MD-simulaatiot S Solubiosysteemit Harjoitustyö, Juho Ojala,

Koko: px
Aloita esitys sivulta:

Download "MD-simulaatiot S-114.2500 Solubiosysteemit Harjoitustyö, Juho Ojala, 13.10.2005"

Transkriptio

1 MD-simulaatiot S Solubiosysteemit,

2 Sisällys Aluksi 2. Sisällys 3. Molekyylien mallinnus 4. MD-simulaatio (energian minimointi, simulaation parametrit, voimien laskeminen, liikeyhtälöiden ratkaiseminen, tulosten analysointi) 6. Simulaatioiden heikkoudet 7. Simulaation tekeminen käytännössä 11. Ohjelmistoja md-simulaatioihin 12. Loppusanat Tämä on Teknillisen Korkeakoulun Solubiosysteemit-kurssin (S ) harjoitustyö. Harjoitustyö käsittelee MD-simulaatioita. Esityksen kieleksi valikoitui englannin sijasta suomi, koska harjoitustyöaineistoa kerätessänihavaitsin aihepiiriä suomenkielisen materiaalin olevan varsin olematonta. Tämän esityksen tavoitteena on muodostaa lukijalleen konkreettinen yleiskuva siitä, mihin MD-simulaatiot perustuvat ja miten niitä käytännössä tehdään. Kaikki esityksessä käytetyt kuvat molekyyleistä on tehty joko VMDtai MacPyMol-ohjelmilla. Kuvassa on harjoitustyön yhteydessä Gromacs-ohjelmistolla simuloitu Ribonukleaasi S -peptidi. 2

3 Molekyylien mallinnus Molekyylien mallinnuksessa (Molecular modelling) pyritään kuvaamaan monimutkaisia kemiallisia systeemejä realistisen mallin avulla. Tavoitteena on ymmärtää ja pystyä ennustamaan halutun systeemin makroskooppisia ominaisuuksia, kun systeemistä on olemassa täsmällistä atomitason tietoa 2. Approksimaatiot ovat välttämättömiä Ab initio -lähestymistavassa käytetään puhdasta kvanttimekaniikkaa atomisysteemin potentiaalienergian laskemiseen. Vaikka tässä yhteydessä tehtäisiinkin joitakin approksimaatioita, niin lähestymistavassa mallinnus perustuu puhtaasti teoreettisiin oletuksiin, sen sijaan että mallia rakennettaisiin perustuen empiirisesti saatuihin tietoihin mallinnettavasta systeemistä 1. Edellinen lähestymistapa on mahdollinen vain, jos halutaan mallintaa muutaman atomin kokoista tasapainossa olevaa systeemiä lyhyellä ajanjaksolla 2. Muussa tapauksessa joudutaan tyytymään käytetyn mallin empiiriseen parametrisointiin. Mitä monimutkaisempi mallinnettava systeemi on, ja mitä pidempää ajanjaksoa halutaan tutkia, sitä suurempia approksimaatioita joudutaan tekemään. Esimerkiksi proteiinien laskostumista ei voi vielä simuloida käyttämällä hyväksi (empiirisesti parametrisoitua) tietoa atomien välisistä vuorovaikutuksista, vaan joudutaan käyttämään vastaavista systeemeistä olemassaolevaa systeemin rakennetta ja kemiallisia ominaisuuksia koskevaa tietoa 1. MD-simulaatio Lyhenne MD tulee sanoista Molecular dynamics. MD-simulaatiot perustuvat Newtonin liikeyhtälöiden ratkaisemiseen. Liikeyhtälöitä ratkaistaan pieni ajanjakso kerrallaan niin kauan, että systeemi ei enää muutu, eli toisin sanoin kunnes systeemi saavuttaa tasapainotilan. Systeemin saavutettua tasapainon suoritetaan varsinaiset mittaukset 1. MD-simulaation kulku 1,2 1. määritetään alkutila 2. lasketaan voimat (voimakenttä) 3. ratkaistaan Newtonin liikeyhtälöt 4. kirjataan tarvittaessa tietoja tilasta ylös kohtia toistetaan tarvittava määrä askelia. 3

