RADIOMETRIAN PERUSTEET

Koko: px
Aloita esitys sivulta:

Download "RADIOMETRIAN PERUSTEET"

Transkriptio

1 RADIOMETRIAN PERUSTEET Kari Jokela Kalvo 1

2 OPTINEN RADIOMETRIA Käsittelee optisen säteilyenergian emittoitumista etenemistä väliaineessa siirtymistä optisen laitteen sisällä ilmaisua sähköiseksi signaaliksi Kalvo

3 E 1 OPTISEN SÄTEILYN SYNTY viritystila fotoni sähkökenttä E o atomi tai molekyyli perustila fotonin energia ΔE=E 1 -E o =hf taajuus f=c o /λ c o =valon nopeus h =Planckin vakio λ =aallonpituus magneettikenttä Kalvo 3

4 EPÄKOHERENTTI JA KOHERENTTI SÄTEILY EPÄKOHERENTTI SÄTEILY laajakaistausta suuri säteilypinta hajoaa eri suuntiin pieni radianssi KOHERENTTI LASERSÄTEILY monokromaattista pieni lähtöaukko pieni hajontakulma mahdollinen suuri radianssi hyvin heijastava peili esim. hehkuva kappale stimuloitu emissio optisessa resonaattorissa puoliläpäisevä peili tahdistuneita fotoneja 1 mrad Kalvo 4

5 IRRADIANSSI dφ E= da d irradianssi [W/m ] θ E o A d d Φ =E cos 0 θ dad E λ de =, dλ differentiaalinen teho [W] (pistelähde) spektrinen irradianssi W mnm λ E = E dλ λ 1 λ kokonaisirradianssi Kalvo 5

6 SÄTEILYINTENSITEETTI dφ I =, dω [W/sr] da I λ d = Φλ. dω dacosθ d ω = r I cosθ E= r häviöttömässä väliaineessa (pistelähde) r θ dω Kalvo 6

7 SUORAN SÄTEEN VAIMENEMINEN VÄLIAINEESSA I cosθ E= e r (pistelähde) -μr μ=vaimennuskerroin sirontaa ja absorptiota fotonin energia absorboituu lämmöksi kemialliseksi energiaksi viritysenergiaksi ( esim. fluoresenssi) Kalvo 7

8 A RADIANSSI dω dφ ϕ θ da d Φ W L = da cos θdω m sr Kappaleen säteilemä kokonaisteho dacos( θ ) Φ = L( θ, ϕ ) cosθdadω A 4π Radianssi kuvaa kirkkautta Kalvo 8

9 SÄTEEN RADIANSSI lähtevä radianssi L 1 θ 1 θ dφ dω da 1 1 da tuleva radianssi dφ = L cosθ dω da d ω = da cosθ r d ω = = L cosθ dω da da 1 cosθ 1 Sijoittamalla saadaan L 1 = L homogeenisessa väliaineessa. r θ 1 θ L dφ dω da 1 da da 1 ja da rajaavat säteen, kun niiden kautta kulkeva säteen suuntainen teho dφ on sama. Kalvo 9

10 RADIANSSILAKI L 1 Φ θ 1 n 1 L L 1 = n n 1 n 1 sinθ 1 = n sinθ (taittumislaki) θ n Φ L Kalvo 10

11 LAMBERTIN LÄHDE E = dφ da d d = ω s L( θ, ϕ) cosθdω dφ I( θϕ, ) = = L( θϕ, )cosθda dω A s A s E ω s A d θ säteilevä pinta dω vastaanottava aukko ϕ Lambertin lähteelle θ dω I = A s L o cosθ I L=L o = vakio A s säteilevä pinta ϕ Kalvo 11

12 PYÖREÄ LEVY LAMBERTIN LÄHTEENÄ d Φ = L dωcosθda, o 1 renkaan säteilemä teho aukkoon da 1 R r L o s θ 1 θ s/cos θ da 1 π rcosθ dr d ω = = π sinθdθ (s/ cosθ ) dφ θ1 E = = Lo π sinθ cosθ d θ da1 0 R E = πl sin o θ1 = πlo( ). R + s E = π L 0 s<<r π 0 E = RL. s s>>r Kalvo 1

13 OPTISEN SÄTEILYN HEIJASTUMINEN JA LÄPÄISY haja suunta seka heijastus läpäisy hajaheijastuksessa hajaläpäisyssä E L = R π R+ T + α = 1 E L= T π R=heijastussuhde T=läpäisysuhde α= absorptiosuhde Kalvo 13

14 Φ=LG GEOMETRINEN VUO (1) jos L vakio kaikkiin suuntiin (Lambertin lähde) n 1 n Mielivaltaisella poikkipinnalla, jos n 1 =n G = dg L Φ Φ= systeemiin menevä teho G= geometrinen (kokonais) vuo dg=säteen differentiaalinen geom. vuo Radianssilaista seuraa yleisesti n = 1 G1 ng säde A A Kalvo 14

15 GEOMETRINEN VUO () Systeemiin menevä teho Φ = L( θφ, ) cosθ d ωda A1 ω (x,y) Jos L vakio vastaanottokeilassa Φ= LG G = cosθ dωda A1 ω(x,y) Häviöttömässä systeemissä mielivaltaisella keilan poikkipinnalla = n G = vakio. 1 1 n G Kalvo 15

16 LINSSIN KUVAUTUMINEN EKVIVALENTTISEKSI AUKOKSI Kahden aukon ja linssin järjestelmä voidaan aina palauttaa kahden aukon järjestelmäksi. lähtöaukon kuva A Radiometriset laitteet pyritään suunnittelemaan kahden aukon järjestelmäksi. tuloaukko A 1 lähtöaukko A Kuva-aukko (A 1 ) voidaan muodostaa myös tuloaukon puolelle Kalvo 16

17 RADIOMETRISTEN MITTAUSTEN PERUSYHTÄLÖ S=signaali (esim. virta) R λ =spektrinen responsivitetti ds R λ(x, y, θφ, ) =, dφ z dω 3 d Φ = L (x, y,,, ) cos d da d. λ θ φλ θ ω λ S = Rλ(x, y, θ, φλ, ) Lλ(x, y, θφλ,, ) cosθ dωdad λ. Δλ A ω x da A detektori tai aukko y Kalvo 17

18 MITTAUSYHTÄLÖN TÄRKEITÄ ERIKOISTAPAUKSIA R ei riipu säteilyn suunnasta (ideaalinen kosinidetektori) ja irradianssi on vakio detektoripinnalla. - R ei riipu aallonpituudesta S = AR L cosθ dωdλ = AR E dλ = ARE λ Δλ π Δλ λ - R riippuu aallonpituudesta S = A RλEλ dλ Δλ R on keskimääräinen responsiviteetti detektorin pinnalla Kalvo 18

19 π θ PROJEKTIOAVARUUSKULMA tavallinen avaruuskulma 1 A ω = = dφ sinθdθ = π(1 cos θ ) 1 1 r 0 0 projektioavaruuskulma π θ1 A p 1 cos d d sin cos d sin 1 r ω Ω = = θ ω = φ θ θ θ = π θ Kalvo 19

20 RADIANSSIMITTARI geometrinen vuo linssin tasossa G 1= A1Ω1, projektioavaruuskulma linssin tasossa G Ω Ω1= cos d = ω 1 Φ = LG o, A Ω π sin θ θ ω π sin θ1 1 geometrinen vuo ilmaisimen tasossa tehotiheys ilmaisimen tasossa n ng ng E L 1 1 = = sin oπ θ n1 Kalvo 0

21 ABBEN SINILAKI Geometrisen vuon invarianssin perusteella 3-dimensiossa G =n A Ω = G = n Ω Ω = π sin θ 1 1 = π sin θ A Ω n 1 n θ 1 θ d 1 d lähde kuva Tasossa vastaavasti nd sinθ = nd sinθ, Abben sinilaki Kalvo 1

22 r 0 SPEKTRIMITTAUSTEN TEORIAA (1) Jos vastaanottoaukon pinta-ala (A r ) ja kosinivirhe ovat pieniä S( λ0 ) = A E λ( λ )R φ( λo, λ)d λ. E λ ( λ 0 ) = S( λo ) AR r φ( λ 0, λ0) Δλw Δλ w= Rφ( λo, λ )dλ 0, Rφ( λo, λo) silloin kun E λ (λ) vakio kapealla kaistalla Δλ w Kalvo

23 SPEKTRIMITTAUSTEN TEORIAA () konvoluutiomenetelmä Silloin kun kapeakaistaehto ei ole enää voimassa, voidaan mittausyhtälö esittää muodossa S( λ0 ) = Ar E λ( λ )r f( λ)z( λo - λ)dλ 0 r f (λ) = responsiviteettitekijä z(λ o -λ) = rakosirontafunktio Ratkaistaan E λ (λ)r f (λ) dekonvoloimalla. Kalvo 3

24 LIIKKUVAHILAINEN SPEKTRORADIOMETRI monokromaattori Kalvo 4

25 SPEKTRORADIOMETRIN ETUPÄÄ integroiva pallo E i kokoojalinssi monokromaattori A A r A 1 L θ 1 θ A s hilan kuva tulorako P = E i L = P Ω i A r M η P π = π 1 = L A1 Ω1 i i A 1 1 = π sin θ1 int. palloon menevä teho kokoojalinssin keräämä teho V = A P in = LA 1 Ω 1 V s A varjostumishäviökerroin monokromaattorille menevä teho Kalvo 5

26 interferenssimaksimi, kun a(sinα ± sin β) = mλ D θ dα = = dλ m acosα INTERFERENSSIHILA Interferenssimaksimin m=1 aallonpituus muutetaan kääntämällä hilaa niin, että α muuttuu, mutta β pysyy vakiona. Differentioimalla acosα dα = mdλ m=0, ±1, ±, ±n kulmadispersio [rad/nm] D L = lineaarinen dispersio [mm/nm] fd t θ (f t on peilin M polttoväli) Kalvo 6

27 MONOKROMAATTORIN TULOARAON KUVAUTUMINEN LÄHTÖRAKOON w s,i P out Monokromaattisen säteilyn lähtötehon muutos aallonpituusasetuksen funktiona tulorako lähtörako P out Δλ w w s,o kaistanleveys ws, o Δ λw = D L λ o Laajakaistaisella säteilyllä tulorako kuvautuu lähtöraon päälle jatkuvaksi spektrinauhaksi. λ Kalvo 7

28 KIINTEÄLLÄ HILALLA JA CCD-DETEKTORILLA VARUSTETTU SPEKTRORADIOMETRI Kalvo 8

29 MUSTA KAPPALE RADIANSSINORMAALINA Lämpötilassa T olevan ideaalisen mustan kappaleen spektrinen radianssi hc 1 λb 5 hc/( λkt) L =, λ e -1 Kokonaisradianssi 4 M σ L T b = Lλbd λ = =, π π 0 Planckin laki c =, m/s =valon nopeus h = 6, Js = Planckin vakio k = 1, J/K = Boltzmannin vakio σ = 5, W/(m K 4 ) = Stefan-Boltzmannin vakio. Epäideaalisen harmaan kappaleen spektrinen radianssi L λg = ε L λb Koska kappale on termodynaamisessa tasapainossa emissiokerroin (ε) = absorptiokerroin (α) g = grey (body) b= black (body) Kalvo 9

30 aurinko aurinko MUSTAN KAPPALEEN SPEKTREJÄ ERI LÄMPÖTILOISSA halog. halog. NIST NIST sulava sulava kulta kulta Kalvo 30

31 AURINGON UV-RADIOMETRIEN KALIBROINTI taivas ja aurinko lamppukalibroinnin siirto primaari NIST sekundaari STUK työ 1 kw halog. spektroradiometrin kalibrointi Bentham DM 150 eryteemaradiometrin kalibrointi ulkona Bentham DM 150 SL 501 musta kappale ±1 % ±1,5 % ±,0 % ±,4 % ±5,6 % ±7,8 % Leszczynski et al. 00 Kalvo 31

32 VALAISTUSVOIMAKKUUS ESIMERKKINÄ LAAJAKAISTAISESTA OPTISESTA SUUREESTA Ε v 780 = k V( λ) E( λ) dλ m 380 1,0 0,8 E(λ) = lähteen spektrinen irradianssi V(λ)= silmän spektrinen herkkyyskäyrä päivänvalossa V (λ ) k m = muuntokerroin 683 lm/w 0,0 0,6 0,4 0, Aallonpituus λ (nm) Kalvo 3

33 RADIOMETRISTEN JA FOTOMETRISTEN SUUREIDEN VERTAILU RADIOMETRIA FOTOMETRIA Irradianssi Irradiance E [W/m ] Valaistusvoimakkuus Illuminance E v [lm/m ] tai [lx] Säteilyintensiteetti Radiant intensity I [W/sr] Valovoima Luminous intensity I v [cd] tai [lm/sr] Radianssi Radiance L [W/(sr m )] Luminanssi Luminance L v [cd/m ] tai [lm/sr m ] Kalvo 33

34 ERYTEEMAPAINOTETTU UV-ANNOS W/(m nm) S λ W/(m nm) 1,0E+4 1,0E+3 1,0E+ 1,0E+1 1,0E+0 1,0E-1 1,0E- 1,0E-3 1,0E-4 1,0E+1 1,0E+0 1,0E-1 1,0E- 1,0E-3 1,0E-4 1,0E-5 1,0E+1 1,0E+0 1,0E-1 1,0E- 1,0E-3 1,0E-4 E λ S λ S λ E λ Aallonpituus [nm] Eryteemapainotettu irradianssi E D b = λ λ 1 t 0 S E dλ λ b λ Eryteema-annos (J/m ) = E dt Standardi eryteema-annos (Standard Erythemal Dose) 1 SED= 100 J/(m) Minimieryteema-annos 1 MED = 1-6 SED Kalvo 34

35 LAAJAKAISTAMITTARIN KALIBROINTI LAAJAKAISTAINEN PAINOTETTU MITTAUS VIRHEETÖN VAIN, JOS Mittari on kalibroitu Mittarin (normalisoitu) spektrinen responsiviteetti R λ =S λ Kulmavaste noudattaa kosinivastetta Responsiviteettiehto ei ole välttämätön, jos kalibrointi on suoritettu samanlaisen spektrin omaavalla lähteellä kuin mittaus Kalvo 35

36 PAINOTETUN MITTARIN NUMEERINEN KALIBROINTI lähde 1 lähde E b1 = S E dλ E λ λ λ1 E = SE dλ b λ λ λ b1 = CF 1Em1 Eb = X Em tarkka spektrimittaus mittarin kalibrointi =CF R E dλ E b1 s1 λ λ1 λ E s λ λ λ b =CF R E d λ simuloidun mittarin kalibrointi X CF CF CF = X = CF CF CF s s 1 1 s1 s1 Näin saadaan kalibrointi lähteelle ilman mittaamista. Täytyy vain tuntea sen spektri E λ ja mittarin suhteellinen spektrinen responsiviteetti R λ Kalvo 36

37 OPTISEN SÄTEILYN DIREKTIIVI Altistumisrajat epäkoherentille säteilylle (UV,näkyvä, IR) ja lasersäteilylle Silmä ja iho Rajoja ei saa ylittää suojaamatta Rajoja ei sovelleta auringon säteilyyn Ulkotyön riskit kuitenkin arvioitava ja minimoitava Kalvo 37

38 nm Pulssienergian tiheys (J/m ) näkyvä valo nm nm 5 W/m 0,5 s ALTISTUMISRAJAT SILMÄÄN OSUVALLE LASERPULSSILLE Pulssin kesto (s) Kalvo 38

39 10 6 IHON UV-ALTISTUMISEN RAJA-ARVOT Energiatiheys (J/m ) J/m Aallonpituus (nm) Kalvo 39

40 10 0 PAINOTUSFUNKTIO LAAJAKAISTAISELLE UV-SÄTEILYLLE Suhteellinen herkkyyskerroin S Eri aallonpituuksilla tulevat UV-annokset painotetaan tällä ja lasketaan yhteen Efektiivisen energia-tiheyden (annos) raja-arvo on 30 J/m Aallonpituus (nm) Kalvo 40

LIITE I. Epäkoherentti optinen säteily. λ (H eff on merkityksellinen vain välillä 180 400 nm) (L B on merkityksellinen vain välillä 300 700 nm)

LIITE I. Epäkoherentti optinen säteily. λ (H eff on merkityksellinen vain välillä 180 400 nm) (L B on merkityksellinen vain välillä 300 700 nm) N:o 146 707 LIITE I Epäkoherentti optinen säteily Biofysikaalisesti merkittävät optisen säteilyn altistumisarvot voidaan määrittää alla esitettyjen kaavojen avulla. Tietyn kaavan käyttö riippuu kulloisestakin

Lisätiedot

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR)

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR) 86 Opettele jako: - Gammasäteet (Gamma rays) - Röntgensäteet (X-rays) - Ultravioletti (Ultraviolet) - Näkyvä (Visible) - Infrapuna-alue (Infrared) - Mikroaaltoalue (Microwave) - Radioaallot 87 Valo-opissa

Lisätiedot

LIITE 2. ALTISTUMISRAJA-ARVOT OPTISELLE SÄTEILYLLE

LIITE 2. ALTISTUMISRAJA-ARVOT OPTISELLE SÄTEILYLLE MUISTIO 1137121 v. 1 1(17) 12.06.2017 2388/2017 LIITE 2. ALTISTUMISRAJA-ARVOT OPTISELLE SÄTEILYLLE 1. Epäkoherentti optinen säteily Biofysikaalisesti merkittävät optisen säteilyn altistumisraja-arvot määritellään

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

LASERTURVALLISUUS Lasse Ylianttila

LASERTURVALLISUUS Lasse Ylianttila LASERTURVALLISUUS Lasse Ylianttila Erikoistutkija, Säteilyturvakeskus 02.12.2016 Sisältö Lasersäteen radiometriaa Vaikutukset silmään ja ihoon Turvallisuusstandardit Laser syntyy stimuloidun emission avulla

Lisätiedot

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle.

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle. TEKNILLINEN KORKEAKOULU HARJOITUSTEHTÄVÄT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 31.10.2005 vaikutukset ja mittaukset 1(5) Kari Jokela Säteilyturvakeskus HARJOITUSTEHTÄVÄ 1 Laske relaksaatiotaajuus

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

e) levyssä olevan pienen reiän läpi pääsevä valovirta, kun reiän halkaisija on 5 cm.

e) levyssä olevan pienen reiän läpi pääsevä valovirta, kun reiän halkaisija on 5 cm. 98 kotitehtävä ------------------------------------------------Esimerkki: Isotrooppinen 100 :n lamppu on 2.0 m:n korkeudella lattiasta (ks. edelliset esimerkit). Sen säteilyintensiteetti on I e = 8.0 sr

Lisätiedot

1 Perussuureiden kertausta ja esimerkkejä

1 Perussuureiden kertausta ja esimerkkejä 1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.

Lisätiedot

Lasse Ylianttila, Kari Jokela

Lasse Ylianttila, Kari Jokela RADIOMETRIA Lasse Ylianttila, Kari Jokela SISÄLLYSLUETTELO.1 Radiometrian perusteet... 0. Lasersäteily... 4.3 Optinen säteily ja silmä... 50.4 Optisen säteilyn mittaaminen... 58 Radiometria käsittelee

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka Laskuharjoitukset. Suure Symboli Yksikkö Laskenta Valovirta cd (kandela)

ELEC-C6001 Sähköenergiatekniikka Laskuharjoitukset. Suure Symboli Yksikkö Laskenta Valovirta cd (kandela) ELEC-C6001 Sähköenergiatekniikka IV-V/20142015 Laskuharjoitukset Ratkaisut Tehtävä 1 Täydennä taulukko: Suure Symboli Yksikkö Laskenta Valovirta cd (kandela) Valotehokkuus E cos = Ratkaisu: Suure (På Svenska;

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

Altistuksen raja-arvot ja toimenpidetasot sähkömagneettisille kentille

Altistuksen raja-arvot ja toimenpidetasot sähkömagneettisille kentille Liite 1 Altistuksen raja-arvot ja toimenpidetasot sähkömagneettisille kentille Staattiset magneettikentät taajuusalueella 0 1 Hz Altistuksen raja-arvo Altistuksen raja-arvo määritetään ulkoisen magneettivuon

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

SISÄLLYS. N:o 145. Tasavallan presidentin asetus

SISÄLLYS. N:o 145. Tasavallan presidentin asetus SUOMEN SÄÄDÖSKOKOELMA 2010 Julkaistu Helsingissä 5 päivänä maaliskuuta 2010 N:o 145 146 SISÄLLYS N:o Sivu 145 Tasavallan presidentin asetus Suomen liittymisestä kansainväliseen COSPAS-SARSAT-ohjelmaan

Lisätiedot

Laura Huurto, Heidi Nyberg, Lasse Ylianttila

Laura Huurto, Heidi Nyberg, Lasse Ylianttila 7 UV- säteilyn altistumisrajat Laura Huurto, Heidi Nyberg, Lasse Ylianttila SISÄLLYSLUETTELO 7.1 Johdatus UV-säteilyn altistumisrajoihin... 256 7.2 Väestön altistumisrajat... 257 7.3 Työntekijöiden altistumisrajat...

Lisätiedot

Essee Laserista. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE

Essee Laserista. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE Jyväskylän Ammattikorkeakoulu, IT-instituutti IIZF3010 Sovellettu fysiikka, Syksy 2005, 5 ECTS Opettaja Pasi Repo Essee Laserista Laatija - Pasi Vähämartti Vuosikurssi - IST4SE Sisällysluettelo: 1. Laser

Lisätiedot

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6

FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6 FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Fysiikan perusteet 3 Optiikka

Fysiikan perusteet 3 Optiikka Fysiikan perusteet 3 Optiikka Petri Välisuo petri.valisuo@uva.fi 27. tammikuuta 2014 1 FYSI.1040 Fysiikan perusteet III / Optiikka 2 / 37 Sisältö 1 Heijastuminen ja taittuminen 4 1.1 Joitain hyödyllisiä

Lisätiedot

4.6 RADIOMETRIA. Radiometrian suureet: Taulukossa: e = electromagnetic sr = steradiaani (avaruuskulma) Määrittelyyhtälö. Symboli. Yksikkö.

4.6 RADIOMETRIA. Radiometrian suureet: Taulukossa: e = electromagnetic sr = steradiaani (avaruuskulma) Määrittelyyhtälö. Symboli. Yksikkö. 89 4.6 RADIOMETRIA Radiomtria käsittl sähkömagnttisn sätilyn (aaltoliikkn) nrgian ja thon mittaamista. Radiomtrian suurt ja niidn yksiköt (SI-järjstlmässä) on sittty taulukossa alla. Taulukossa sätilynrgia,

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

Säteilyturvakeskuksen määräys ionisoimattoman säteilyn käytöstä kosmeettisessa tai siihen verrattavassa toimenpiteessä

Säteilyturvakeskuksen määräys ionisoimattoman säteilyn käytöstä kosmeettisessa tai siihen verrattavassa toimenpiteessä MÄÄRÄYS S/5/2018 Säteilyturvakeskuksen määräys ionisoimattoman säteilyn käytöstä kosmeettisessa tai siihen verrattavassa toimenpiteessä Annettu Helsingissä 20.12.2018 Säteilyturvakeskuksen päätöksen mukaisesti

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA FYSA230/2 SPEKTROMETRI, HILA JA PRISMA 1 JOHDANTO Työssä tutustutaan hila- ja prismaspektrometreihin, joiden avulla tutkitaan valon taipumista hilassa ja taittumista prismassa. Samalla tutustutaan eräiden

Lisätiedot

4 VALO. nettiin ja Euklides (325-265) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista

4 VALO. nettiin ja Euklides (325-265) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista 65 4 VALO Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valon luonne on kaksijakoinen: 1. Klassillisessa optiikassa valoa käsitellään sähkömagneettisena aaltona.

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 8 Tavoitteet Sähkömagneettiset aallot Sähkömagneettisten aaltojen energia ja liikemäärä Seisovat sähkömagneettiset aallot

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta

Lisätiedot

13 LASERIN PERUSTEET. Laser on todennäköisesti tärkein optinen laite, joka on kehitetty viimeisten 50 vuoden aikana.

13 LASERIN PERUSTEET. Laser on todennäköisesti tärkein optinen laite, joka on kehitetty viimeisten 50 vuoden aikana. 07 1 LASERIN PERUSTEET 08 Laser on todennäköisesti tärkein optinen laite, joka on kehitetty viimeisten 50 vuoden aikana. Sana LASER on tunnuslyhenne (akronyymi) sanoista Light Amplification by Stimulated

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Sosiaali- ja terveysministeriön asetus ionisoimattoman säteilyn väestölle aiheuttaman altistuksen rajoittamisesta

Sosiaali- ja terveysministeriön asetus ionisoimattoman säteilyn väestölle aiheuttaman altistuksen rajoittamisesta LUONNOS 22.1.2018 1 Sosiaali- ja terveysministeriön asetus ionisoimattoman säteilyn väestölle aiheuttaman altistuksen rajoittamisesta Sosiaali- ja terveysministeriön päätöksen mukaisesti säädetään säteilylain

Lisätiedot

4 Optiikka. 4.1 Valon luonne

4 Optiikka. 4.1 Valon luonne 4 Optiikka 4.1 Valon luonne 1 Valo on etenevää aaltoliikettä, joka syntyy sähkökentän ja magneettikentän yhteisvaikutuksesta. Jos sähkömagneettinen aalto (valoaalto) liikkuu x-akselin suuntaan, värähtelee

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio Diffraktio yhdestä raosta Yhden raon kuvion intensiteetti Monen

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

Suhteellisuusteorian perusteet, harjoitus 6

Suhteellisuusteorian perusteet, harjoitus 6 Suhteellisuusteorian perusteet, harjoitus 6 May 5, 7 Tehtävä a) Valo kulkee nollageodeettia pitkin eli valolle pätee ds. Lisäksi oletetaan valon kulkevan radiaalisesti, jolloin dω. Näin ollen, kun K, saadaan

Lisätiedot

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi SISÄLTÖ Mitä metrologia on Metrisopimus, MIKES Lämpötilan yksikkö kelvin, lämpötila-asteikko ITS-90 Valovoiman yksikkö kandela,

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa.

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa. Säteilyturvakeskus Toimintajärjestelmä #3392 1 (7) SUUREET, MITTAUSALUEET JA MITTAUSEPÄVARMUUDET Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 TIETOTEKNIIKKA / SALO FYSIIKAN LABORATORIO V1.5 12.2007 TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 Työ 24AB S4h. LASERTYÖ JA VALON SPEKTRIN ANALYSOINTI TYÖN TARKOITUS LASERTYÖ Lasereita käytetään esimerkiksi tiedonsiirrossa, analysoinnissa ja terapiassa ja työstämisessä.

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

LÄMPÖSÄTEILY. 1. Työn tarkoitus. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2

LÄMPÖSÄTEILY. 1. Työn tarkoitus. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 LÄMPÖSÄTEILY 1. Työn tarkoitus Kun panet kätesi lämpöpatterille, käteen tulee lämpöä johtumalla patterin seinämän läpi. Mikäli pidät

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI TEORIA Spektroskopia on erittäin yleisesti käytetty analyysimenetelmä laboratorioissa, koska se soveltuu

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

(2005/C 172 E/02) ottavat huomioon Euroopan yhteisön perustamissopimuksen ja erityisesti sen 137 artiklan 2 kohdan,

(2005/C 172 E/02) ottavat huomioon Euroopan yhteisön perustamissopimuksen ja erityisesti sen 137 artiklan 2 kohdan, C 172 E/26 Neuvoston 18 päivänä huhtikuuta 2005 vahvistama YHTEINEN KANTA (EY) N:o 24/2005 Euroopan parlamentin ja neuvoston direktiivin 2005/ /EY antamiseksi terveyttä ja turvallisuutta koskevista vähimmäisvaatimuksista

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

SI-järjestelmä uudistuu

SI-järjestelmä uudistuu SI-järjestelmä uudistuu Virpi Korpelainen VTT MIKES 6.10.2018 VTT beyond the obvious 1 Sisällys SI-järjestelmä Uudistus Miksi? Mitä? Milloin? Uudet määritelmät ja toteutus Kysymyksiä? 6.10.2018 VTT beyond

Lisätiedot

Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit

Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.

Lisätiedot

Sosiaali- ja terveysministeriön asetus

Sosiaali- ja terveysministeriön asetus Sosiaali- ja terveysministeriön asetus ionisoimattoman säteilyn väestölle aiheuttaman altistuksen rajoittamisesta Sosiaali- ja terveysministeriön päätöksen mukaisesti säädetään säteilylain (859/2018) 161

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu 3. Optiikka 1. Geometrinen optiikka 2. Aalto-optiikka 3. Stokesin parametrit 4. Perussuureita 5. Kuvausvirheet 6. Optiikan suunnittelu 3.1 Geometrinen optiikka! klassinen optiikka! Valoa kuvaa suoraan

Lisätiedot

Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014

Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014 Valon sironta - ilmiöt ja mallinnus Jouni Mäkitalo Fysiikan seminaari 2014 Sisältö Johdanto Sironnan sähkömagneettinen mallinnus Analyyttinen sirontateoria Sironta ei-pallomaisista hiukkasista Johdanto

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

Albedot ja magnitudit

Albedot ja magnitudit Albedot ja magnitudit Tähtien kirkkauden ilmoitetaan magnitudiasteikolla. Koska tähdet säteilevät (lähes) isotrooppisesti kaikkiin suuntiin, tähden näennäiseen kirkkautaan vaikuttavat vain: 1) Tähden todellinen

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

EUROOPAN PARLAMENTTI

EUROOPAN PARLAMENTTI EUROOPAN PARLAMENTTI 2004 Istuntoasiakirja 2009 C6-0129/2005 1992/0449B(COD) 12/05/2005 YHTEINEN KANTA Neuvoston hyväksymä yhteinen kanta 18. huhtikuuta 2005 Euroopan parlamentin ja neuvoston direktiivin

Lisätiedot

SPEKTROMETRI, HILA JA PRISMA

SPEKTROMETRI, HILA JA PRISMA FYSA234/K2 SPEKTROMETRI, HILA JA PRISMA 1 Johdanto Kvanttimekaniikan mukaan atomi voi olla vain tietyissä, määrätyissä energiatiloissa. Perustilassa, jossa atomi normaalisti on, energia on pienimmillään.

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

EUROOPAN PARLAMENTTI

EUROOPAN PARLAMENTTI EUROOPAN PARLAMENTTI 2004 2009 Konsolidoitu lainsäädäntöasiakirja 7.9.2005 EP-PE_TC2-COD(1992)0449B ***II EUROOPAN PARLAMENTIN KANTA vahvistettu toisessa käsittelyssä 7. syyskuuta 2005 Euroopan parlamentin

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1. SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Säteily LÄMMÖNSIIRTO BH20A0450

Säteily LÄMMÖNSIIRTO BH20A0450 Säteily LÄMMÖNSIIRTO BH20A0450 1 Sisällys Johdantoa säteilylämmönsiirtoon Yhteenveto kurssista BH20A0300 Säteily Periaatteet ja määritelmät Musta kappale, Planckin spektrinen jakauma, Stefan-Boltzmannin

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 12 Tavoitteet Diffraktio Fresnel- ja Fraunhofer-diffraktio

Lisätiedot

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009

Polarisaatio. Timo Lehtola. 26. tammikuuta 2009 Polarisaatio Timo Lehtola 26. tammikuuta 2009 1 Johdanto Lineaarinen, ympyrä, elliptinen Kahtaistaittuvuus Nicol, metalliverkko Aaltolevyt 2 45 Polarisaatio 3 Lineaarinen polarisaatio y Sähkökentän vaihtelu

Lisätiedot

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

UGR -arvo voidaan laskea yhtälöllä (4.1). UGR=8 lg 0,25 L (4.1)

UGR -arvo voidaan laskea yhtälöllä (4.1). UGR=8 lg 0,25 L (4.1) S-118.3218 VALAISTUSTEKNIIKKA II LASKUHARJOITUS 2 HÄIKÄISY Tehtävä 4 Laske oheisen yhtälön avulla UGR (Unified Glare Rating) -arvo kuvan 4a tilanteessa, kun havaitsija istuu kohdassa A katsoen suoraan

Lisätiedot

11.1 MICHELSONIN INTERFEROMETRI

11.1 MICHELSONIN INTERFEROMETRI 47 11 INTERFEROMETRIA Edellisessä kappaleessa tarkastelimme interferenssiä. Instrumentti, joka on suunniteltu interferenssikuvion muodostamiseen ja sen tutkimiseen (mittaamiseen) on ns. interferometri.

Lisätiedot

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.

3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut. Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013

Lisätiedot

4 Fotometriset käsitteet ja magnitudit

4 Fotometriset käsitteet ja magnitudit 4 Fotometriset käsitteet ja magnitudit 4.1 Intensiteetti, vuontiheys ja luminositeetti Pinta-alkion da läpi kulkee säteilyä Avaruuskulma dω muodostaa kulman θ pinnan normaalin kanssa. Tähän avaruuskulmaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

2. Fotonit, elektronit ja atomit

2. Fotonit, elektronit ja atomit Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin

Lisätiedot

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen

Lisätiedot

Energiansäästölamppujen valotehokkuuden mittaaminen

Energiansäästölamppujen valotehokkuuden mittaaminen Tomi Pulli Energiansäästölamppujen valotehokkuuden mittaaminen Elektroniikan, tietoliikenteen ja automaation tiedekunta Kandidaatintyö Espoo 4.5.2010 Vastuuopettaja: TkT Markus Turunen Työn ohjaaja: DI

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES

METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES METROLOGIA osa I Kari Riski, Mittatekniikan keskus, MIKES kari.riski@mikes.fi SISÄLTÖ Mitä metrologia on Metrologian organisointi Lämpötilan yksikkö kelvin, lämpötila-asteikko ITS-90 Valovoiman yksikkö

Lisätiedot

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot