RADIOMETRIAN PERUSTEET

Koko: px
Aloita esitys sivulta:

Download "RADIOMETRIAN PERUSTEET"

Transkriptio

1 RADIOMETRIAN PERUSTEET Kari Jokela Kalvo 1

2 OPTINEN RADIOMETRIA Käsittelee optisen säteilyenergian emittoitumista etenemistä väliaineessa siirtymistä optisen laitteen sisällä ilmaisua sähköiseksi signaaliksi Kalvo

3 E 1 OPTISEN SÄTEILYN SYNTY viritystila fotoni sähkökenttä E o atomi tai molekyyli perustila fotonin energia ΔE=E 1 -E o =hf taajuus f=c o /λ c o =valon nopeus h =Planckin vakio λ =aallonpituus magneettikenttä Kalvo 3

4 EPÄKOHERENTTI JA KOHERENTTI SÄTEILY EPÄKOHERENTTI SÄTEILY laajakaistausta suuri säteilypinta hajoaa eri suuntiin pieni radianssi KOHERENTTI LASERSÄTEILY monokromaattista pieni lähtöaukko pieni hajontakulma mahdollinen suuri radianssi hyvin heijastava peili esim. hehkuva kappale stimuloitu emissio optisessa resonaattorissa puoliläpäisevä peili tahdistuneita fotoneja 1 mrad Kalvo 4

5 IRRADIANSSI dφ E= da d irradianssi [W/m ] θ E o A d d Φ =E cos 0 θ dad E λ de =, dλ differentiaalinen teho [W] (pistelähde) spektrinen irradianssi W mnm λ E = E dλ λ 1 λ kokonaisirradianssi Kalvo 5

6 SÄTEILYINTENSITEETTI dφ I =, dω [W/sr] da I λ d = Φλ. dω dacosθ d ω = r I cosθ E= r häviöttömässä väliaineessa (pistelähde) r θ dω Kalvo 6

7 SUORAN SÄTEEN VAIMENEMINEN VÄLIAINEESSA I cosθ E= e r (pistelähde) -μr μ=vaimennuskerroin sirontaa ja absorptiota fotonin energia absorboituu lämmöksi kemialliseksi energiaksi viritysenergiaksi ( esim. fluoresenssi) Kalvo 7

8 A RADIANSSI dω dφ ϕ θ da d Φ W L = da cos θdω m sr Kappaleen säteilemä kokonaisteho dacos( θ ) Φ = L( θ, ϕ ) cosθdadω A 4π Radianssi kuvaa kirkkautta Kalvo 8

9 SÄTEEN RADIANSSI lähtevä radianssi L 1 θ 1 θ dφ dω da 1 1 da tuleva radianssi dφ = L cosθ dω da d ω = da cosθ r d ω = = L cosθ dω da da 1 cosθ 1 Sijoittamalla saadaan L 1 = L homogeenisessa väliaineessa. r θ 1 θ L dφ dω da 1 da da 1 ja da rajaavat säteen, kun niiden kautta kulkeva säteen suuntainen teho dφ on sama. Kalvo 9

10 RADIANSSILAKI L 1 Φ θ 1 n 1 L L 1 = n n 1 n 1 sinθ 1 = n sinθ (taittumislaki) θ n Φ L Kalvo 10

11 LAMBERTIN LÄHDE E = dφ da d d = ω s L( θ, ϕ) cosθdω dφ I( θϕ, ) = = L( θϕ, )cosθda dω A s A s E ω s A d θ säteilevä pinta dω vastaanottava aukko ϕ Lambertin lähteelle θ dω I = A s L o cosθ I L=L o = vakio A s säteilevä pinta ϕ Kalvo 11

12 PYÖREÄ LEVY LAMBERTIN LÄHTEENÄ d Φ = L dωcosθda, o 1 renkaan säteilemä teho aukkoon da 1 R r L o s θ 1 θ s/cos θ da 1 π rcosθ dr d ω = = π sinθdθ (s/ cosθ ) dφ θ1 E = = Lo π sinθ cosθ d θ da1 0 R E = πl sin o θ1 = πlo( ). R + s E = π L 0 s<<r π 0 E = RL. s s>>r Kalvo 1

13 OPTISEN SÄTEILYN HEIJASTUMINEN JA LÄPÄISY haja suunta seka heijastus läpäisy hajaheijastuksessa hajaläpäisyssä E L = R π R+ T + α = 1 E L= T π R=heijastussuhde T=läpäisysuhde α= absorptiosuhde Kalvo 13

14 Φ=LG GEOMETRINEN VUO (1) jos L vakio kaikkiin suuntiin (Lambertin lähde) n 1 n Mielivaltaisella poikkipinnalla, jos n 1 =n G = dg L Φ Φ= systeemiin menevä teho G= geometrinen (kokonais) vuo dg=säteen differentiaalinen geom. vuo Radianssilaista seuraa yleisesti n = 1 G1 ng säde A A Kalvo 14

15 GEOMETRINEN VUO () Systeemiin menevä teho Φ = L( θφ, ) cosθ d ωda A1 ω (x,y) Jos L vakio vastaanottokeilassa Φ= LG G = cosθ dωda A1 ω(x,y) Häviöttömässä systeemissä mielivaltaisella keilan poikkipinnalla = n G = vakio. 1 1 n G Kalvo 15

16 LINSSIN KUVAUTUMINEN EKVIVALENTTISEKSI AUKOKSI Kahden aukon ja linssin järjestelmä voidaan aina palauttaa kahden aukon järjestelmäksi. lähtöaukon kuva A Radiometriset laitteet pyritään suunnittelemaan kahden aukon järjestelmäksi. tuloaukko A 1 lähtöaukko A Kuva-aukko (A 1 ) voidaan muodostaa myös tuloaukon puolelle Kalvo 16

17 RADIOMETRISTEN MITTAUSTEN PERUSYHTÄLÖ S=signaali (esim. virta) R λ =spektrinen responsivitetti ds R λ(x, y, θφ, ) =, dφ z dω 3 d Φ = L (x, y,,, ) cos d da d. λ θ φλ θ ω λ S = Rλ(x, y, θ, φλ, ) Lλ(x, y, θφλ,, ) cosθ dωdad λ. Δλ A ω x da A detektori tai aukko y Kalvo 17

18 MITTAUSYHTÄLÖN TÄRKEITÄ ERIKOISTAPAUKSIA R ei riipu säteilyn suunnasta (ideaalinen kosinidetektori) ja irradianssi on vakio detektoripinnalla. - R ei riipu aallonpituudesta S = AR L cosθ dωdλ = AR E dλ = ARE λ Δλ π Δλ λ - R riippuu aallonpituudesta S = A RλEλ dλ Δλ R on keskimääräinen responsiviteetti detektorin pinnalla Kalvo 18

19 π θ PROJEKTIOAVARUUSKULMA tavallinen avaruuskulma 1 A ω = = dφ sinθdθ = π(1 cos θ ) 1 1 r 0 0 projektioavaruuskulma π θ1 A p 1 cos d d sin cos d sin 1 r ω Ω = = θ ω = φ θ θ θ = π θ Kalvo 19

20 RADIANSSIMITTARI geometrinen vuo linssin tasossa G 1= A1Ω1, projektioavaruuskulma linssin tasossa G Ω Ω1= cos d = ω 1 Φ = LG o, A Ω π sin θ θ ω π sin θ1 1 geometrinen vuo ilmaisimen tasossa tehotiheys ilmaisimen tasossa n ng ng E L 1 1 = = sin oπ θ n1 Kalvo 0

21 ABBEN SINILAKI Geometrisen vuon invarianssin perusteella 3-dimensiossa G =n A Ω = G = n Ω Ω = π sin θ 1 1 = π sin θ A Ω n 1 n θ 1 θ d 1 d lähde kuva Tasossa vastaavasti nd sinθ = nd sinθ, Abben sinilaki Kalvo 1

22 r 0 SPEKTRIMITTAUSTEN TEORIAA (1) Jos vastaanottoaukon pinta-ala (A r ) ja kosinivirhe ovat pieniä S( λ0 ) = A E λ( λ )R φ( λo, λ)d λ. E λ ( λ 0 ) = S( λo ) AR r φ( λ 0, λ0) Δλw Δλ w= Rφ( λo, λ )dλ 0, Rφ( λo, λo) silloin kun E λ (λ) vakio kapealla kaistalla Δλ w Kalvo

23 SPEKTRIMITTAUSTEN TEORIAA () konvoluutiomenetelmä Silloin kun kapeakaistaehto ei ole enää voimassa, voidaan mittausyhtälö esittää muodossa S( λ0 ) = Ar E λ( λ )r f( λ)z( λo - λ)dλ 0 r f (λ) = responsiviteettitekijä z(λ o -λ) = rakosirontafunktio Ratkaistaan E λ (λ)r f (λ) dekonvoloimalla. Kalvo 3

24 LIIKKUVAHILAINEN SPEKTRORADIOMETRI monokromaattori Kalvo 4

25 SPEKTRORADIOMETRIN ETUPÄÄ integroiva pallo E i kokoojalinssi monokromaattori A A r A 1 L θ 1 θ A s hilan kuva tulorako P = E i L = P Ω i A r M η P π = π 1 = L A1 Ω1 i i A 1 1 = π sin θ1 int. palloon menevä teho kokoojalinssin keräämä teho V = A P in = LA 1 Ω 1 V s A varjostumishäviökerroin monokromaattorille menevä teho Kalvo 5

26 interferenssimaksimi, kun a(sinα ± sin β) = mλ D θ dα = = dλ m acosα INTERFERENSSIHILA Interferenssimaksimin m=1 aallonpituus muutetaan kääntämällä hilaa niin, että α muuttuu, mutta β pysyy vakiona. Differentioimalla acosα dα = mdλ m=0, ±1, ±, ±n kulmadispersio [rad/nm] D L = lineaarinen dispersio [mm/nm] fd t θ (f t on peilin M polttoväli) Kalvo 6

27 MONOKROMAATTORIN TULOARAON KUVAUTUMINEN LÄHTÖRAKOON w s,i P out Monokromaattisen säteilyn lähtötehon muutos aallonpituusasetuksen funktiona tulorako lähtörako P out Δλ w w s,o kaistanleveys ws, o Δ λw = D L λ o Laajakaistaisella säteilyllä tulorako kuvautuu lähtöraon päälle jatkuvaksi spektrinauhaksi. λ Kalvo 7

28 KIINTEÄLLÄ HILALLA JA CCD-DETEKTORILLA VARUSTETTU SPEKTRORADIOMETRI Kalvo 8

29 MUSTA KAPPALE RADIANSSINORMAALINA Lämpötilassa T olevan ideaalisen mustan kappaleen spektrinen radianssi hc 1 λb 5 hc/( λkt) L =, λ e -1 Kokonaisradianssi 4 M σ L T b = Lλbd λ = =, π π 0 Planckin laki c =, m/s =valon nopeus h = 6, Js = Planckin vakio k = 1, J/K = Boltzmannin vakio σ = 5, W/(m K 4 ) = Stefan-Boltzmannin vakio. Epäideaalisen harmaan kappaleen spektrinen radianssi L λg = ε L λb Koska kappale on termodynaamisessa tasapainossa emissiokerroin (ε) = absorptiokerroin (α) g = grey (body) b= black (body) Kalvo 9

30 aurinko aurinko MUSTAN KAPPALEEN SPEKTREJÄ ERI LÄMPÖTILOISSA halog. halog. NIST NIST sulava sulava kulta kulta Kalvo 30

31 AURINGON UV-RADIOMETRIEN KALIBROINTI taivas ja aurinko lamppukalibroinnin siirto primaari NIST sekundaari STUK työ 1 kw halog. spektroradiometrin kalibrointi Bentham DM 150 eryteemaradiometrin kalibrointi ulkona Bentham DM 150 SL 501 musta kappale ±1 % ±1,5 % ±,0 % ±,4 % ±5,6 % ±7,8 % Leszczynski et al. 00 Kalvo 31

32 VALAISTUSVOIMAKKUUS ESIMERKKINÄ LAAJAKAISTAISESTA OPTISESTA SUUREESTA Ε v 780 = k V( λ) E( λ) dλ m 380 1,0 0,8 E(λ) = lähteen spektrinen irradianssi V(λ)= silmän spektrinen herkkyyskäyrä päivänvalossa V (λ ) k m = muuntokerroin 683 lm/w 0,0 0,6 0,4 0, Aallonpituus λ (nm) Kalvo 3

33 RADIOMETRISTEN JA FOTOMETRISTEN SUUREIDEN VERTAILU RADIOMETRIA FOTOMETRIA Irradianssi Irradiance E [W/m ] Valaistusvoimakkuus Illuminance E v [lm/m ] tai [lx] Säteilyintensiteetti Radiant intensity I [W/sr] Valovoima Luminous intensity I v [cd] tai [lm/sr] Radianssi Radiance L [W/(sr m )] Luminanssi Luminance L v [cd/m ] tai [lm/sr m ] Kalvo 33

34 ERYTEEMAPAINOTETTU UV-ANNOS W/(m nm) S λ W/(m nm) 1,0E+4 1,0E+3 1,0E+ 1,0E+1 1,0E+0 1,0E-1 1,0E- 1,0E-3 1,0E-4 1,0E+1 1,0E+0 1,0E-1 1,0E- 1,0E-3 1,0E-4 1,0E-5 1,0E+1 1,0E+0 1,0E-1 1,0E- 1,0E-3 1,0E-4 E λ S λ S λ E λ Aallonpituus [nm] Eryteemapainotettu irradianssi E D b = λ λ 1 t 0 S E dλ λ b λ Eryteema-annos (J/m ) = E dt Standardi eryteema-annos (Standard Erythemal Dose) 1 SED= 100 J/(m) Minimieryteema-annos 1 MED = 1-6 SED Kalvo 34

35 LAAJAKAISTAMITTARIN KALIBROINTI LAAJAKAISTAINEN PAINOTETTU MITTAUS VIRHEETÖN VAIN, JOS Mittari on kalibroitu Mittarin (normalisoitu) spektrinen responsiviteetti R λ =S λ Kulmavaste noudattaa kosinivastetta Responsiviteettiehto ei ole välttämätön, jos kalibrointi on suoritettu samanlaisen spektrin omaavalla lähteellä kuin mittaus Kalvo 35

36 PAINOTETUN MITTARIN NUMEERINEN KALIBROINTI lähde 1 lähde E b1 = S E dλ E λ λ λ1 E = SE dλ b λ λ λ b1 = CF 1Em1 Eb = X Em tarkka spektrimittaus mittarin kalibrointi =CF R E dλ E b1 s1 λ λ1 λ E s λ λ λ b =CF R E d λ simuloidun mittarin kalibrointi X CF CF CF = X = CF CF CF s s 1 1 s1 s1 Näin saadaan kalibrointi lähteelle ilman mittaamista. Täytyy vain tuntea sen spektri E λ ja mittarin suhteellinen spektrinen responsiviteetti R λ Kalvo 36

37 OPTISEN SÄTEILYN DIREKTIIVI Altistumisrajat epäkoherentille säteilylle (UV,näkyvä, IR) ja lasersäteilylle Silmä ja iho Rajoja ei saa ylittää suojaamatta Rajoja ei sovelleta auringon säteilyyn Ulkotyön riskit kuitenkin arvioitava ja minimoitava Kalvo 37

38 nm Pulssienergian tiheys (J/m ) näkyvä valo nm nm 5 W/m 0,5 s ALTISTUMISRAJAT SILMÄÄN OSUVALLE LASERPULSSILLE Pulssin kesto (s) Kalvo 38

39 10 6 IHON UV-ALTISTUMISEN RAJA-ARVOT Energiatiheys (J/m ) J/m Aallonpituus (nm) Kalvo 39

40 10 0 PAINOTUSFUNKTIO LAAJAKAISTAISELLE UV-SÄTEILYLLE Suhteellinen herkkyyskerroin S Eri aallonpituuksilla tulevat UV-annokset painotetaan tällä ja lasketaan yhteen Efektiivisen energia-tiheyden (annos) raja-arvo on 30 J/m Aallonpituus (nm) Kalvo 40

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR)

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR) 86 Opettele jako: - Gammasäteet (Gamma rays) - Röntgensäteet (X-rays) - Ultravioletti (Ultraviolet) - Näkyvä (Visible) - Infrapuna-alue (Infrared) - Mikroaaltoalue (Microwave) - Radioaallot 87 Valo-opissa

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle.

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle. TEKNILLINEN KORKEAKOULU HARJOITUSTEHTÄVÄT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 31.10.2005 vaikutukset ja mittaukset 1(5) Kari Jokela Säteilyturvakeskus HARJOITUSTEHTÄVÄ 1 Laske relaksaatiotaajuus

Lisätiedot

1 Perussuureiden kertausta ja esimerkkejä

1 Perussuureiden kertausta ja esimerkkejä 1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka Laskuharjoitukset. Suure Symboli Yksikkö Laskenta Valovirta cd (kandela)

ELEC-C6001 Sähköenergiatekniikka Laskuharjoitukset. Suure Symboli Yksikkö Laskenta Valovirta cd (kandela) ELEC-C6001 Sähköenergiatekniikka IV-V/20142015 Laskuharjoitukset Ratkaisut Tehtävä 1 Täydennä taulukko: Suure Symboli Yksikkö Laskenta Valovirta cd (kandela) Valotehokkuus E cos = Ratkaisu: Suure (På Svenska;

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 8 Tavoitteet Sähkömagneettiset aallot Sähkömagneettisten aaltojen energia ja liikemäärä Seisovat sähkömagneettiset aallot

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi SISÄLTÖ Mitä metrologia on Metrisopimus, MIKES Lämpötilan yksikkö kelvin, lämpötila-asteikko ITS-90 Valovoiman yksikkö kandela,

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

UGR -arvo voidaan laskea yhtälöllä (4.1). UGR=8 lg 0,25 L (4.1)

UGR -arvo voidaan laskea yhtälöllä (4.1). UGR=8 lg 0,25 L (4.1) S-118.3218 VALAISTUSTEKNIIKKA II LASKUHARJOITUS 2 HÄIKÄISY Tehtävä 4 Laske oheisen yhtälön avulla UGR (Unified Glare Rating) -arvo kuvan 4a tilanteessa, kun havaitsija istuu kohdassa A katsoen suoraan

Lisätiedot

Pientaajuisten kenttien lähteitä teollisuudessa

Pientaajuisten kenttien lähteitä teollisuudessa Pientaajuisten kenttien lähteitä teollisuudessa Sähkö- ja magneettikentät työpaikoilla -seminaari, Pori 11.10.2006 Sami Kännälä, STUK RADIATION AND NUCLEAR SAFETY AUTHORITY TYÖNANTAJAN VELVOITTEET EU:N

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio Diffraktio yhdestä raosta Yhden raon kuvion intensiteetti Monen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

(2005/C 172 E/02) ottavat huomioon Euroopan yhteisön perustamissopimuksen ja erityisesti sen 137 artiklan 2 kohdan,

(2005/C 172 E/02) ottavat huomioon Euroopan yhteisön perustamissopimuksen ja erityisesti sen 137 artiklan 2 kohdan, C 172 E/26 Neuvoston 18 päivänä huhtikuuta 2005 vahvistama YHTEINEN KANTA (EY) N:o 24/2005 Euroopan parlamentin ja neuvoston direktiivin 2005/ /EY antamiseksi terveyttä ja turvallisuutta koskevista vähimmäisvaatimuksista

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

2. Fotonit, elektronit ja atomit

2. Fotonit, elektronit ja atomit Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin

Lisätiedot

LED Systems. Yleisvalaistusta LEDtuotteilla

LED Systems. Yleisvalaistusta LEDtuotteilla LED Systems Yleisvalaistusta LEDtuotteilla Valo: sähkömagenettisen spektrin ihmissilmällä nähtävä osa (aallonpituus n 350 700 nanometriä) Näkyvää valoa Spektrijakauma Halogeenilamppu Pienoisloistelamppu

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Viidennen luennon aihepiirit Olosuhteiden vaikutus aurinkokennon toimintaan: Mietitään kennon sisäisten tapahtumien avulla, miksi ja miten lämpötilan ja säteilyintensiteetin

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

10. Globaali valaistus

10. Globaali valaistus 10. Globaali valaistus Globaalilla eli kokonaisvalaistuksella tarkoitetaan tietokonegrafiikassa malleja, jotka renderöivät kuvaa laskien pisteestä x heijastuneen valon ottamalla huomioon kaiken tähän pisteeseen

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta

Lauri Puranen Säteilyturvakeskus Ionisoimattoman säteilyn valvonta LC-577 Sähömagneettisten enttien ja optisen säteilyn biologiset vaiutuset ja mittauset Sysy 16 PINTAAJUIST SÄHKÖ- JA MAGNTTIKNTÄT Lauri Puranen Säteilyturvaesus Ionisoimattoman säteilyn valvonta SÄTILYTURVAKSKUS

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Mikael Vilpponen Innojok Oy 8.11.2012

Mikael Vilpponen Innojok Oy 8.11.2012 Mikael Vilpponen Innojok Oy 8.11.2012 Aiheita Valaistukseen liittyviä peruskäsitteitä Eri lampputyyppien ominaisuuksia Led-lampuissa huomioitavaa Valaistuksen mitoittaminen ja led valaistuksen mahdollisuudet

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5

5. Optiikka. Havaitsevan tähtitieteen pk I, luento 5, Kalvot: Jyri Näränen ja Thomas Hackman. HTTPK I, kevät 2012, luento 5 5. Optiikka Havaitsevan tähtitieteen pk I, luento 5, 16.2. 2012 Kalvot: Jyri Näränen ja Thomas Hackman 1 5. Optiikka 1. Geometrinen optiikka 2. Peilit ja linssit 3. Perussuureita 4. Kuvausvirheet 5. Aalto-optiikka

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Maarit Vesapuisto SATE.010 DYNAAMINEN KENTTÄTEOIA Opetusmoniste: Antennit Vaasassa 04.1.009 ALKULAUSE Tämä opetusmoniste laadittiin marras-joulukuun

Lisätiedot

Valonlähteen vaikutus värinäytteiden spektreihin eri mittalaitteilla

Valonlähteen vaikutus värinäytteiden spektreihin eri mittalaitteilla Valonlähteen vaikutus värinäytteiden spektreihin eri mittalaitteilla Noora Tossavainen PSfrag replacements x y Laudatur-opintojen harjoitustyö Heinäkuu 2002 Fysiikan laitos Joensuun yliopisto Noora Tossavainen

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

Aikaerotteinen spektroskopia valokemian tutkimuksessa

Aikaerotteinen spektroskopia valokemian tutkimuksessa Aikaerotteinen spektroskopia valokemian tutkimuksessa TkT Marja Niemi Tampereen teknillinen yliopisto Kemian ja biotekniikan laitos 23.4.2012 Suomalainen Tiedeakatemia, Nuorten klubi DI 2002, TTKK Materiaalitekniikan

Lisätiedot

Eksimeerin muodostuminen

Eksimeerin muodostuminen Fysikaalisen kemian Syventävät-laboratoriotyöt Eksimeerin muodostuminen 02-2010 Työn suoritus Valmista pyreenistä C 16 H 10 (molekyylimassa M = 202,25 g/mol) 1*10-2 M liuos metyylisykloheksaaniin.

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

Osa 5. lukujonot ja sarjat.

Osa 5. lukujonot ja sarjat. Osa 5. lukujonot ja sarjat. Summamerkintä Kurssilla on jo tullut vastaan ns. summamerkintä (kreikkalainen iso sigma): n k=1 Indeksin loppuarvo Indeksi jonka suhteen summataan a k =a 1 +a +a 3 +...+a n

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

Virtaukset & Reaktorit

Virtaukset & Reaktorit Virtaukset & Reaktorit Lämmönsiirron perusteet Oppimistavoite tälle kerralle Lämmönsiirron perusmekanismit Lämmönjohtumisongelmien mallitus ja ratkaisu Säteilylämmönsiirto Konvektio ja lämmönsiirtokerroin

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

Aineen ja valon vuorovaikutukset

Aineen ja valon vuorovaikutukset Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

Ultravioletti- ja lasersäteily. Toimittanut Riikka Pastila

Ultravioletti- ja lasersäteily. Toimittanut Riikka Pastila Ultravioletti- ja lasersäteily Toimittanut Riikka Pastila Säteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Riikka Pastila, Kari Jokela, Sisko Salomaa, T. K. Ikäheimonen, Roy Pöllänen, Anne Weltner,

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

Luento 6. Mustan kappaleen säteily

Luento 6. Mustan kappaleen säteily Mustan kappaleen säteily Luento 6 Pintaa, joka absorboi kaiken siihen osuvan sähkömagneettisen säteilyn, kutsutaan mustaksi kappaleeksi. Tällainen pinta myös säteilee kaikilla aallonpituuksilla. Sen sanotaan

Lisätiedot

Fysiikka 1. Kondensaattorit ja kapasitanssi. Antti Haarto

Fysiikka 1. Kondensaattorit ja kapasitanssi. Antti Haarto Fysiikka Konensaattorit ja kapasitanssi ntti Haarto 4..3 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja jännitteen suhe Yksikkö

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/9 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Hiukkaspäästöjen mittaus

Hiukkaspäästöjen mittaus Hiukkaspäästöjen mittaus Juha-Matti Hirvonen MIKES-Aalto 24.3.2010 Sisältö Hiukkaset Koot Synty Terveysvaikutukset ja kustannukset Lainsäädäntö Kansallinen EU Mittausmenetelmiä Mekaaniset Sähköiset Optiset

Lisätiedot

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET Atomiteknillinen seura 28.11.2007, Tieteiden talo SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET Kari Jokela Ionisoimattoman säteilyn valvonta Säteilyturvakeskus Ionisoimaton

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Yleista Sorptioroottorin jäähdytyskoneiston jäähdytystehontarvetta alentava vaikutus on erittän merkittävää

Lisätiedot

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed

Lisätiedot