4 Energian minimointi MD-simulaatio saattaa epäonnistua, mikäli systeemi on kovin kaukana energiaminimistään 2. Energian minimoinnin avulla pyritään määrittämään missä muodossa mallinnettava systeemi on sen ollessa sen alhaisimmassa mahdollisessa energiatilassaan. Paikallisia minimejä on paljon, ja globaali minimi (global minimum) on käytännössä mahdoton löytää 2. Menetelmiä paikallisen minimin löytämiseen on olemassa lukuisia, Gromacs-ohjelmistossa on mahdollista käyttää seuraavia menetelmiä: 1. Steepest descent method: Menetelmä pääsee nopeasti lähelle minimiä. 2. Conjugate gradient method: Menetelmä toimii hitaasti kaukana minimistä, mutta nopeasti lähellä minimiä. 3. L-BFGS: Menetelmä on tehokkuudessaan suunnilleen yhtä hyvä kuin conjugate gradient. Simulaation parametrit Alla on esitetty tärkeimmät MD-simulaation tarvitsemat parametrit. Parametrien nimet vastaavat Gromacs-ohjelmiston asetustiedoston (.mpd) parametrejä integrator: Määritellään käytettävä algoritmi. MD-simulaation tapauksessa vaihtoehtoina voi olla vaikka Leap from tai Verlet. Mikäli tehdään energiaminimointi niin vaihtoehtoina voi olla esimerkiksi yllä esitetyt. 2. dt: aika-askeleen pituus integroinnille. 3. nsteps: kuinka monta askelta simulaatiota tehdään 4. nstxout: kuinka usein kirjoitetaan trajektoritiedostoon atomien koordinaatit Useinkaan ei ole mielekästä tallentaa jokaisella simulaation hetkellä atomien koordinaatteja trajektoritiedostoon, vaan esimerkiksi joka kymmenes askel riittää hyvin. Koordinaattien tallennustahdin lisäksi voidaan valita erikseen oma tallennustahti esimerkiksi atomien nopeuksille. Käytettävän voimakentän valintaa ei Gromacsissa tehdä simulaation asetustiedostossa, vaan tuo valinta tehdään jo aiemmin valmisteltaessa systeemiä simulaatiota varten. Gromacs pyytää valitsemaan voimakentän, kun proteiinitietokannan pdb-muotoista tiedostoa muunnetaan gromacsin omiin systeemin rakennetta ja topologiaa kuvaaviin tiedostomuotoihin. 4

5 Voimien laskeminen Voimien laskeminen on simulaation eniten aikaa vievä osuus. Koska yleensä ei ole tarkoituksenmukaista simuloida tutkittavaa systeemiä tyhjiössä, käytetään yleensä konseptia nimeltä periodic boundary conditions 1, jossa tutkittavan systeemin ympärille luodaan kopiota tutkittavasta systeemistä. Oheinen kuva havainnollistaa asiaa. Tutkittavassa systeemissä on partikkelit A-F. Kaikki A-kirjaimella merkityt partikkelit ovat A-partikkelin kuvia. Mikäli simulaatiossa lasketaan partikkelien väliset vuorovaikutukset kullekkin partikkelille vain partikkelia lähinnä olevien toisten partikkelien kuvien kanssa, tulee n:n partikkelin kokoisessa systeemissä vuorovaikutuksia laskettavaksi yhteensä: n x ( n - 1 ) / 2 Kuvaan on merkitty nuolella ne partikkelien B-F kuvat, joiden vaikutus A- partikkeliin tulisi tällöin huomioiduksi. Kertolaskun tulos jaetaan kaavalla kahdella, koska puolet voimista saadaan suoraan voiman ja vastavoiman lain avulla. Tässä laskettavien vuorovaikutusten määrä kasvaa partikkelien määrän kasvaessa nopeudella O(n 2 ), mutta on olemassa tekniikoita 1, joiden avulla käytetty tietokoneaika saadaan kasvamaan vain nopeudella O(n). 5

6 Liikeyhtälöiden ratkaiseminen Mitä parempaa algoritmia liikeyhtälöiden ratkaisemiseen käytetään, sitä pidemmäksi voi asettaa simulaation aika-askeleen. Erityisesti korkeampien derivaattojen tietoa hyväksikäyttäville algoritmeilla voidaan käyttää hyvinkin pitkiä aika-askelia 1. Koska voimien laskemiseen kuluva aika on simulaation ajankäytön kannalta selvästi merkittävin, kannattaa usein liikeyhtälöiden ratkaisemiseen käyttää hidasta ja tarkkaa algoritmia. Liikeyhtälöiden ratkaisemiseen käytetään usein Verlet-algoritmia tai sen muunnelmia 1, kuten Leap-frog-algoritmia, jota Gromacs-ohjelmisto käyttää oletuksena. Tulosten analysointi MD-simulaation tuloksista kiinnostavimpia ovat usein ne ominaisuudet, joita voitaisiin mitata myös empiirisesti. Niistä yksinkertaisimpia ovat termodynaamiset ominaisuudet, kuten lämpötila, paine ja lämpökapasiteetti. Kaikkia termodynaamisia ominaisuuksia ei voida mitata suoraan simulaatiossa, koska niitä ei voida esittää partikkelien koordinaattien ja momenttien funktion keskiarvona. Näitä ominaisuuksia ovat esimerkiksi entropia, Helmholtzin vapaa energia ja Gibbsin vapaa energia 1. Lisäksi on joukko ominaisuuksia, jotka kuvaavat nesteen paikallisia rakenteita. Näistä tärkein on radiaalinen tiheysfunktio. MD-simulaatioihin tarkoitetut ohjelmistot tarjoavat yleensä monipuolisen valikoivan valmiita toimintoja eri ominaisuuksien laskemiseksi simulaation tulosdatasta. Simulaatioiden heikkoudet MD-simulaatioilla on joukko heikkouksia, joiden huomiotta jättäminen saattaa johtaa joissain tapauksissa virheellisiin tuloksiin 2. Heikkouksien kirjo riippuu ohjelmistosta, käytetystä voimakentästä sekä simulaation parametreista, mutta jotkin asiat voidaan yleistää kaikille simulaatioille: Simulaatiot ovat klassisia Newtonin liikeyhtälöiden käytön suorana seurauksena simulaatioissa käytetään klassista mekaniikkaa. Normaaleissa lämpötiloissa tämä ei yleensä aiheuta ongelmia, mutta tässä on kuitenkin joitakin poikkeuksia. Tärkeä asia huomioitavaksi on kovalenttisten sidosten korkeataajuuksinen väreily. Molekyylimallinnusohjelmat ottavat tämän yleensä oletuksena jollakin tavoin huomioon. Elektronit ovat matalimmassa viritystilassa MD:ssä käytetään konservatiivista voimakenttää, joka on vain atomien si- 6

7 jaintien funktio. Elektronien liikkeitä ei siis oteta huomioon, toisin sanoin oletetaan, että elektronit mukauttavat dynamiikkansa heti kun atomien sijainnit vaihtuvat. Tätä kutsutaan Born-Oppenheimer-approksimaatioksi 2. Tämä oletus on yleensä oikeutettu, mutta elektronien siirtymisiä tai viritystiloja ei tällöin voida käsitellä. Myöskään kemiallisia reaktioita ei voida käsitellä, mutta sille olisi muitakin syitä. Vuorovaikutuksia approksimoidaan Esimerkiksi Gromacs-ohjelmisto jättää huomiotta Lennard-Jones -vuorovaikutukset sekä joskus myös Coulombin vuorovaiktukset, mikäli kantama ylittää ohjelmaan määritellyn rajan (cut-off-radius) 2. Voimakentät on yleensä toteutettu niin, että niihin liittyy joukko erilaisia approksimaatioita. MD-simulaation tekeminen käytännössä Seuraavassa käsitellään vedessä olevaa peptidiä simuloivan MD-simulaation toteuttamista Gromacs-ohjelmistolla. Simulaatio perustuu ohjelmiston Internet-sivuilla olevaan esimerkkiin 6. Esimerkin avulla pyritään muodostamaan käsitys siitä, minkälaisten määrittelyjen tekemistä MD-simulaatio vaatii, ennen kuin se voidaan toteuttaa. Eri ohjelmistoissa määrittelyt tehdään eri tavoilla, mutta kaikki ohjelmistot Gromacsin tärkeimmät tiedostotyypit 6 Molecular topology file (.top) Tiedosto sisältää käsiteltävän systeemin topologiainformaation. Molecular structure file (.gro) Tiedosto sisältää informaation käsiteltävän systeemin molekyylien rakenteesta. Molecular dynamics parameter file (.mdp) Tiedostossa määritellään simulaation parametrit, kuten aika-askeleiden määrän, niiden pituuden, lämpötilan ja paineen. Index file (.idx) Tarvitaan, mikäli halutaan määritellä atomiryhmiä, joille halutaan määritellä erityisiä ominaisuuksia. Ryhmiä voivat olla esimerksiksi temperatule coupling group, accelerate group tai freezing group Run input file (.trt) Tämä tiedosto generoidaan ylläolevien tiedostojen pohjalta Trajectory file (.trr) Tämäntyyppinen tiedosto saadaan simulaation tuloksena. 7

8 vaativat kuitenkin likimain samansisältöisen lähtöinformaation. Otetaan pdb-tiedosto käyttöön Simulaation valmistelu aloitetaan muuntamalla proteiinitietopankista saatu pdb-muotoinen tiedosto Gromacsin tarvitsemaksi topologia- ja rakenneinformaatioksi. Tämä tehdään komennolla: pdb2gmx -f peptidi.pdb -o peptidi.gro -p topologia.top Pdb2gmx on ohjelma jolla tuo muunnos siis suoritetaan. Rakenneinformaatio tallentuu tiedostoon peptidi.gro ja topologiainformaatio tiedostoon topologia.top. Laitetaan peptidi veteen Seuraavaksi haluamme luoda suorakulmaisen tyhjän laatikon molekyylin ympärille, jotta voimme myöhemmin täyttää laatikon vedellä. Tämä onnistuu komennolla: editconf -f peptidi.gro -o boksi.gro -c -d 0.5 Laatikon rakenneinformaatio tallentuu tiedostoon boksi.gro. Käskyn perässä oleva 0.5 määrittelee, kuinka paljon tilaa halutaan jättää peptidin ympärille. Tämän jälkeen täytetään laatikko vedellä, se onnistuu komennolla: genbox -cp boksi.gro -cs -p topologia.top -o peptidi_vedessa.gro Tiedostoon peptidi_vedessa.gro on tämän jälkeen tallentuneena vedessä olevan peptidin muodostaman systeemin rakenneinformaatio. Samalla tiedostossa topologia.top oleva topologiainformaatio päivitettiin. Tehdään energian minimointi Koska genbox-funktion tulostama systeemi ei ole energiaminimissä, on systeemille tehtävä energian minimointi ennen kuin voidaan tehdä MD-simulaatioita. Esiprosessoidaan systeemi energian minimointia varten komennolla: grompp -v -f em.mdp -c peptidi_vedessa.gro -o em.tpr -p topologia. top tässä tiedosto em.mdp siis sisältää simulaation parametrit. Komento generoi tiedoston em.tpr, joka sisältää kaikki energiaminimisaatiosimulaation tarvitsemat tiedot. Ajetaan seuraavaksi simulaatio komennolla: mdrun -v -s em.tpr -o em.trr -c peptidi_minimisaation_jalkeen.gro -g emlog.log Nyt tiedostossa peptidi_minimisaation_jalkeen.gro on systeemin rakenne energian minimoinnin jälkeen. 8

9 S Solubiosysteemit, TKK Kuvassa on systeemi ennen ja jälkeen energian minimoinnin. Kuvan punaiset viivat kuvaavat vesimolekyylejä minimoinnin jälkeen, ja vihreät viivat vesimolekyylejä ennen minimointia. Vastaavasti tummanvihreät viivat kuvaavat peptidiä minimoinnin jälkeen, ja liilat viivat peptidiä ennen minimointia. Kuvasta nähdään, että vesimolekyylien sijainnit ovat muuttuneet minimoinnissa peptidimolekyylejä vähemmän. Lyhyt valmisteleva MD-simulaatio Seuraavaksi tehdään lyhyt MD-simulaatio siten, että peptidin sijainnin muutoksia rajoitetaan. Tarkoituksena on antaa vesimolekyylien mukautua vedessä olevaan peptidin. Peptidin liikkumista koskeva rajoitus on määritelty tiedostoon pr.mdp, joka sisältää ajettavan simulaation parametrit. Valmistellaan simulaatio: grompp -f pr.mdp -o pr.tpr -c peptidi_minimisaation_jalkeen.gro -p topologia.top Ja ajetaan MD-simulaatio: mdrun -v -s pr.tpr -e pr.edr -o pr.trr -c peptidi_prn_jalkeen.gro -g prlog >& pr.job & Lopussa oleva >& pr.job tarkoittaa että komennon tuloste viedään tiedostoon pr.job. Tiedostoon peptidi_prn_jalkeen.gro tallentuu peptidin rakenneinformaatio valmistelevan simulaation jälkeen. 9

10 Alla on kuva systeemistä ennen ja jälkeen äsken tehdyn lyhyen md-simulaation. Kuvassa punaiset ja tummanvihreät viivat ovat samoja kuin äskeisessä, loput värit ovat ilmeiset. Kuvasta voidaan havaita, että vaikka peptidimolekyylien liikkeitä tässä MDsimulaatiossa rajoitettiin, liikkuivat ne enemmän kuin energiaminimoinnin yhteydessä. Vesimolekyylit ovat selvästikin tämän simulaation aikana liikkuneet uusiin sijainteihin. Kuvasta ei voi hahmottaa, mikä vesimolekyyli on mennyt minnekin, kuten edellisestä kuvasta. Varsinainen MD-simulaatio Tämän jälkeen siirrytään vihdoin tekemään koko ajan valmisteltua varsinaista MD-simulaatiota. Suoritetaan esiprosessointi: grompp -v -f full.mdp -o full.tpr -c peptidi_prn_jalkeen.gro -p topologia.top Ja simulaatio: mdrun -v -s full.tpr -e full.edr -o full.trr -c peptidi_simun_ jalkeen.gro -g full.log >& full.job & Tiedosto full.mdp sisälsi siis simulaation parametrit. Simulaation määriteltiin aika-askelta, yhden aika-askelen pituuden ollessa ps. Näin ollen mitattu ajanjakso oli yhteensä 100ps. Tulostiedostoon tallennettiin atomien koordinaatit 250 askeleen välein. Simulaation suorittaminen vei normaalilla työpöytäkoneella aikaa vajaan puoli tuntia. Ohjelman antamat arviot jäljellä olevasta ajasta pitivät alusta asti paikkansa. 10

11 Kuvassa alla on peptidi ennen viimeistä simulaatiota ja sen jälkeen. Kuvan vihreä molekyyli on molekyyli ennen simulaatiota. Molekyylin käyttäytyminen simulaation aikana tallentuu trajectory-tiedostoon, jota voi tarkastella esimerkiksi VMD-ohjelmalla. Ohjelmalla voi katsoa animaation simulaation kulusta ja määritellä tarkkaan, millä tavalla haluaa mitkäkin atomit visualisoida. Gromacs sisältää myös joukon apuvälineitä, joilla simulaation tuloksista voi saada tietoa irti. Niihin tutustuminen ei kuitenkaan tämän laajuisen harjoitustyön puitteissa ole mahdollista. Ohjelmistoja MD-simulaatioihin Alla on taulukko, jossa on esitetty tunnetuimpia ohjelmia MD-simulaatioiden ja energian minimointien tekemiseen 3,4,5,6,7. Ohjelmisto Lisenssi Valmistaja AMBER CHARMM 400$ akateeminen, 20,000$ kaupallinen 600$ akateeminen, kaupallinen ei tiedossa University of California, Scripps research institute Harvard GROMACS GPL, ilmainen Groningen University GROMOS 400$ akateeminen, 12,000$ kaupallinen Groningen University NAMD ilmainen Illinois University Ohjelmistoille Amber, Charmm ja Gromos on yhteistä se, että ohjelmien ni- 11

12 met tarkoittavat itse ohjelman lisäksi niiden käyttämää voimakenttää. Esimerkiksi Gromacs-ohjelmistossa voidaan käyttää Charmm- ja Gromos-voimakenttiä. Gromacs-ohjelmisto valikoitui tarkempaan tutkimukseen tässä harjoitustyössä sen ilmaisuuden ja hyvän ohjekirjan perusteella. Amber-ohjelmisto perustuu alunperin University of Californiassa kehitettyyn samannimiseen voimakenttään. Nykyään ohjelmistoa hallinnoi Scripps research institute. Ohjelmistoa käytetään -ohjelmassa, jossa ihmiset voivat antaa kotitietokoneidensa käyttämättömänä hukkaan menevän prosessoriajan proteiinien laskostumisen simuloimiseen 1. Ohjelmiston halvemman lisenssin voivat saada akateemisten tahojen lisäksi voittoa tavoittelemattomat organisaatiot sekä valtionhallinnon toimijat. Charmm-ohjelmisto on kehitetty Harvardin yliopistolla. Sen kaupallista versiota markkinoi nykyisin yritys nimeltä Accelrys, joka tarjoaa ohjelmistoa osana omaa laajempaa biokemian ohjelmistopakettiaan. Charmm markkinoi olevansa monipuolinen ja joustava ohjelma erilaisien molekyylisysteemien mallintamiseen 4. Gromos-ohjelmisto on Gromacsin tavoin alunperin kehitetty Groningenin yliopistolla. Ohjelmisto muistuttaa ominaisuuksiltaan Gromacs-ohjelmistoa. Yrityksille ohjelman lisenssi maksaa dollaria. Illinoissin yliopistossa kehitetty Namd-ohjelmisto (Not Another Molecular Dynamics) soveltuu erityisesti suurten molekyylisysteemien tutkimiseen. Se toimii erittäin hyvin rinnakkaisajossa 2,5. Ohjelman tiedostomuodot ovat yhteensopivia Amber ja Charmm -ohjelmistojen kanssa. Loppusanat MD-simulaatioiden tekemiseen on olemassa hyvä valikoima erittäin laadukkaita ohjelmia. Aihepiiriin on täysin mahdollista tutustua pelkästään ilmaisten ohjelmien avulla. Ohjelmien pieniä kokeiluja pidemmälle menevä käyttö vaatii aihepiirin hyvää hallintaa, ohjelman toiminnan syvällistä tuntemusta ja tietoteknistä osaamista. Aiheesta ei ole juurikaan olemassa suomenkielistä kirjallisuutta. Aiheen syvällinen ymmärtäminen vaatii hyvää tilastomatematiikan, kemian, fysiikan ja tietotekniikan perusosaamista. Koin vaikeaksi muodostaa asiasta eheää kokonaiskuvaa keräämäni materiaalin avulla. Asioiden ymmärtäminen vaatii tietojen keräämistä ja yhdistelemistä useista eri lähteistä. Tietokonesimulaatioiden merkitys tulee tulevaisuudessa kasvaamaan tietokoneiden nopeuksien kehittymisen tuodessa lisää mahdollisuuksia erilaisille simulaatioille. Tästä syystä aiheen opiskelun voi katsoa erittäin hyödyllistä. Tämänkaltainen harjoitustyö on mielestäni oikein hyvä tapa tutustua aihepiiriin, johon tulisi täysin harrastusmielessä tuskin vastaavalla tavalla tutustuttua. 12

13 Lähteet 1. Daan Frenkel & Berend Smit: Understanding Molecular Simulation: From Algorithms to Applications. San Diego, California, USA. Academic Press, ISBN David van der Spoel, Erik Lindahl, Berk Hess: Gromacs user manual ver 3.2. Saatavilla osoitteesta gromacs.org (13. lokakuuta 2005) 3. Amber-ohjelmiston Internet-sivut: 4. Charmm-ohjelmiston Internet-sivut: 5. Gromos-ohjelmiston Internet-sivut: 6. Gromacs-ohjelmiston Internet-sivut: 7. Namd-ohjelmiston Internet-sivut: 13

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Automaattinen regressiotestaus ilman testitapauksia. Pekka Aho, VTT Matias Suarez, F-Secure

Automaattinen regressiotestaus ilman testitapauksia. Pekka Aho, VTT Matias Suarez, F-Secure Automaattinen regressiotestaus ilman testitapauksia Pekka Aho, VTT Matias Suarez, F-Secure 2 Mitä on regressiotestaus ja miksi sitä tehdään? Kun ohjelmistoon tehdään muutoksia kehityksen tai ylläpidon

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014 18. syyskuuta 2014 IDL - proseduurit Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

Syventävien opintojen seminaari

Syventävien opintojen seminaari Syventävien opintojen seminaari Sisällys 1 2 3 4 Johdanto Kvanttikenttäteorioiden statistinen fysiikka on relevanttia monella fysiikan alalla Kiinteän olomuodon fysiikka (elektronisysteemit) Kosmologia

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Sisällys. Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä. 2.2

Sisällys. Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä. 2.2 2. Vuokaaviot 2.1 Sisällys aavioiden rakenne. aavioiden piirto symboleita yhdistelemällä. aavion osan toistaminen silmukalla. simerkkejä. 2.2 Vuokaaviot Graafinen kieli algoritmien kuvaamiseen. Muodostetaan

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä 1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä:

Kaavioiden rakenne. Kaavioiden piirto symboleita yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä: 2. Vuokaaviot 2.1 Sisällys Kaavioiden rakenne. Kaavioiden piirto symbolta yhdistelemällä. Kaavion osan toistaminen silmukalla. Esimerkkejä: algoritmi oven avaamiseen vuokaaviona, keskiarvon laskeminen

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö

dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö Mathematican version 8 mukainen. (25.10.2012 SKK) Tavallinen heiluri Otetaan tarkastelun kohteeksi tavallinen yksinkertainen heiluri. Tämä koostuu kitkattomaan niveleen kiinnitetystä (massattomasta) varresta

Lisätiedot

Evolutiivisesti stabiilin strategian oppiminen

Evolutiivisesti stabiilin strategian oppiminen Evolutiivisesti stabiilin strategian oppiminen Janne Laitonen 8.10.2008 Maynard Smith: s. 54-60 Johdanto Käytös voi usein olla opittua perityn sijasta Tyypillistä käytöksen muuttuminen ja riippuvuus aikaisemmista

Lisätiedot

6 TARKASTELU. 6.1 Vastaukset tutkimusongelmiin

6 TARKASTELU. 6.1 Vastaukset tutkimusongelmiin 173 6 TARKASTELU Hahmottavassa lähestymistavassa (H-ryhmä) käsitteen muodostamisen lähtökohtana ovat havainnot ja kokeet, mallintavassa (M-ryhmä) käsitteet, teoriat sekä teoreettiset mallit. Edellinen

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

TIETOKANNAT: MYSQL & POSTGRESQL Seminaarityö

TIETOKANNAT: MYSQL & POSTGRESQL Seminaarityö TIETOKANNAT: MYSQL & POSTGRESQL Seminaarityö Tekijät: Eemeli Honkonen Joni Metsälä Työ palautettu: SISÄLLYSLUETTELO: 1 SEMINAARITYÖN KUVAUS... 3 2 TIETOKANTA... 3 2.1 MITÄ TIETOKANNAT SITTEN OVAT?... 3

Lisätiedot

Tulevaisuuden sisällöt ja joustava printtikonsepti

Tulevaisuuden sisällöt ja joustava printtikonsepti 2 4. 1 1. 2 0 1 6 Tulevaisuuden sisällöt ja joustava printtikonsepti Hanna Repo, Asiakkuusjohtaja Risto Laine, Myyntijohtaja Otavamedia OMA Autamme asiakkaitamme luomaan merkityksellistä vuorovaikutusta

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Aukkoja sekvensseissä. Tuomo Hartonen Teoreettisen fysiikan syventävien opintojen seminaari

Aukkoja sekvensseissä. Tuomo Hartonen Teoreettisen fysiikan syventävien opintojen seminaari Aukkoja sekvensseissä Tuomo Hartonen Teoreettisen fysiikan syventävien opintojen seminaari 25.04.13 Terminologiaa Aminohappo = proteiinien rakennuspalikka, proteiinit rakentuvat 22:sta erilaisesta, 20

Lisätiedot

Akselipainolaskelmat. Yleistä tietoa akselipainolaskelmista

Akselipainolaskelmat. Yleistä tietoa akselipainolaskelmista Yleistä tietoa akselipainolaskelmista Kun kuorma-autoa halutaan käyttää mihin tahansa kuljetustyöhön, tehtaalta toimitettua alustaa täytyy täydentää jonkinlaisella päällirakenteella. Yleistä tietoa akselipainolaskelmista

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka

Maatalous-metsätieteellinen tiedekunta Ympäristöekonomia Kansantaloustiede ja matematiikka 1. Selitä mitä tarkoittavat a) M2 b) vaihtoehtoiskustannus. Anna lisäksi esimerkki vaihtoehtoiskustannuksesta. (7 p) Vastaus: a) Lavea raha. (1 p) M1 (Yleisön hallussa olevat lailliset maksuvälineet ja

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 16.3.2009 1 / 40 Kertausta: tiedostosta lukeminen Aluksi käsiteltävä tiedosto pitää avata: tiedostomuuttuja = open("teksti.txt","r")

Lisätiedot

Ohjelmistopohjaisen lisenssin käyttö

Ohjelmistopohjaisen lisenssin käyttö 24.11.15 rev. 2 Ohjelmistopohjaisen lisenssin käyttö Yleistä Mastercam on käyttänyt aina suojauspalikkaan sidottuja lisenssejä. Ne ovat suhteellisen helppokäyttöisiä ja lisenssin siirtämiseen ei tarvita

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Laske Laudatur ClassPadilla

Laske Laudatur ClassPadilla Enemmän aikaa matematiikan opiskeluun, vähemmän aikaa laskimen opetteluun. Laske Laudatur ClassPadilla Lyhyt matematiikka, syksy 2015 Casio Scandinavia Keilaranta 4 02150 Espoo info@casio.fi Hyvä Opettaja

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ Henna Tahvanainen 1, Jyrki Pölkki 2, Henri Penttinen 1, Vesa Välimäki 1 1 Signaalinkäsittelyn ja akustiikan laitos Aalto-yliopiston sähkötekniikan

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR MATINE tutkimusseminaari 17.11.2016 Risto Vehmas, Juha Jylhä, Minna Väilä, Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Hankkeelle myönnetty

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Kieliteknologian ATK-ympäristö Viides luento

Kieliteknologian ATK-ympäristö Viides luento Kieliteknologian ATK-ympäristö Viides luento Miikka Silfverberg Nykykielten laitos 4. lokakuuta 2010 Miikka Silfverberg (Nykykielten laitos) Kieliteknologian ATK-ympäristö: Luento 5 4. lokakuuta 2010 1

Lisätiedot

Kustannusten minimointi, kustannusfunktiot

Kustannusten minimointi, kustannusfunktiot Kustannusten minimointi, kustannusfunktiot Luvut 20 ja 21 Marita Laukkanen November 3, 2016 Marita Laukkanen Kustannusten minimointi, kustannusfunktiot November 3, 2016 1 / 17 Kustannusten minimointiongelma

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

STS UUDEN SEUDULLISEN TAPAHTUMAN TEKO

STS UUDEN SEUDULLISEN TAPAHTUMAN TEKO STS UUDEN SEUDULLISEN TAPAHTUMAN TEKO Valitse vasemmasta reunasta kohta Sisällöt Valitse painike Lisää uusi Tapahtuma Tämän jälkeen valitse kieleksi Suomi VÄLILEHTI 1 PERUSTIEDOT Valittuasi kieleksi suomen,

Lisätiedot

Asialista. CLT131: Tekstityökalut 2012, kymmenes luento. 2. frekvenssien muunnos todennäköisyyksiksi. 1. taulukkohaut

Asialista. CLT131: Tekstityökalut 2012, kymmenes luento. 2. frekvenssien muunnos todennäköisyyksiksi. 1. taulukkohaut Asialista CLT131: Tekstityökalut 2012, kymmenes luento Tommi A Pirinen tommi.pirinen+clt131@helsinki.fi Helsingin yliopisto Kieliteknologian oppiaine, Nykykielten laitos 1. helmikuuta 2012 tommi.pirinen+clt131@helsinki.fi

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2009 1 / 33 Valintakäsky if syote = raw_input("kerro tenttipisteesi.\n") pisteet = int(syote) if pisteet >=

Lisätiedot

Paavo Kyyrönen & Janne Raassina

Paavo Kyyrönen & Janne Raassina Paavo Kyyrönen & Janne Raassina 1. Johdanto 2. Historia 3. David Deutsch 4. Kvanttilaskenta ja superpositio 5. Ongelmat 6. Tutkimus 7. Esimerkkejä käyttökohteista 8. Mistä näitä saa? 9. Potentiaali 10.

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

Järjestelmän kriittisimmille toiminnallisuuksille (listattu alla), toteutetaan 1

Järjestelmän kriittisimmille toiminnallisuuksille (listattu alla), toteutetaan 1 1. Testattavat asiat Järjestelmän kriittisimmille toiminnallisuuksille (listattu alla), toteutetaan 1 selainyhteensopivuustesti käyttäen Suomessa eniten käytössä olevia selaimia. Uuden keräyksen lisääminen

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Ohjeita. Datan lukeminen

Ohjeita. Datan lukeminen ATK Tähtitieteessä Harjoitustyö Tehtävä Harjoitystyössä tehdään tähtikartta jostain taivaanpallon alueesta annettujen rektaskensio- ja deklinaatiovälien avulla. Karttaan merkitään tähdet aina kuudenteen

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

DEE-53010 Aurinkosähkön perusteet

DEE-53010 Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Pinnallinen tapa aurinkokennon virta-jännite-käyrän

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 4.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 4.3.2009 1 / 35 Tiedostot Tiedostojen käsittelyä tarvitaan esimerkiksi seuraavissa tilanteissa: Ohjelman käsittelemiä

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot