenteita suunniteltaessa. Eri tutkimuksissa on arvioitu, että kaikista havaituista kosteusvaurioista peräti 30 % liittyy jollakin tavoin alapohjarakenteisiin. Edelleen jopa 80 % alapohjarakenteiden kosteusvaurioista johtuu selvästä kosteusteknisestä suunnitteluvirheestä. Vaurioita tutkittaessa on käynyt selvästi ilmi, että alapohjarakenteet eivät kosteus- ja lämpöteknisesti toimi suunnitellulla tavalla. Alapohjarakenteiden ympäristöolosuhteissa tapahtuvia muutoksia ei juurikaan oteta huomioon, jos alapohjien kosteusteknistä suunnittelua tehdään lainkaan. Massiivisten betonilaattojen rakennekosteuden hidas haihtuminen, muutokset sisäilman lämpö- ja kosteusolosuhteissa sekä lämmitetyn rakennuksen aiheuttama maapohjan lämpeneminen voivat aiheuttaa yllätyksiä alapohjan kosteusteknisessä toiminnassa, mikäli niitä ei ole rakenteiden suunnittelussa huomioitu. Usein maanvaraisen alapohjarakenteen toiminnan kannalta on oleellisempaa maasta diffuusiolla nouseva vesihöyry kuin maasta kapillaarisesti nouseva kosteus, joka on yleensä ja tulee olla estetty kapillaarikatkolla. Diffuusiota tapahtuu aina jossakin määrin kaikissa maanvastaisissa rakenteissa. Arvioitaessa alapohjarakenteen toimivuutta on täyttö- ja salaojakerrosten vesipitoisuus ja etenkin huokosten korkea suhteellinen kosteus otettava huomioon olemassa olevana reunaehtona kaikissa tarkasteluissa. Alapohjarakenne toimii suurimmassa osassa tapauksista moitteetta, vaikka pohjamaan vesipitoisuus olisikin suuri. Ratkaiseva tekijä on koko alapohjarakenteen toiminta kokonaisuutena vallitsevassa lämpötilakentässä siihen kohdistuvan kosteusrasituksen alaisena. Mikäli pohjamaan lämpötila ei nouse liian korkeaksi ja mikäli alapohja rakenteena pystyy läpäisemään maasta nousevan kosteusmäärän ilman rakenteille aiheutuvaa haittaa, ei pohjamaan kosteudesta johtuvia ongelmia pitäisi esiintyä. Keskeisimmät lähtökohdat suunniteltaessa uusia alapohjarakenteita ja kosteusvaurioituneiden lattioiden korjaustoimenpiteitä ovat: 1. Maanvastaiseen rakenteeseen kosketuksissa olevan maa-aineksen huokosilman suhteellisen kosteuden oletetaan olevan RH = 100 %. 2. Maanvastaisen alapohjarakenteen alla olevan maan lämpeneminen ja siitä johtuva maasta ylös sisätilaan suuntautuva diffuusiovirta, rakenteen suhteellisen kosteustason nousu ja tiivistymisriski tulee ottaa huomioon kosteusteknisessä suunnittelussa. 3. Maanvastaisen rakenteen tulee pystyä haihduttamaan maasta mahdollisesti nouseva kosteus.

9 6 2 MAANVASTAISEN ALAPOHJARAKENTEEN LÄMPÖ- JA KOSTEUSTEKNINEN TOIMINTA 2.1 Kosteuden olomuodot ja siirtymistavat Suomen ilmasto-olosuhteissa vettä esiintyy maaperässä kaikissa kolmessa olomuodossa: kaasuna eli vesihöyrynä, nesteenä eli vetenä ja kiinteässä olomuodossa jäänä. Sateet ja pohjavesi, routa ja lumen sulamisvedet pitävät maaperän aina kosteana. Kuva 2.1 Kosteuden olomuodot ja siirtymismekanismit. Kostea ilma: suhteellinen kosteus ja kosteuspitoisuus Ilma ja vesihöyry muodostavat yhdessä kaasuseoksen, jossa vesihöyrymolekyylit ovat tasaisesti sekoittuneena ilmamolekyylien joukkoon. Tiettyyn määrään ilmaa mahtuu vain tietty määrä vesihöyrymolekyylejä. Ilman vesihöyrypitoisuuden saavuttaessa maksimipitoisuutensa ilman sanotaan olevan vesihöyryllä kyllästynyttä, eli sen suhteellinen kosteus on RH = 100%. Suhteellinen kosteus eli RH ilmaisee, kuinka paljon ilmassa on vesihöyryä verrattuna kyllästyskosteuteen. Ilman vesihöyryn kyllästyskosteus riippuu ilman lämpötilasta. Lämpimään ilmaan mahtuu huomattavasti enemmän vesihöyryä kuin kylmään ilmaan (Kuva 2.2). Mikäli ilma on lähellä kyllästyspitoisuuttaan ja sen lämpötila jostain syystä laskee, samaan ilmatilavuuteen mahtuvan vesihöyryn määrä pienenee ja kyllästyspitoisuuden ylittävä määrä vesihöyrystä tiivistyy vedeksi. Tätä ilmiötä kutsutaan kondensoitumiseksi eli tiivistymiseksi.

10 Kyllästyspitoisuus v, g/m Kuva Lämpötila, o C Vesihöyryn kyllästyspitoisuuskäyrä. Hygroskooppisuus ja diffuusio Huokoiset materiaalit voivat sitoa itseensä kosteutta suoraan kosteasta ilmasta. Tätä kutsutaan hygroskooppiseksi kosteuden sitoutumiseksi. Materiaalin huokosissa vaikuttavat vetovoimat vetävät ilman vesimolekyylejä materiaalin pintaan ohueksi vesikerrokseksi, jonka paksuus kasvaa ilman kosteuden lisääntyessä. Sitoutuvan kosteuden määrä riippuu materiaalista. Materiaali pyrkii saavuttamaan tasapainon, tietyn tasapainokosteuden ympäröivän ilman kanssa. Tasapaino riippuu materiaalin lisäksi lämpötilasta ja ilman suhteellisesta kosteudesta. Lisäksi tasapaino riippuu siitä, onko kyseessä materiaalin kostuminen vai kuivuminen. Tietyn materiaalin tiettyä lämpötilaa vastaava tasapainokosteuskäyrä määritellään muuttamalla ilman suhteellista kosteutta ja mittaamalla materiaaliin sitoutuvan kosteuden määrä. Hygroskooppisuuden yläraja saavutetaan, kun materiaalia säilytetään ilmassa, jonka suhteellinen kosteus on RH 100%. Materiaalin ollessa hygroskooppisella alueella, jolloin materiaalin huokosten ilman suhteellinen kosteus on alle RH 100%, tällöin kosteus on vesihöyrynä ja kosteuden siirtyminen tapahtuu diffuusiolla. Vesihöyryn pitoisuusero, kuten kaikki pitoisuus- tai paine-erot luonnossa, pyrkivät tasoittumaan kohti tasapainotilaa vesihöyrymolekyylien liikkuessa suuremmasta konsentraatiosta kohti pienempää. Tätä virtausta kutsutaan diffuusioksi. Diffuusiossa vesihöyry siirtyy korkeammasta pitoisuudesta alemman pitoisuuden suuntaan.

11 8 Kapillaarisuus Vapaan veden lähteestä, esimerkiksi pohja- tai orsiveden pinnasta, vesi pyrkii huokoisessa materiaalissa siirtymien vaikutuksesta, joiden suuruus riippuu veden ja aineen ominaisuuksista sekä kosteuspitoisuudestaään toisiinsa kytkettyjen huokosten muodostamassa putkistoverkossa kapillaarivoim. Kapillaarista siirtymistä vastustavat viskositeetti ja painovoima. Pohjaveden pinnasta nousevan kapillaariveden kohoaminen jatkuu tasoon, jossa kohonneeseen vesimassaan kohdistuvat kapillaarivoimat ovat tasapainossa. Kapillaariseksi tasapainokosteudeksi kutsutaan sitä kosteutta, jonka huokoinen materiaali saavuttaa ollessaan yhteydessä vapaaseen vedenpintaan. Aineen kapillaarinen tasapainokosteus ilmaistaan tavallisesti kapillaarisen nousukorkeuden tai huokosalipaineen funktiona. Kapillaaristen voimien maan huokossysteemiin sitomaa vettä kutsutaan kapillaarivedeksi ja sen nousukorkeutta vapaan veden pinnasta kapillaariseksi nousukorkeudeksi. Maan kapillaarinen nousukorkeus ei ole mikään yksi tietty arvo, vaan kullekin materiaalille voidaan erottaa neljä erisuuruista kapillaarisen nousukorkeuden arvoa: materiaalin kostumisen ylempi ja alempi kapillaarinen nousukorkeus sekä materiaalin kuivumisen ylempi ja alempi kapillaarinen nousukorkeus. Alemman kapillaarisen nousukorkeuden alapuolella materiaali täysin kyllästynyttä ja ylemmän kapillaarisen nousukorkeuden alapuolella osittain kyllästynyttä. 2.2 Maanvaraisen alapohjarakenteen olosuhteet Rakenteet Normaaleissa käyttöolosuhteissa rakennemateriaalit ovat hygroskooppisella alueella ja materiaalin kosteuspitoisuus riippuu pääasiassa ympäristön suhteellisesta kosteudesta. Niissä materiaaleissa, joihin jää rakennusaikaista kosteutta tai kosteusvauriokohdissa kosteutta voi olla huomattavasti hygroskooppista tasapainokosteutta enemmän. Maanvaraisen alapohjan täyttö- ja salaojituskerros on huokosverkostonsa kautta yhteydessä vapaan veden eli pohjaveden kanssa. Kapillaarinen kosteuden nousu rakenteessa on mahdollista, mikäli kapillaarista nousua ei estetä. Mikäli rakenteeseen ei suunnitella kapillaarisen nousun katkaisevaa kerrosta, rakenne on nykyisin voimassa olevien määräysten ja ohjeiden vastainen. Pohjamaa Maanvastaisen alapohjarakenteen alapinta on kosketuksissa kostean maan kanssa. Syvällä maakerroksissa olevan maan lämpötila on lähellä pohjaveden lämpötilaa, C. Pintamaan lämpötilaan vaikuttaa ulkolämpötila. Maanvaraisen alapohjan lämpötilaan vaikuttaa ensisijaisesti rakennuksen sisälämpötila ja alapohjarakenteen läpi virtaavan lämpövuon suuruus. Lämpövuo on sitä suurempi mitä pienempi on alapohjarakenteen lämmönvastus. Alapohjan läpi virtaava lämpövuo lämmittää rakenteen alapuolista maata aina jonkin verran. Tavanomaisissa lämpöeristetyissä rakenteissa eristepaksuuden ollessa mm alapuolisen pohjamaan lämpötila on yleensä C. Lämpöeristämättömissä alapohjissa maapohjan lämpötila voi nousta lähelle sisäilman lämpötilaa. Maanpohjan lämpötilan nousua voi kasvattaa myös maassa kulkevat lämpöeristämättömät lämpöputket. Maanvaraisen alapohjarakenteen lämpö- ja kosteusteknisissä tarkasteluissa maanpohjan lämpötilaksi tulisi olettaa

12 9 vähintään + 15 C. Sen lisäksi pitäisi tutkia miten tätä korkeampi lämpötila, C vaikuttaa rakenteen toimivuuteen. Pohjamaan huokosilman suhteellinen kosteus on yleensä hyvin korkea, lähes RH 100%. Tätä voidaan perustella seuraavasti: Rakennusaikana maa-aines on hyvinkin kosteaa ja sen lähes ainoa mahdollinen kuivumissuunta on alaspäin, jossa pohjamaan vesipitoisuus on yleensä hyvin korkea. Maa-aines on huokosverkostonsa kautta yhteydessä pohjaveteen. Kapillaarivoimien aiheuttama veden imeytyminen voi ajoittain kuljettaa suuriakin määriä lisäkosteutta täyttökerroksiin. Maanvastaisten alapohjarakenteiden kosteusteknisissä tarkasteluissa tulee olettaa, että pohjamaan RH=100%. Sisäilma Maanvaraisen alapohjarakenteen yläpinnassa vallitsevat rakennuksen sisälämpötila ja ilman suhteellinen kosteus. Rakennuksen sisälämpötila riippuu rakennuksen käyttötarkoituksesta. Toimisto- ja asuinkäytössä olevan rakennuksen sisälämpötila on tyypillisesti C. Sisäilman suhteellinen kosteus riippuu tilan käyttötarkoituksesta, ympäröivän ulkoilman suhteellisesta kosteudesta, tilan kosteustuotosta ja ilmanvaihdon tehokkuudesta. Toimisto- ja asuinrakennusten sisäilman suhteellinen kosteus vaihtelee normaalisti RH 25 60%, ollen suurin kesällä. Rakenteen lämpötila- ja kosteustasapaino Rakenteiden lämpö- ja kosteusteknistä käyttäytymistä tarkasteltaessa seuraavien kolmen ilmiön pääperiaatteet ovat olennaisia: 1. Lämpötilan muuttuminen rakenteen sisällä eli muodostuva lämpötilakäyrä, Kuva 2.3. Rakenteen lämpötilakäyrän määrittelemiseksi tarvitaan rakennekerrosten materiaalien lämmönjohtavuudet sekä sisä- ja ulkolämpötilat ja pintavastukset rakenteen pinnoissa. Lämmönjohtavuus (λ) on materiaaliominaisuus ja lämmönvastus m (m= d/λ) on rakenneominaisuus, joka riippuu materiaalin paksuudesta d. Rakenneleikkauksessa lämpötila muuttuu rakennekerrosten lämmönvastusten suhteissa. 2. Kyllästyspitoisuus rakenteen eri kohdissa. Kyllästyspitoisuus riippuu ainoastaan lämpötilasta kuvan 2.3 mukaisesti. Yhteys on epälineaarinen, mutta se voidaan tässä tarkastelussa olettaa lineaariseksi. Kyllästyspitoisuuskäyrän muoto noudattelee siten lämpötilakäyrän muotoa. 3. Vesihöyrynpitoisuus rakenteen eri kohdissa eli vesihöyrypitoisuuskäyrä. Vesihöyrynpitoisuus riippuu materiaalien vesihöyrynläpäisevyyksistä sekä sisätilan ja ulkoilman suhteellisista kosteuksista. Vesihöyrynpitoisuus δ v on materiaaliominaisuus ja vesihöyrynvastus Z v (Z v = d/δ v ) on rakenneominaisuus. Vesihöyrynvastuksien määrittämisessä ei ole pintavastuksia. Rakenneleikkauksessa vesihöyrypitoisuus muuttuu rakennekerrosten vesihöyrynvastusten suhteissa.

13 10 Määritettyjä kyllästyspitoisuus- ja vesihöyrypitoisuuskäyrää (Kuva 2.3) verrataan toisiinsa. Mikäli nämä käyrät leikkaavat toisensa, rakenteeseen muodostuu tiivistymisvyöhyke, jossa vesihöyryä tiivistyy rakenteen sisään. Tiivistymisvyöhykkeessä rakennekerroksen huokosilmassa on ylimäärä vettä verrattuna rakennekerroksen lämpötilaan ja lämpötilasta riippuvaan kyllästyspitoisuuteen. Tämä ylimäärä vesihöyryä tiivistyy kyseisessä kohdassa vedeksi. Näiden diffuusiokäyttäytymistä kuvaavien käyrien avulla on mahdollista arvioida rakenteiden kosteusteknistä riskiä tasapainotilanteessa, jossa rakenteen lämpötila- ja kosteusolosuhteet ovat vakioituneet. Ennen korjaustavan valintaa voidaan arvioida, onko korjattu rakenne kosteusteknisesti toimiva vai riskialtis. Yksityiskohtainen laskentaesimerkki kaavoineen tasapainotilanteen lämpötila-, kyllästyskosteus- ja vesihöyrypitoisuuskäyrien määrittämisestä on esitetty liitteessä 1. Useille materiaaleilla kriittinen kosteuspitoisuus on alempi kuin tiivistymiskosteus RH 100%. Yleisesti kosteutta RH 85% pidetään raja-arvona, mitä korkeammissa kosteuspitoisuuksissa mikrobikasvu voi olla mahdollista. Vesihöyrypitoisuus Lämpötila 0 g/m 3 Vesihöyrypitoisuuskäyrä Kyllästyskosteuskäyrä Kuva 2.3 Rakenteen lämpötila-, kyllästyskosteus- ja vesihöyrypitoisuuskäyrät stationääritilanteessa.

14 11 3. MAANVASTAISTEN ALAPOHJARAKENTEEN SUUNNITTELU Maanvaraisen alapohjarakenteen lämpö- ja kosteustekninen toiminta vaihtelee suuresti rakenteen elinkaaren aikana. Rakenteiden kosteusteknisessä toiminnassa on erotettavissa kolme toisistaan poikkeavaa rasitustilannetta, joissa kaikissa rakenteen on säilytettävä toimintakykynsä ilman pysyviä rakenteellisia vaurioita tai terveysriskiä tilojen käyttäjille. Tarkasteltavat tilanteet ovat: 1. Rakenteen kuivumisvaihe rakenteesta poistuu rakennusaikaista kosteutta ja kosteuslähde on rakenteen sisällä. 2. Käyttötila rakenteessa on tasaantuneet lämpötila- ja kosteusolosuhteet ja kosteusrasitus riippuu rakennetta ympäröivistä lämpö- ja kosteusolosuhteista. 3. Vauriotilanne rakenteeseen kohdistuu ylimääräinen kosteusrasitus, esimerkiksi putkivuodon seurauksena. Maanvastaisen alapohjarakenteen tulee olla sellainen, että rakenteeseen ei tiivisty kosteutta tai rakenneosien kriittinen kosteuspitoisuus ei ylity ja että rakenteen kuivuminen on mahdollista kaikissa olosuhteissa. Lähtökohtana maanvastaisten alapohjarakenteiden kosteusteknisen toiminnan tarkistuksille tulee olla, että maasta tulevan kosteuden kapillaarinen kulkeutuminen alapohjarakenteeseen on estetty. Seuraavassa tarkastellaan rakenteen toimintaa pääasiassa vesihöyryn diffuusion kannalta, joka on merkittävä maanvastaisissa rakenteissa.

15 Suunnittelun reunaehdot Maanvaraisen alapohjarakenteen lämpö- ja kosteusteknisen suunnittelun reunaehdot ovat seuraavat: Maapohja: Kapillaarinen kosteuden nouseminen rakenteisiin on estetty Täyttö- tai salaojituskerroksen olevan maan huokosten ilman suhteellinen kosteus RH=100% Maapohjan lämpötila: o Rakentamisvaiheessa rakentamisajankohdasta riippuen ºC. o Normaalissa käyttöolosuhteissa ºC. o Vauriotapauksissa tapauskohtaisesti, usein n. +20 ºC. Sisäilma: Lämpötila rakennuksen käyttötarkoituksen mukaan o Asuin- ja toimistokäyttöön tarkoitetuissa rakennuksissa ºC. Sisäilman suhteellinen kosteus käyttötarkoituksen mukaan o Asuin- ja toimistokäyttöön tarkoitetuissa rakennuksissa RH 25 60%, suurin kesällä. o Ongelmarakennuksissa, joissa ei ole toimivaa ilmanvaihtoa RH voi olla korkea Rakenteille sallitut kosteusolosuhteet Rakennusmateriaaleissa homeen kasvun alkamisriski riippuu materiaalin kosteuspitoisuudesta, suhteellisesta kosteudesta RH ja lämpötilasta kuvan 3.1 mukaisesti /Nevander, Elmarsson. 1991/ Yleisenä raja-arvona pidetään usein RH 75%, jota alhaisemmassa kosteudessa ei home kasva. Usein raja-arvona pidetään myös RH 85%, jota korkeammassa suhteellisessa kosteudessa useampia homelajeja alkaa kasvaa. Määriteltäessä maanvaraisen rakenteen rakenneosien kriittisiä kosteuspitoisuuksia tulee ottaa huomioon myös mikä on rakenteen normaali kosteuspitoisuus ja onko kriittisen kosteuspitoisuuden ylittymisellä ja siihen mahdollisesti liittyvällä homekasvulla vaikutusta rakennuksen sisäilmaan. Yleisin väärä tulkinta on, että maanvaraisen laatan alla olevan maapohjan korkea, lähes 100%:n suhteellinen kosteus on merkki kosteusvauriosta ja se vaatisi korjaustoimia. Tarkempia kriittisen kosteuden arvoja on määritelty lattiapinnoitemateriaaleille (Taulukko 3.1) /Harderup, L-E. 1993/. Arvot ovat määritelty lattian pinnoittamiskriteereiksi, mutta niitä voidaan pitää myös ohjeellisina kriittisinä kosteuspitoisuuksina kosteusteknisessä suunnittelussa ja korjausten suunnittelussa.

16 13 Riski 1,0 Homeen kasvun riski eri olosuhteissa 0,8 0,6 0,4 0,2 +20 o C o C +0 o C % suhteellinen kosteus, RH Kuva 3.1 Homeen kasvun riski eri olosuhteissa. Taulukko 3.1 Lattiapinnoitemateriaaleille määriteltyjä kriittisiä kosteuspitoisuuksia. Materiaali Kriittinen kosteuspitoisuus, RH % Puu ja puupohjaiset materiaalit 80% Muovimatot, joiden alapinnalla homeenkasvu 80% mahdollista Liimatut lattiapäällysteet: o pitkäaikainen (yli 6 kk) kosteusrasitus o lyhytaikainen kosteusrasitus 90% 95% Korkkilaatat 80 Tasoitteet *, kosteussulut, keraamiset laatat lähes 100% * Pinnoittamiskriteeri tasoitteille lähes 100%, kriittinen kosteuspitoisuus vaihtelee materiaaleittain suuresti 80 lähes 100%, alhaisin orgaanisilla tasoitteilla.

17 Suunnittelussa tarkasteltavat tapaukset Rakenteen kuivumisvaihe (rakennuskosteuden poistumisvaihe) Kuva 3.2 Rakennuskosteuden poistuminen laatan kuivuessa. Rakennusaikaisen rakennuskosteuden on päästävä poistumaan kuivuvista rakenteista (Kuva 3.2). Merkittävin kosteuslähde alapohjarakenteissa heti rakentamisen jälkeen on paikalla valettujen betonirakenteiden rakennuskosteus. Tavalliset rakennebetonit sisältävät paljon seosvettä, minkä vuoksi näistä betoneista valettujen rakenteiden kuivumisaika on nykyisiä rakentamisaikatauluja ajatellen melko pitkä. Rakenteesta poistuvan rakennuskosteuden määrä voi olla jopa kymmeniä litroja vettä yhdessä kuutiometrissä betonia. Rakenne saavuttaa tasapainokosteuden ympäristönsä kanssa vasta, kun ylimääräinen rakennuskosteus on haihtunut rakenteesta.

18 15 Rakenteen kuivumisvaiheen alussa ennen kuin rakenne on pinnoitettu rakenteesta poistuu ylimääräistä vettä, rakennuskosteutta vesihöyrynä haihtumalla ylöspäin ja diffuusiolla alaspäin, mikäli rakenteessa ei ole höyrynsulkua. Riippuen pinnoitteen vesihöyrynvastuksesta pinnoittamisen jälkeen ylöspäin tapahtuva haihtuminen (1) pienenee tai lähes kokonaan loppuu (Kuva 3.2). Tällöin rakenteen kuivuminen jatkuu alaspäin (2). Riippuen maapohjan lämpötilasta rakentamisajankohtana ja rakenteen lämmönvastuksesta rakenteen alapuolinen maapohja alkaa lämmetä, jolloin kyllästyskosteuspitoisuus maassa suurenee ja kosteusvirta alaspäin (2) pienenee. Rakenteen kosteuden tasaantumisvaihe riippuu rakenteen eri puolilla vaikuttavista olosuhteista, rakennevalinnoista ja poistuvan kosteuden määrästä ja kestää yleensä useita vuosia. Lämpötila tasaantuu yleensä nopeammin kuin kosteus o C 0 g/m 3 9,15 g/m o C, RH 50% 18,3 g/m 3 1 Poistuva rakennuskosteus o C 10,7 g/m o C, RH 100% Kuva 3.3 Alapohjarakenteen kosteustekninen toiminta rakenteen kuivumisvaiheessa. Rakenteen kuivumisvaiheen tarkistukset: Rakennuskosteudella on oltava poistumismahdollisuus joko: o alaspäin, jolloin rakenteessa ei saa olla höyrynsulkua tai o ylöspäin, jolloin vaaditaan riittävän pitkä kuivumisaika ennen pinnoittamisesta tai pinnoitteen tulee läpäistä hyvin vesihöyryä.

19 16 Normaalit käyttöolosuhteet, käyttötila Kuva 3.4 Normaalit käyttöolosuhteet. Kuva 3.4 mukaisesti käyttötilanteessa ylimääräisen rakennuskosteuden poistuttua rakenteista alapohjarakenteen kosteustasapaino muodostuu ympäristöolosuhteiden reunaehtojen ja rakenteen materiaalikerrosten vesihöyrynläpäisevyyksien ja lämmönjohtavuuksien perusteella. Rakenteen kosteuden tasaantumisvaihe riippuu rakenteen eri puolilla vallitsevista olosuhteista, rakennevalinnoista sekä poistuvan rakennekosteuden määrästä ja kestää yleensä useita vuosia. Normaaleissa käyttöolosuhteissa maanvaraisen alapohjarakenteen olosuhteet ovat tasaantuneet pitkällä aikavälillä, vuodenaikaista vaihtelua erityisesti lämpötiloissa voi esiintyä, mutta suunnittelussa voidaan rakenteeseen olettaa stationääritilan olosuhteet. Stationääritilan lämpötila- ja kosteuskenttä (Kuva 3.5) voidaan määritellä liitteessä 1 esitetyillä peruskaavoilla. Tyypillisesti käyttöolosuhdetilanteessa maapohjan lämpötila on niin korkea, että maapohjan vesihöyryn osapaine on suurempi kuin sisäilman vesihöyryn osapaine. Tällöin vesihöyryn diffuusion suunta on alhaalta ylöspäin. Rakenteen kosteustekninen toiminta tässä tilanteessa riippuu vesihöyryn osapaineiden erosta, rakenne- ja materiaalivalinnoista sekä rakenneosien vesihöyrynvastuksista. Rakennuksen reuna-alueella tapahtuu maapohjan ja alapohjarakenteen lämpötilassa jossakin määrin vuodenaikaisvaihteluja. Kylmä ulkoilma viilentää hieman maapohjan ja alapohjarakenteen lämpötilaa, jolloin alapohjarakenteeseen muodostuu kosteusgradientti rakenteen reuna- ja keskialueen välille. Tuolloin diffuusiovirta pyrkii tasapainottamaan vesihöyrypitoisuuseroja ja sen suunta on vaakasuuntaan laatan keskialueelta reunaalueelle.

20 o C 0 g/m o C, RH 50% 9,15 g/m3 18,3 g/m 3 diffuusion suunta + 16 o C + 16 o C, RH 100% 13,7 g/m 3 Kuva 3.5 Alapohjarakenteen kosteustekninen toiminta normaaleissa käyttöolosuhteissa. Rakenteen käyttöolosuhdevaiheen tarkistukset: Rakenteen mihinkään kohtaan ei tiivisty kosteutta eikä yksittäisen rakenneosan, yleisimmin pinnoitteen alapinnan, kriittinen kosteuspitoisuus ylity.

21 18 Vauriotilanne Vauriotilanteella tarkoitetaan odottamatonta kosteuslisää alapohjarakenteissa, joka nostaa rakennekerrosten kosteuspitoisuuden yli käyttötilan kosteustasapainotilan. Yleisin vauriotilanne maanvaraisissa alapohjissa on putkivuoto laatassa kulkevissa vesiputkissa (Kuva 3.6). Ylimääräinen vesi sitoutuu rakenteisiin ja RH nousee 100%:iin. Rakenteesta ylimääräinen poistuu pikkuhiljaa vesihöyryn diffuusiona joko ylös- tai alaspäin riippuen rakenteen ylä- ja alapuolisista vesihöyryn osapaineista ja rakenneosien diffuusiovastuksista o C 0 g/m o C, RH 50% 9,15 g/m3 18,3 g/m 3 Poistuva kosteus + 16 o C + 16 o C, RH 100% 13,7 g/m 3 Kuva 3.6 Alapohjarakenteen kosteustekninen toiminta esimerkiksi putkivuototilanteessa. Rakenteen vauriotilanteen tarkistukset: Vauriotilanteessa rakenteeseen pääsevä vesi tulee voida poistua rakenteesta joko o alaspäin, jolloin rakenteessa ei saa olla höyrynsulkua tai o ylöspäin, jolloin pinnoitteena tulee olla hyvin vesihöyryä läpäisevä pinnoite tai rakenteelle annetaan riittävän pitkä kuivumisaika ilman pinnoitetta.

KOSTEUS. Visamäentie 35 B 13100 HML

KOSTEUS. Visamäentie 35 B 13100 HML 3 KOSTEUS Tapio Korkeamäki Visamäentie 35 B 13100 HML tapio.korkeamaki@hamk.fi RAKENNUSFYSIIKAN PERUSTEET KOSTEUS LÄMPÖ KOSTEUS Kostea ilma on kahden kaasun seos -kuivan ilman ja vesihöyryn Kuiva ilma

Lisätiedot

466111S Rakennusfysiikka RAKENNUSKOSTEUS. Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto

466111S Rakennusfysiikka RAKENNUSKOSTEUS. Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto 1 466111S Rakennusfysiikka RAKENNUSKOSTEUS Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto 2 LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma, osat C ja D, Ympäristöministeriön

Lisätiedot

Ryömintätilaisten alapohjien toiminta

Ryömintätilaisten alapohjien toiminta 1 Ryömintätilaisten alapohjien toiminta FRAME-projektin päätösseminaari Tampere 8.11.2012 Anssi Laukkarinen Tampereen teknillinen yliopisto Rakennustekniikan laitos 2 Sisältö Johdanto Tulokset Päätelmät

Lisätiedot

RAKENNUSTEN HOMEVAURIOIDEN TUTKIMINEN. Laboratoriopäivät 12.10.2011 Juhani Pirinen, TkT

RAKENNUSTEN HOMEVAURIOIDEN TUTKIMINEN. Laboratoriopäivät 12.10.2011 Juhani Pirinen, TkT RAKENNUSTEN HOMEVAURIOIDEN TUTKIMINEN Laboratoriopäivät 12.10.2011 Juhani Pirinen, TkT Homevaurioiden tutkimisessa pääongelma ei liity: Näytteenoton tekniseen osaamiseen (ulkoisen kontaminaation estäminen,

Lisätiedot

Kosteus- ja mikrobivauriot koulurakennuksissa TTY:n suorittamien kosteusteknisten kuntotutkimusten perusteella

Kosteus- ja mikrobivauriot koulurakennuksissa TTY:n suorittamien kosteusteknisten kuntotutkimusten perusteella Kosteus- ja mikrobivauriot koulurakennuksissa TTY:n suorittamien kosteusteknisten kuntotutkimusten perusteella Sisäilmastoseminaari 2014 Petri Annila, Jommi Suonketo ja Matti Pentti Esityksen sisältö Tutkimusaineiston

Lisätiedot

Massiivirakenteiden sisäpuolinen lämmöneristäminen

Massiivirakenteiden sisäpuolinen lämmöneristäminen Massiivirakenteiden sisäpuolinen lämmöneristäminen FRAME YLEISÖSEMINAARI 8.. Sakari Nurmi Tampereen teknillinen yliopisto Rakennustekniikan laitos 8.. Haasteita Massiivirakenteiset seinät (hirsi-, kevytbetoni-

Lisätiedot

Betonin suhteellisen kosteuden mittaus

Betonin suhteellisen kosteuden mittaus Betonin suhteellisen kosteuden mittaus 1. BETONIN SUHTEELLISEN KOSTEUDEN TARKOITUS 2. KOHTEEN LÄHTÖTIEDOT 3. MITTAUSSUUNNITELMA 4. LAITTEET 4.1 Mittalaite 4.2 Mittalaitteiden tarkastus ja kalibrointi 5.

Lisätiedot

MAANVASTAISTEN ALAPOHJARAKENTEIDEN KOSTEUSTEKNINEN TOIMIVUUS

MAANVASTAISTEN ALAPOHJARAKENTEIDEN KOSTEUSTEKNINEN TOIMIVUUS TAMPEREEN TEKNILLINEN KORKEAKOULU JULKAISU120 TALONRAKENNUSTEKNIIKKA Virpi Leivo - Jukka Rantala MAANVASTAISTEN ALAPOHJARAKENTEIDEN KOSTEUSTEKNINEN TOIMIVUUS R a k e n n u s t e k n i i k a n o s a s t

Lisätiedot

Tekijä: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo

Tekijä: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo Referaatti: CLT-rakenteiden rakennusfysikaalinen toimivuus Tekijä: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo Tehtävän kuvaus Selvitettiin laskennallista simulointia apuna

Lisätiedot

MAANVARAISTEN ALAPOHJARAKENTEIDEN KOSTEUSKÄYTTÄYTYMINEN

MAANVARAISTEN ALAPOHJARAKENTEIDEN KOSTEUSKÄYTTÄYTYMINEN TAMPEREEN TEKNILLINEN KORKEAKOULU JULKAISU 106 TALONRAKENNUSTEKNIIKKA GEOTEKNIIKKA Virpi Leivo Jukka Rantala MAANVARAISTEN ALAPOHJARAKENTEIDEN KOSTEUSKÄYTTÄYTYMINEN Nousukäyrä 90 80 70 60 50 40 30 20 Etäisyys

Lisätiedot

Jouko Lommi Neuvontainsinööri PRKK. Remonttikoulu

Jouko Lommi Neuvontainsinööri PRKK. Remonttikoulu Jouko Lommi Neuvontainsinööri PRKK Remonttikoulu Pientalorakentamisen Kehittämiskeskus PRKK ry PRKK ry on ainoa omakotirakentajia ja remontoijia edustava yhdistys Suomessa. Riippumaton yhdistys tarjoaa

Lisätiedot

TUTKIMUSSELOSTUS ULKOSEINÄRAKENTEEN LÄMPÖ- JA KOSTEUSTEKNINEN TARKASTELU HÖYRYNSULKUKALVON KIERTÄESSÄ PUURUNGON ULKOPUOLELTA 31.7.

TUTKIMUSSELOSTUS ULKOSEINÄRAKENTEEN LÄMPÖ- JA KOSTEUSTEKNINEN TARKASTELU HÖYRYNSULKUKALVON KIERTÄESSÄ PUURUNGON ULKOPUOLELTA 31.7. TUTKIMUSSELOSTUS ULKOSEINÄRAKENTEEN LÄMPÖ- JA KOSTEUSTEKNINEN TARKASTELU HÖYRYNSULKUKALVON KIERTÄESSÄ PUURUNGON ULKOPUOLELTA Tutkimusselostus 2 (20) Ulkoseinärakenteen lämpö- ja kosteustekninen tarkastelu

Lisätiedot

Kosteudenhallintasuunnitelman esimerkki

Kosteudenhallintasuunnitelman esimerkki 1 Kosteudenhallintasuunnitelman esimerkki Sisällysluettelo Hankkeen yleistiedot... 2 Laatutavoitteet... 3 Kosteusriskit... 4 Kuivumisajat... 5 Olosuhdehallinta... 6 Eritysohjeet... 7 Valvonta ja mittaus...

Lisätiedot

Kappale 5 sisällysluettelo

Kappale 5 sisällysluettelo Kappale 5 sisällysluettelo 5. RAKENTEIDEN KOSTEUSTEKNINEN KÄYTTÄYTYMINEN... 1 5.1 VEDEN OLOMUODOT... 1 5.2 VEDEN SITOUTUMINEN RAKENNUSAINEISIIN... 3 5.2.1 Hygroskooppinen tasapainokosteus... 3 5.2.2 Kapillaarinen

Lisätiedot

YLÄASTEEN A-RAKENNUKSEN SOKKELIRAKENTEIDEN LISÄTUTKIMUKSET

YLÄASTEEN A-RAKENNUKSEN SOKKELIRAKENTEIDEN LISÄTUTKIMUKSET LAUSUNTO 8.6.2009 Kaavin kunta / tekninen toimisto Ari Räsänen PL 13 73601 Kaavi YLÄASTEEN A-RAKENNUKSEN SOKKELIRAKENTEIDEN LISÄTUTKIMUKSET Kohde Taustaa Aikaisemmat tutkimukset Kaavin yläaste A-rakennus

Lisätiedot

Maanvastaisen alapohjan lämmöneristys

Maanvastaisen alapohjan lämmöneristys TUTKIMUSRAPORTTI VTT-R-04026-11 Maanvastaisen alapohjan lämmöneristys Kirjoittajat: Luottamuksellisuus: Jorma Heikkinen, Miimu Airaksinen Luottamuksellinen TUTKIMUSRAPORTTI VTT-R-04026-11 Sisällysluettelo

Lisätiedot

KIMOKUJAN KOULU KELLARITILOJEN KOSTEUSKARTOITUS

KIMOKUJAN KOULU KELLARITILOJEN KOSTEUSKARTOITUS KIMOKUJAN KOULU KELLARITILOJEN SISÄLLYSLUETTELO 1 TUTKIMUKSEN KOHDE JA LÄHTÖTIEDOT 3 1.1 Kiinteistön perustiedot 3 1.2 Tehtävä 3 1.3 Tutkimuksen sisältö, rajaus ja luotettavuus 3 1.4 Aikaisemmin todetut

Lisätiedot

Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn

Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn Yläpohjan sellukuitulämmöneristyksen painumisen vaikutus rakenteen kokonaislämmönläpäisyyn Asiakas: Työn sisältö Pahtataide Oy Selvityksessä tarkasteltiin kosteuden tiivistymisen riskiä yläpohjan kattotuolien

Lisätiedot

Energiatehokkaan rakentamisen parhaat käytännöt Perusteet

Energiatehokkaan rakentamisen parhaat käytännöt Perusteet Energiatehokkaan rakentamisen parhaat käytännöt Perusteet Rakennustyömaan energia ja kosteus Johdanto Lämmön siirtyminen Ilmankosteus, kastepiste Lämmön ja kosteuden riippuvuuksia Rakennustyömaan lämmitys

Lisätiedot

MISTÄ SE HOME TALOIHIN TULEE?

MISTÄ SE HOME TALOIHIN TULEE? MISTÄ SE HOME TALOIHIN TULEE? KOSTEUSVAURIOT JA MUUT SISÄILMAONGELMAT Juhani Pirinen 15.10.2014 Hieman kosteusvaurioista Kosteuden lähteet SADE, LUMI PUUTTEELLINEN TUULETUS VESIKATTEEN ALLA TIIVISTYMINEN

Lisätiedot

TIILIVERHOTTUJEN BETONISEINIEN KUIVUMINEN

TIILIVERHOTTUJEN BETONISEINIEN KUIVUMINEN TIILIVERHOTTUJEN BETONISEINIEN KUIVUMINEN Tilaaja Saint-Gobain Rakennustuotteet Oy / Kimmo Huttunen Laatija A-Insinöörit Suunnittelu Oy / Jarkko Piironen Suoritus 1.10. Laskentatarkastelut 2 Laskentatarkastelut

Lisätiedot

Puun kosteuskäyttäytyminen

Puun kosteuskäyttäytyminen 1.0 KOSTEUDEN VAIKUTUS PUUHUN Puu on hygroskooppinen materiaali eli puulla on kyky sitoa ja luovuttaa kosteutta ilman suhteellisen kosteuden vaihteluiden mukaan. Puu asettuu aina tasapainokosteuteen ympäristönsä

Lisätiedot

TUULETTUVA ALAPOHJA MAANVARAINEN ALAPOHJA RAKENNUSFYSIIKKA

TUULETTUVA ALAPOHJA MAANVARAINEN ALAPOHJA RAKENNUSFYSIIKKA TUULETTUVA ALAPOHJA MAANVARAINEN ALAPOHJA RAKENNUSFYSIIKKA TUULETTUVA ALAPOHJA TUULETTUVAN ALAPOHJAN KÄYTTÄYTYMINEN ERI VUODENAIKOINA KRIITTISIN AJANKOHTA ON KESÄLLÄ, JOLLOIN ULKOILMASSA ON SUURI MÄÄRÄ

Lisätiedot

ULKOSEINÄ VÄLISEINÄ Teräs, alapohjassa Sokkelin päällä Lattiapinnan päällä

ULKOSEINÄ VÄLISEINÄ Teräs, alapohjassa Sokkelin päällä Lattiapinnan päällä PÄIVÄMÄÄRÄ TYÖNUMERO TYÖN SUORITTAJA PUHELIN 29.07.13 7809 Joensuu Henri 0458814141 TILAAJA Euran kunta Sorkkistentie 10 27511 Eura Rantanen Markus 044 4224882 TYÖKOHDE Euran kunta Kotivainiontie 3 27400

Lisätiedot

KOSTEUDENHALLINTA ENERGIATEHOKKAASSA RAKENTAMISESSA

KOSTEUDENHALLINTA ENERGIATEHOKKAASSA RAKENTAMISESSA KOSTEUDENHALLINTA ENERGIATEHOKKAASSA RAKENTAMISESSA 28.3.2009 TkT Juha Vinha Energiatehokas koti tiivis ja terveellinen?, 28.3.2009 Helsingin Messukeskus PERUSASIAT KUNTOON KUTEN ENNENKIN Energiatehokas

Lisätiedot

ENSIRAPORTTI. Työ A11849. Läntinen Valoisenlähteentie 50 A Raportointi pvm: 01.12.2011. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2

ENSIRAPORTTI. Työ A11849. Läntinen Valoisenlähteentie 50 A Raportointi pvm: 01.12.2011. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2 ENSIRAPORTTI Läntinen Valoisenlähteentie 50 A Raportointi pvm: 01.12.2011 Työ TILAT: ISÄNNÖINTI: TILAAJA: LASKUTUSOSOITE: VASTAANOTTAJA (T): Läntinen valkoisenlähteentie 50 A Lummenpolun päiväkoti Päiväkodin

Lisätiedot

Lämmöneristemateriaalin vaikutus suojaustarpeeseen. Betonipäivät 2014 Toni Pakkala, TTY, Rakenteiden elinkaaritekniikka

Lämmöneristemateriaalin vaikutus suojaustarpeeseen. Betonipäivät 2014 Toni Pakkala, TTY, Rakenteiden elinkaaritekniikka Lämmöneristemateriaalin vaikutus suojaustarpeeseen Betonipäivät 2014 Toni Pakkala, TTY, Rakenteiden elinkaaritekniikka Lämmöneristemateriaalin vaikutus suojaustarpeeseen Sisältö 1. Rakennusvaiheen kosteuslähteet

Lisätiedot

PL 6007 00021, Laskutus 153021000 / Anne Krokfors. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2

PL 6007 00021, Laskutus 153021000 / Anne Krokfors. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2 ENSIRAPORTTI raportointipäivä : 4.8.2011 Työ : TILAAJA: Vantaan kaupunki ISÄNNÖINTI: Vantaan kaupunki / HUOLTO: Kouluisäntä: 0400 765 713 LASKUTUSOSOITE: Vantaan Kaupunki PL 6007 00021, Laskutus 153021000

Lisätiedot

RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet -julkistamisseminaari 13.11.2012

RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet -julkistamisseminaari 13.11.2012 RIL 107-2012 Rakennusten veden- ja kosteudeneristysohjeet -julkistamisseminaari 13.11.2012 Julkaisun tavoitteet ja yleiset periaatteet Pekka Laamanen 14.11.2012 1 RIL 107-2012 Julkaisu sisältää veden-

Lisätiedot

RAKENTEET. Lähde: www.kosteudenhallinta.fi, versio 30.9.2015 RAKENTEET

RAKENTEET. Lähde: www.kosteudenhallinta.fi, versio 30.9.2015 RAKENTEET Alapohjat ja perustukset Maanvastaiset alapohjat Ryömintätilalliset eli tuulettuvat alapohjat Tuulettuvan alapohjan kosteusriskikohtia Salaojien kosteusriskikohtia Kellarin seinien kosteusriskikohtia 2

Lisätiedot

TOIMET. Lähde: www.kosteudenhallinta.fi, versio 30.9.2015 TOIMET

TOIMET. Lähde: www.kosteudenhallinta.fi, versio 30.9.2015 TOIMET Kuivatus Rakenteiden kuivumisaika- arvion laatiminen Kuivumisajan huomioiminen aikataulussa Kuivatuksen suunnittelu ja toteutus Yleisiä kuivatukseen liittyviä asioita 2 3 3 4 5 1 KUIVATUS Suuri osa rakenteista

Lisätiedot

Tuuletettu puualapohja

Tuuletettu puualapohja Tuuletus max 8 800 mm 1.0 ALAPOHJAN TUULENSUOJA Tuulensuojalevyt tulee kiinnittää jokaiselta reunaltaan ja tukea siten, että levyyn ei synny haitallisia taipumia. Levyjen jatkokset tehdään tukilautojen

Lisätiedot

Vakuutusyhtiö: TilPuh1: TilPuh2: Koulurakennus Betonirunko/tiiliverhoiltu Harjakatto. Putkien sijainti

Vakuutusyhtiö: TilPuh1: TilPuh2: Koulurakennus Betonirunko/tiiliverhoiltu Harjakatto. Putkien sijainti TILAAJA: Pomarkun Kunta PL 14 29631 Pomarkku MITTAUSPÖYTÄKIRJA Työnsuorittaja: Juha Paappanen 045 1147 100 KOHDE: Yläaste ja Lukio Lukiotie 5 29630 Pomarkku Vakuutusyhtiö: 93 097 22.09.2011 Sivu: 1 (Kosteuskartoitus)

Lisätiedot

Hangon neuvola, Korjaustapaehdotus

Hangon neuvola, Korjaustapaehdotus S U U N N IT T EL U JA T EK N IIK K A HANGON KAUPUNKI Hangon neuvola, Korjaustapaehdotus FCG SUUNNITTELU JA TEKNIIKKA OY Sami Heikkilä, Juhani Pirinen Sisällysluettelo 1 Korjaustapaehdotus rakenneosittain...

Lisätiedot

Betonikoulutus 28.11.2013

Betonikoulutus 28.11.2013 Betonikoulutus 28.11.2013 Betonin kosteuden ja kuivumisen hallinta Ilman kosteus 1 Ulkoilman keskimääräinen vuotuinen suhteellinen kosteus RH (%) ja vesihöyrypitoisuus (g/m³) Suomessa ULKOILMAN SEKÄ AS.

Lisätiedot

KARTOITUSRAPORTTI. Rälssitie 13 01510 VANTAA 567/2609 25.9.2013

KARTOITUSRAPORTTI. Rälssitie 13 01510 VANTAA 567/2609 25.9.2013 KARTOITUSRAPORTTI Rälssitie 13 01510 VANTAA 567/2609 25.9.2013 KARTOITUSRAPORTTI 2 KOHDETIEDOT... 3 LÄHTÖTIEDOT... 4 RAKENTEET... 4 SUORITETUT TYÖT SEKÄ HAVAINNOT... 4 JOHTOPÄÄTÖKSET JA SUOSITUKSET...

Lisätiedot

T9003 Tutkimusraportti 1(9) Myllypuron ala-asteen sivukoulu ja päiväkoti 23.4.2009 SISÄLLYSLUETTELO

T9003 Tutkimusraportti 1(9) Myllypuron ala-asteen sivukoulu ja päiväkoti 23.4.2009 SISÄLLYSLUETTELO T9003 Tutkimusraportti 1(9) sivukoulu ja päiväkoti 23.4.2009 SISÄLLYSLUETTELO 1 TUTKIMUSKOHDE... 2 2 TUTKIMUSMENETELMÄT... 3 2.1 Rakenteiden tutkimukset... 3 2.2 Mikrobit... 3 2.3 Kosteusmittaukset...

Lisätiedot

MITTAUSRAPORTTI. Työ : 514/3248. Kohde: Hämeenkylän koulu. Raportointipäivä : 24.6.2014. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2

MITTAUSRAPORTTI. Työ : 514/3248. Kohde: Hämeenkylän koulu. Raportointipäivä : 24.6.2014. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2 MITTAUSRAPORTTI Kohde: Hämeenkylän koulu Raportointipäivä : 2462014 Työ : 514/3248 etunimisukunimi@akumppanitfi 01740 Vantaa wwwkuivauspalvelutfi KOHDE: Hämeenkylän koulu TILAN VUOKRALAINEN: TILAAJA: Vantaan

Lisätiedot

RAKENNUSVALVONTA. Krista Niemi 27.2.2013

RAKENNUSVALVONTA. Krista Niemi 27.2.2013 Krista Niemi 27.2.2013 Kosteudenhallinnalla tarkoitetaan niitä toimenpiteitä, joilla pyritään estämään haitallisen kosteuden kertyminen rakennukseen Kosteudenhallinnan tavoitteena on Estää kosteusvaurioiden

Lisätiedot

VESIKATON JA YLÄPOHJAN KUNTOTUTKIMUS

VESIKATON JA YLÄPOHJAN KUNTOTUTKIMUS VESIKATON JA YLÄPOHJAN KUNTOTUTKIMUS Seuraavassa käsitellään vesikaton ja yläpohjan kuntotutkimusta. Kuntotutkimuksessa tarkastellaan vesikatteen ja sen alusrakenteen lisäksi mahdollista tuuletustilaa

Lisätiedot

HIRSITALON LISÄERISTYKSEN TUTKIMUS

HIRSITALON LISÄERISTYKSEN TUTKIMUS HIRSITALON LISÄERISTYKSEN TUTKIMUS Jarno Karjalainen Oulun seudun ammattikorkeakoulu 2011 HIRSITALON LISÄERISTYKSEN TUTKIMUS Jarno Karjalainen Opinnäytetyö 2011 Rakennustekniikan koulutusohjelma Oulun

Lisätiedot

Kartoittaja: Esa Ahlsten 040 505 8437 esa.ahlsten@wdkuivaus.fi. E, Kiskonen 040 5000 9981 kirsi-tiina.kiskonen@op.fi

Kartoittaja: Esa Ahlsten 040 505 8437 esa.ahlsten@wdkuivaus.fi. E, Kiskonen 040 5000 9981 kirsi-tiina.kiskonen@op.fi Sivu 1/7 Kartoitusraportti: Päivämäärä: 28.9.2011 Kartoittaja: Esa Ahlsten 040 505 8437 esa.ahlsten@wdkuivaus.fi Tilaaja: Markku Mikkelson 040 735 1908 Laskutus: Kohde: Osoite/asukas: As Oy Hösmärinmäki,

Lisätiedot

Tutkimusraportti Työnumero: 051121200197

Tutkimusraportti Työnumero: 051121200197 Vastaanottaja: Kimmo Valtonen Sivuja:1/7 Tutkimusraportti Kohde: Toimeksianto: Taipalsaaren sairaala Os. 13 huone 2 Kirjamoinkaari 54915 SAIMAANHARJU Kosteuskartoitus Tilaaja: Kimmo Valtonen 14.4 Läsnäolijat:

Lisätiedot

POHJOIS-SUOMEN TALOKESKUS OY

POHJOIS-SUOMEN TALOKESKUS OY Pesuhuoneremontit Tero Pyykkönen Oulu 2.9. 2010 Oulu Märkätila tarkoittaa huonetilaa, jonka lattiapinta joutuu tilan käyttötarkoituksen vuoksi vedelle alttiiksi ja jonka seinäpinnoille voi roiskua tai

Lisätiedot

KYMENLAAKSON AMMATTIKORKEAKOULU Rakennustekniikan koulutusohjelma/korjausrakentaminen ja rakennusrestaurointi

KYMENLAAKSON AMMATTIKORKEAKOULU Rakennustekniikan koulutusohjelma/korjausrakentaminen ja rakennusrestaurointi KYMENLAAKSON AMMATTIKORKEAKOULU Rakennustekniikan koulutusohjelma/korjausrakentaminen ja rakennusrestaurointi Aaro-Matti Pakkanen MAANVARAISTEN ALAPOHJIEN VAURIOMEKANISMIT Opinnäytetyö 2011 TIIVISTELMÄ

Lisätiedot

Työn nro. PL 120 30101 Forssa puh. 03 4243 100 www.foamit.fi. Päiväys. Lattianpäällyste huoneselostuksen mukaan

Työn nro. PL 120 30101 Forssa puh. 03 4243 100 www.foamit.fi. Päiväys. Lattianpäällyste huoneselostuksen mukaan MAANVARAINEN ALAPOHJA puh 03 4243 100 wwwfoamitfi AP 101 X Lattianpäällyste huoneselostuksen mukaan Tasoite tarvittaessa rakennusselostuksen mukaan 60 mm Teräsbetonilaatta, raudoitus betoniteräsverkolla

Lisätiedot

RISKIRAKENTEET JA SISÄILMAONGELMAT RTA PÄÄTÖSSEMINAARI KUOPIOSSA 25.02.2015

RISKIRAKENTEET JA SISÄILMAONGELMAT RTA PÄÄTÖSSEMINAARI KUOPIOSSA 25.02.2015 RTA PÄÄTÖSSEMINAARI KUOPIOSSA 25.02.2015 Kuntotutkija Pertti Heikkinen pera.heikkinen@savoraoy.com RTA, mikä on riskirakenne? Rakenne, joka kosteusvaurioituu tilojen ja rakenteiden normaalikäytössä tai

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Anttilan koulu, korjaustapaehdotus rakenneosittain

Anttilan koulu, korjaustapaehdotus rakenneosittain S U U N N IT T EL U JA T EK N IIK K A LOHJAN KAUPUNKI Anttilan koulu, korjaustapaehdotus rakenneosittain FCG SUUNNITTELU JA TEKNIIKKA OY Jokelainen Heidi-Johanna Sisällysluettelo 1 Korjaustapaehdotus rakenneosittain...

Lisätiedot

KYMENLAAKSON AMMATTIKORKEAKOULU Rakennustekniikan koulutusohjelma/korjausrakentaminen ja rakennusrestaurointi

KYMENLAAKSON AMMATTIKORKEAKOULU Rakennustekniikan koulutusohjelma/korjausrakentaminen ja rakennusrestaurointi KYMENLAAKSON AMMATTIKORKEAKOULU Rakennustekniikan koulutusohjelma/korjausrakentaminen ja rakennusrestaurointi Aaro-Matti Pakkanen MAANVARAISTEN ALAPOHJIEN VAURIOMEKANISMIT Opinnäytetyö 2011 TIIVISTELMÄ

Lisätiedot

TUTKIMUSSELOSTUS Nro VTT-S-02869-08 26.03.2008. Termex Zero -seinärakenteen lämmönläpäisykerroin

TUTKIMUSSELOSTUS Nro VTT-S-02869-08 26.03.2008. Termex Zero -seinärakenteen lämmönläpäisykerroin TUTKIMUSSELOSTUS Nro VTT-S-02869-08 26.03.2008 Termex Zero -seinärakenteen lämmönläpäisykerroin ja kosteustekninen toimivuus Tilaaja: Termex-Eriste Oy TUTKIMUSSELOSTUS NRO VTT-S-02869-08 1 (5) Tilaaja

Lisätiedot

Harjoitus 7. Kovettuvan betonin lämmönkehityksen arvioiminen, kuumabetonin suhteitus, betonirakenteen kuivuminen ja päällystettävyys

Harjoitus 7. Kovettuvan betonin lämmönkehityksen arvioiminen, kuumabetonin suhteitus, betonirakenteen kuivuminen ja päällystettävyys Harjoitus 7 Kovettuvan betonin lämmönkehityksen arvioiminen, kuumabetonin suhteitus, betonirakenteen kuivuminen ja päällystettävyys Kovetuvan betonin lämpötilan kehityksen laskenta Alkulämpötila Hydrataatiolämpö

Lisätiedot

Mittauspöytäkirja. Sivuja:1/10. Vastaanottaja: Gun Adamsson. Mätsästäjänkuja 7 A 3, Tammisaari. Tutkimus pvm: 14.8.15. Raportointi pvm: 14.

Mittauspöytäkirja. Sivuja:1/10. Vastaanottaja: Gun Adamsson. Mätsästäjänkuja 7 A 3, Tammisaari. Tutkimus pvm: 14.8.15. Raportointi pvm: 14. Sivuja:1/10 Vastaanottaja: Gun Adamsson Mittauspöytäkirja Kohde: Toimeksianto: Mätsästäjänkuja 7 A 3, Tammisaari Pintamittaus Tutkimus pvm: 14.8.15 Raportointi pvm: 14.815 Yhteyshenkilö: Gun Adamsson Tutkijat:

Lisätiedot

Raportti. Yhteystiedot: Isännöitsijä Jyri Nieminen p. 020 743 8254. Tarkastaja/pvm: Janne Mikkonen p. 045 1200 430 / 3.9.2015

Raportti. Yhteystiedot: Isännöitsijä Jyri Nieminen p. 020 743 8254. Tarkastaja/pvm: Janne Mikkonen p. 045 1200 430 / 3.9.2015 As Oy Juhannusaamu c/o Realco Tikkurila Oy Unikkotie 13 01300 Vantaa Raportti Kohde: As Oy Juhannusaamu Juhannustie 2 G Helsinki Tilaaja: Realco Tapani Ollila p. 0400 444 106 Toimeksianto: Kosteuskartoitus

Lisätiedot

Professori Ralf Lindberg Tampereen teknillinen yliopisto

Professori Ralf Lindberg Tampereen teknillinen yliopisto Professori Ralf Lindberg Tampereen teknillinen yliopisto Dekaani, Tampereen teknillinen yliopisto, Rakennetun ympäristön tiedekunta 1.1.2008-31.12.2009 Rakennustekniikan osaston varajohtaja, Tampereen

Lisätiedot

Tampereen kaupunkiseudun infrapalvelujen seutuseminaari III 4.6.2014. Kosteusongelmiin liittyviä korjauksia on tehty jo lähes kaksi vuosikymmentä.

Tampereen kaupunkiseudun infrapalvelujen seutuseminaari III 4.6.2014. Kosteusongelmiin liittyviä korjauksia on tehty jo lähes kaksi vuosikymmentä. Kaupunki kasvaa rapautuuko infra? Tampereen kaupunkiseudun infrapalvelujen seutuseminaari III 4.6.2014 Mistä sisäilmaongelmat johtuvat? Professori Ralf Lindberg Kosteusongelmiin liittyviä korjauksia on

Lisätiedot

Uuden Termex Zero -seinärakenteen lämmönläpäisykerroin

Uuden Termex Zero -seinärakenteen lämmönläpäisykerroin TUTKIMUSSELOSTUS Nro VTT- S-04065-09 Uuden Termex Zero -seinärakenteen lämmönläpäisykerroin ja kosteustekninen toimivuus Tilaaja: Termex-Eriste Oy TUTKIMUSSELOSTUS NRO VTT- S-04065-09 1 (5) Tilaaja Tilaus

Lisätiedot

Lämmön siirtyminen rakenteessa. Lämpimästä kylmempään päin Lämpötilat rakenteen eri puolilla pyrkivät tasoittumaan

Lämmön siirtyminen rakenteessa. Lämpimästä kylmempään päin Lämpötilat rakenteen eri puolilla pyrkivät tasoittumaan Mikko Myller Lämmön siirtyminen rakenteessa Lämpimästä kylmempään päin Lämpötilat rakenteen eri puolilla pyrkivät tasoittumaan Lämpöhäviöt Lämpö siirtyy 1) Kulkeutumalla (vesipatterin putkisto, iv-kanava)

Lisätiedot

Håkansbölen pyykkitupa Ratsumestarintie 5 01200 VANTAA. Rakennetutkimus Alapohja, ulkoseinärakenteet

Håkansbölen pyykkitupa Ratsumestarintie 5 01200 VANTAA. Rakennetutkimus Alapohja, ulkoseinärakenteet Rakennetutkimus Alapohja, ulkoseinärakenteet Håkansbölen pyykkitupa Ratsumestarintie 5 01200 VANTAA Vetotie 3 A FI-01610 Vantaa p. 0207 495 500 www.raksystems-anticimex.fi Y-tunnus: 0905045-0 Rakennetutkimus

Lisätiedot

KATARIINA LAINE RAKENNUSMATERIAALIEN RAKENNUSFYSIKAALISET OMINAISUUDET. Diplomityö

KATARIINA LAINE RAKENNUSMATERIAALIEN RAKENNUSFYSIKAALISET OMINAISUUDET. Diplomityö KATARIINA LAINE RAKENNUSMATERIAALIEN RAKENNUSFYSIKAALISET OMINAISUUDET Diplomityö Tarkastajat: dosentti Juha Vinha ja diplomi-insinööri Kimmo Lähdesmäki Tarkastajat ja aihe hyväksytty Rakennetun ympäristön

Lisätiedot

ERI TUTKIMUSMENETELMIEN VERTAILUA LAAJA-ALAISEN MUOVIMATTO-ONGELMAN (VOC) TUTKIMISESSA

ERI TUTKIMUSMENETELMIEN VERTAILUA LAAJA-ALAISEN MUOVIMATTO-ONGELMAN (VOC) TUTKIMISESSA ERI TUTKIMUSMENETELMIEN VERTAILUA LAAJA-ALAISEN MUOVIMATTO-ONGELMAN (VOC) TUTKIMISESSA RTA-lopputyöseminaari 24.9.2015 Kimmo Lähdesmäki Difina Oy OPINNÄYTETYÖN LÄHTÖKOHTA Opinnäytetyö pohjautuu laajaan

Lisätiedot

KUNTOARVIOISTA: Rakennustekniikka

KUNTOARVIOISTA: Rakennustekniikka KUNTOARVIOISTA: A-Insinöörit Suunnittelu Oy Kauhava; Pernaan koulu KUNTOARVIO Rakennukset ovat rakennusteknisiltä osiltaan tyydyttävässä sekä osin vain välttävässä kunnossa. Merkittävimmät kustannukset

Lisätiedot

192-0330-9701 ALUSTILAN TIIVEYS- JA KUNTOSELVITYS 1 (7) Teemu Männistö, RI (09) 887 9248 tma@ako.fi

192-0330-9701 ALUSTILAN TIIVEYS- JA KUNTOSELVITYS 1 (7) Teemu Männistö, RI (09) 887 9248 tma@ako.fi 1 (7) K.osa/Kylä Kortteli/Tila Tontti/nro Viranomaisten merkintöjä Rakennustoimenpide Asiakirjan nimi Juoks.nro KUNTOSELVITYS RAPORTTI Rakennuskohde Asiakirjan sisältö MYYRMÄEN AMMATTIKOULU ASUNTOLA Ojahaantie

Lisätiedot

Tarhapuiston päiväkoti, Havukoskentie 7, Vantaa. 24.11.2011 Työnumero:

Tarhapuiston päiväkoti, Havukoskentie 7, Vantaa. 24.11.2011 Työnumero: RAKENNETEKNINEN SELVITYS LIITE 4 s. 1 1 RAKENTEET 1.1 YLEISKUVAUS Tutkittava rakennus on rakennettu 1970-luvun jälkipuoliskolla. Rakennukseen on lisätty huoltoluukut alustatilaan 1999. Vesikatto on korjattu

Lisätiedot

Käpylän peruskoulun sisäilma- ja kosteusongelmiin liittyvä katselmus

Käpylän peruskoulun sisäilma- ja kosteusongelmiin liittyvä katselmus 1 Helsingin kaupunki MUISTIO HKR-Rakennuttaja Rakennuttajatoimisto 1 Riitta Harju 9.3.2009 Käpylän peruskoulu Väinölänkatu 7 ja Untamontie 2 00610 HELSINKI Käpylän peruskoulun sisäilma- ja kosteusongelmiin

Lisätiedot

CLT-rakenteiden rakennusfysikaalinen toimivuus

CLT-rakenteiden rakennusfysikaalinen toimivuus CLT-rakenteiden rakennusfysikaalinen toimivuus Tutkija: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo Laatinut: Lappia / Martti Mylly Tehtävän kuvaus Selvitettiin laskennallista

Lisätiedot

Rakenteiden Mekaniikka, Vol. 28. No 2, 1995, s. 35-49

Rakenteiden Mekaniikka, Vol. 28. No 2, 1995, s. 35-49 Lampotila- ja kosteuskentta puukerrostalon ulkoseinan ja valipohjan Iiitoksessa Markku Sahlstrom Mikko Kilpelainen Rakenteiden Mekaniikka, Vol. 28 No 2, 1995, s. 35-49 Tiivistelma Artikkelissa kasitellaan

Lisätiedot

Puurunkoisten ulkoseinärakenteiden kosteustekninen toiminta

Puurunkoisten ulkoseinärakenteiden kosteustekninen toiminta Puurunkoisten ulkoseinärakenteiden kosteustekninen toiminta Juha Vinha, tekniikan lisensiaatti Erikoistutkija, TTKK Talonrakennustekniikan laboratorio juha.vinha@tut.fi 1 Johdanto Ulkovaipan rakenteiden

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

LOPPUMITTAUSPÖYTÄKIRJA Työnumero: 350 1837

LOPPUMITTAUSPÖYTÄKIRJA Työnumero: 350 1837 LOPPUMITTAUSPÖYTÄKIRJA Työnumero: 350 1837 Kohde: Päiväkummun koulu Osoite: Ismontie 2, 01420 Vantaa Yhteyshenkilö: ISS / Harry Rummukainen p. 040-518 3681 harry.rummukainen@iss.fi Vahinkotapahtuma: Kellarikerroksen

Lisätiedot

Riskikartoitus ja jatkotutkimussuunnitelma. Tuhkala Pyhäjärventie 7 59800 Kesälahti

Riskikartoitus ja jatkotutkimussuunnitelma. Tuhkala Pyhäjärventie 7 59800 Kesälahti Riskikartoitus ja jatkotutkimussuunnitelma Tuhkala Pyhäjärventie 7 59800 Kesälahti 2/9 Rekkatie 3 80100 Joensuu Tapani Hirvonen Kiteen kaupunki / Tekninen keskus Kiteentie 25 82500 Kitee Kohde Tuhkala

Lisätiedot

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet Näin lisäeristät 4 Sisäpuolinen lisäeristys Tuotteina PAROC extra ja PAROC-tiivistystuotteet Tammikuu 202 Sisäpuolinen lisälämmöneristys Lisäeristyksen paksuuden määrittää ulkopuolelle jäävän eristeen

Lisätiedot

Maanvastaisten rakenteiden mikrobiologinen toimivuus

Maanvastaisten rakenteiden mikrobiologinen toimivuus Tampereen teknillinen yliopisto. Rakennetekniikan laitos. Tutkimusraportti 139 Tampere University of Technology. Institute of Structural Engineering. Research Report 139 Virpi Leivo & Jukka Rantala Maanvastaisten

Lisätiedot

KOSTEUSKARTOITUS. Korsontie 52 01450 Vantaa 1/6. Työnumero: 09187. Scan-Clean Oy Y-tunnus: 0690693-8. www.asb.fi 24 h päivytys puh: +358 40 717 9330

KOSTEUSKARTOITUS. Korsontie 52 01450 Vantaa 1/6. Työnumero: 09187. Scan-Clean Oy Y-tunnus: 0690693-8. www.asb.fi 24 h päivytys puh: +358 40 717 9330 1/6 KOSTEUSKARTOITUS Korsontie 52 01450 Vantaa Työnumero: 09187 Scan-Clean Oy Y-tunnus: 0690693-8 www.asb.fi 24 h päivytys puh: +358 40 717 9330 Konalankuja 4, 00390 Helsinki puh: 0207 311 140 faksi: 0207

Lisätiedot

Tasoitteiden alkaliselta kosteudelta suojaavat ominaisuudet

Tasoitteiden alkaliselta kosteudelta suojaavat ominaisuudet 1 (7) Tasoitteiden alkaliselta kosteudelta suojaavat ominaisuudet Kehityspäällikkö Gunnar Laurén, Saint-Gobain Weber Oy Ab Johdanto Lattiapäällysteiden kosteusherkkyys on ollut jo pitkään tiedossa, mm

Lisätiedot

Vantaan kaupungintalo. Kellarikerroksen seinärakenteiden kosteusmittaus ja kuivumisaikaselvitys 4.6.2008 TUTKIMUSRAPORTTI

Vantaan kaupungintalo. Kellarikerroksen seinärakenteiden kosteusmittaus ja kuivumisaikaselvitys 4.6.2008 TUTKIMUSRAPORTTI Vantaan kaupungintalo Kellarikerroksen seinärakenteiden kosteusmittaus ja kuivumisaikaselvitys 4.6.2008 INSINÖÖRITOIMISTO MIKKO VAHANEN OY/ HUMI-GROUP Halsuantie 4, 00420 Helsinki Puh. 0207 698 698, fax

Lisätiedot

PÄIVÄMÄÄRÄ TYÖNUMERO TYÖN SUORITTAJA PUHELIN TYÖKOHDE. Välikarintie 62 29100 Luvia

PÄIVÄMÄÄRÄ TYÖNUMERO TYÖN SUORITTAJA PUHELIN TYÖKOHDE. Välikarintie 62 29100 Luvia PÄIVÄMÄÄRÄ TYÖNUMERO TYÖN SUORITTAJA PUHELIN 13.11.15 10185 Markku Viljanen 050 9186694 TILAAJA Satakunnan Ulosottovirasto PL44 28101 Pori sari.merivalli@oikeus.fi TYÖKOHDE Välikarintie 62 29100 Luvia

Lisätiedot

RAKENTEIDEN LÄMMÖNERISTÄVYYDEN SUUNNITTELU

RAKENTEIDEN LÄMMÖNERISTÄVYYDEN SUUNNITTELU 466111S Rakennusfysiikka (aik. 460160S) RAKENTEIDEN LÄMMÖNERISTÄVYYDEN SUUNNITTELU Raimo Hannila / (Professori Mikko Malaska) Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma, osat

Lisätiedot

TOIMET. Mittaus Rakenteista tehtävät mittaukset Rakenteiden pinnoitettavuusvaatimukset Kuivumisolosuhteiden mittaaminen

TOIMET. Mittaus Rakenteista tehtävät mittaukset Rakenteiden pinnoitettavuusvaatimukset Kuivumisolosuhteiden mittaaminen Mittaus Rakenteista tehtävät mittaukset Rakenteiden pinnoitettavuusvaatimukset Kuivumisolosuhteiden mittaaminen 2 2 4 4 1 MITTAUS Työmaalla mitattavia asioita ovat kuivumisolosuhteet sekä rakenteiden kosteuspitoisuudet.

Lisätiedot

Kosteusmittausten haasteet

Kosteusmittausten haasteet Kosteusmittausten haasteet Luotettavuutta päästökauppaan liittyviin mittauksiin, MIKES 21.9.2006 Martti Heinonen Tavoite Kosteusmittaukset ovat haastavia; niiden luotettavuuden arviointi ja parantaminen

Lisätiedot

KOSTEUSMITTAUSRAPORTTI 16.05.2011

KOSTEUSMITTAUSRAPORTTI 16.05.2011 KOSTEUSMITTAUSRAPORTTI 16.05.2011 KOHDE TILAAJA - Kaivohaka 3-5 b 66, 13210 Hämeenlinna / Matintalot - Kohteen vuokralainen KÄYTTÖTARKOITUS - Tarkoitus selvittää suihkuhuoneen lattiapäällysteen aluskosteus

Lisätiedot

Rakenteiden kosteustekniikka ja FUTBEMS -hanke FInZEB Työpaja 18.9.2014 Tuomo Ojanen Erikoistutkija, VTT

Rakenteiden kosteustekniikka ja FUTBEMS -hanke FInZEB Työpaja 18.9.2014 Tuomo Ojanen Erikoistutkija, VTT Kuvapaikka (ei kehyksiä kuviin) Rakenteiden kosteustekniikka ja FUTBEMS -hanke FInZEB Työpaja 18.9.2014 Tuomo Ojanen Erikoistutkija, VTT Click Esityksen to edit sisältö Master title style Lisääkö hyvä

Lisätiedot

Rauno Pakanen tutkimusinsinööri, sertifioitu kosteudenmittaaja. Gsm 050 4680020 e-mail rauno.pakanen@kortes.fi

Rauno Pakanen tutkimusinsinööri, sertifioitu kosteudenmittaaja. Gsm 050 4680020 e-mail rauno.pakanen@kortes.fi TIIVISTELMÄ Ryhmäperhepäiväkoti Okariina, Vantaa, märkätilojen rakenne- ja kuntoselvitys. Tutkimuksen tilaajana oli Arto Alanko Vantaan kaupungin tilakeskuksesta. Päiväkodin märkätilojen rakenne- ja kuntoselvitys

Lisätiedot

(1A) Rakennuksen ulkonurkkien puutteellinen routasuojaus

(1A) Rakennuksen ulkonurkkien puutteellinen routasuojaus 04.03.2001 (1A) Rakennuksen ulkonurkkien puutteellinen routasuojaus Kattovesien ohjaus seinänvierustalle Puutteellinen ulkonurkan routasuojaus Riittämätön pinnankallistus Toimimaton salaojitus Virheellinen

Lisätiedot

Kosteuskartoitusraportti

Kosteuskartoitusraportti Kosteuskartoitusraportti Työnumero: 6392 Aloituspäivä: 21.07.2014 Mittaaja: Jani Kärkkänen p.050-5936931, jani.karkkanen@priimax.fi, Sertifioitu rakenteiden kosteudenmittaaja: VTT-C-3137-24-08 Mittalaite:

Lisätiedot

WehoFloor Lattialämmitysjärjestelmä

WehoFloor Lattialämmitysjärjestelmä WehoFloor Lattialämmitysjärjestelmä VIIHTYISÄ Ilmasto-olosuhteet Suomessa asettavat lämmitysjärjestelmän vaatimukset korkealle. Pitkienkin pakkasjaksojen aikana lämmitysjärjestelmän on toimittava energiataloudellisesti

Lisätiedot

16.3.2015 SISÄILMAN MIKROBITUTKIMUS

16.3.2015 SISÄILMAN MIKROBITUTKIMUS 16.3.2015 SISÄILMAN MIKROBITUTKIMUS PERTUN PARAKKIKOULU 05400 JOKELA 05400 JOKELA 2/6 SISÄLLYSLUETTELO 1. KOHTEEN YLEISTIEDOT... 3 1.1 Kohdetiedot ja tilaaja... 3 1.2 Toimeksiannon laatija... 3 1.3 Toimeksiannon

Lisätiedot

WehoFloor Lattialämmitysjärjestelmä

WehoFloor Lattialämmitysjärjestelmä WehoFloor Lattialämmitysjärjestelmä Viihtyisä Ilmasto-olosuhteet Suomessa asettavat lämmitysjärjestelmän vaatimukset korkealle. Pitkienkin pakkasjaksojen aikana lämmitysjärjestelmän on toimittava energiataloudellisesti

Lisätiedot

MAANVAISTEN LATTIA- JA SEINÄRAKENTEIDEN KOS- TEUSMITTAUKSET, VAIHE 1

MAANVAISTEN LATTIA- JA SEINÄRAKENTEIDEN KOS- TEUSMITTAUKSET, VAIHE 1 MAANVAISTEN LATTIA- JA SEINÄRAKENTEIDEN KOS- TEUSMITTAUKSET, VAIHE 1 Uomarinteen koulu, Vantaa Mall: Allmän - Stående - 2003.dot ver 1.0 WSP Finland Oy 1 (3) 1. TUTKIMUKSEN KOHDE JA TEHTÄVÄ 1.1 Kohde 1.2

Lisätiedot

SEINÄJOEN KAUPUNKI ROVEKSEN POHJATUTKIMUS POHJATUTKIMUSSELOSTUS 10.8.2010

SEINÄJOEN KAUPUNKI ROVEKSEN POHJATUTKIMUS POHJATUTKIMUSSELOSTUS 10.8.2010 3136 SEINÄJOEN KAUPUNKI POHJATUTKIMUSSEOSTUS 10.8.2010 SUUNNITTEUTOIMISTO 3136 AUETEKNIIKKA OY TUTKIMUSSEOSTUS JP 10.8.2010 SISÄYSUETTEO 1 TEHTÄVÄ JA SUORITETUT TUTKIMUKSET... 1 2 TUTKIMUSTUOKSET... 1

Lisätiedot

Rakennusten ja huoneistojen vesivuotovahinkojen tutkiminen -ohje

Rakennusten ja huoneistojen vesivuotovahinkojen tutkiminen -ohje Rakennusten ja huoneistojen vesivuotovahinkojen tutkiminen -ohje Rakennusten ja huoneistojen vesivuotovahinkojen Sisältö 1 JOHDANTO... 1 2 OHJEEN KÄYTTÖ... 1 3 MÄÄRITELMIÄ... 1 4 KOSTEUDEN SYYT JA LAAJUUS...

Lisätiedot

ENSIRAPORTTI/LISÄTUTKIMUS

ENSIRAPORTTI/LISÄTUTKIMUS ENSIRAPORTTI/LISÄTUTKIMUS Vantaan taidemuseo, Paalutori 3 01600 VANTAA Raportointi pvm: 26.3.2012 Työ A12283 KOHDE: TILAT: TILAAJA: ISÄNNÖINTI: Vantaan Taidemuseo, Paalutori 3 01600 VANTAA Näyttelytila

Lisätiedot

SIUNTION KUNTA PALONUMMENMÄKI PALONUMMENKAARI K 180 T 1-6, K 179 T 4, K 181 T 1-2 Siuntio POHJATUTKIMUSLAUSUNTO. Työ 4204/13

SIUNTION KUNTA PALONUMMENMÄKI PALONUMMENKAARI K 180 T 1-6, K 179 T 4, K 181 T 1-2 Siuntio POHJATUTKIMUSLAUSUNTO. Työ 4204/13 SIUNTION KUNTA PALONUMMENMÄKI PALONUMMENKAARI K 180 T 1-6, K 179 T 4, K 181 T 1-2 Siuntio POHJATUTKIMUSLAUSUNTO Työ 4204/13 UUDENMAAN MAANRAKENNUSSUUNNITTELU OY PL 145 gsm 0400 472 059 gsm 0400 409 808

Lisätiedot

RAKENNUSVALVONTA. Tommi Riippa 18.4.2013

RAKENNUSVALVONTA. Tommi Riippa 18.4.2013 Tommi Riippa 18.4.2013 LISÄERISTÄMINEN Lämpöä eristävän materiaalin lisäämisellä rakenteen lämmöneristävyys kasvaa Energian kulutus vähenee, mutta rakenteen ulko-osien olosuhteet huononevat Lisäeristeen

Lisätiedot

Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen

Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen FRAME 08.11.2012 Tomi Pakkanen Tampereen teknillinen yliopisto, Rakennustekniikan laitos Sisäisen konvektion vaikutus yläpohjan lämmöneristävyyteen - Kokeellinen tutkimus - Diplomityö Laboratoriokokeet

Lisätiedot

Energiatehokkuus puurakentamisessa Puurakentamisen Roadshow 20.03.2013

Energiatehokkuus puurakentamisessa Puurakentamisen Roadshow 20.03.2013 Energiatehokkuus puurakentamisessa Puurakentamisen Roadshow 20.03.2013 Rakennusten energiatehokkuus Rakennusten energiatehokkuuden parantamiseen on sitouduttu koko Euroopan Unionin piirissä. Vuoteen 2020

Lisätiedot

Hydrologia. Routa routiminen

Hydrologia. Routa routiminen Hydrologia L9 Routa Routa routiminen Routaantuminen = maaveden jäätyminen maahuokosissa Routa = routaantumisesta aiheutunut maan kovettuminen Routiminen = maanpinnan liikkuminen tai maan fysikaalisten

Lisätiedot

As Oy Juhannusrinne. Parolantie 3 02120 ESPOO

As Oy Juhannusrinne. Parolantie 3 02120 ESPOO As Oy Juhannusrinne Parolantie 3 02120 ESPOO LAUSUNTO PAROLANTIE 3, 02120 ESPOO 2 HUONEISTOJEN PÄÄTYJEN TARKASTUS AVATUILTA KOHDILTA Kohde: Tilaaja: As Oy Juhannusrinne Parolantie 3 02120 ESPOO As Oy Juhannusrinne

Lisätiedot

LÄMMÖNERISTYS- JA ENERGIATEHOKKUUSMÄÄRÄYSTEN MUUTOKSET 2012

LÄMMÖNERISTYS- JA ENERGIATEHOKKUUSMÄÄRÄYSTEN MUUTOKSET 2012 LÄMMÖNERISTYS- JA ENERGIATEHOKKUUSMÄÄRÄYSTEN MUUTOKSET 2012 14.10.2014 Prof. Juha Vinha TTY, Rakennustekniikan laitos Matalaenergia- ja passiivitalojen rakenteiden haasteet, VASEK, Vaasa 14.10.2014 LÄMMÖNERISTYS-

Lisätiedot