Kuinka monta riippumatonta simulaationäytettä tarvitaan. - tämä varianssi on riippumaton jakauman ulottuvuuksien määrästä

Koko: px
Aloita esitys sivulta:

Download "Kuinka monta riippumatonta simulaationäytettä tarvitaan. - tämä varianssi on riippumaton jakauman ulottuvuuksien määrästä"

Transkriptio

1 Viime kerralla Karkea laskenta Kuinka monta riippumatonta simulaationäytettä tarvitaan Monte Carlo (luku 11) - suora simulointi - hiladiskretointi Slide 1 - hylkäyspoiminta Markov-ketju Monte Carlo - Gibbs-poiminta - Metropolis- ja Metropolis-Hastings-algoritmit Montako simulaationäytettä tarvitaan? Tuntemattoman suureen odotusarvo E(θ) 1 L l θ (l) jos L suuri ja θ (l) riippumattomia näytteitä, voidaan olettaa tämän odotusarvon olevan normaalijakautunut varianssilla σ 2 θ /L Slide 2 - tämä varianssi on riippumaton jakauman ulottuvuuksien määrästä - yhteenlaskettu varianssi on summa datasta johtuvasta epävarmuudesta ja Monte Carlosta johtuvasta epävarmuudesta σθ 2 + σ θ 2 /L = σ θ 2 (1 + 1/L) - jos L = 100, hajonta kasvaa kertoimella 1 + 1/L = eli Monte Carlo -virhe on lähes olematon

2 Luento 8 Markov-ketju Monte Carlo - konvergenssidiagnostiikka (convergence diagnostics) - simulaationäytteiden käyttö - kuinka monta riippuvaa simulaationäytettä tarvitaan - joitakin perus-mcmc-menetelmien parannuksia Slide 3 Päätösanalyysi - hyöty- ja kustannusfunktiot (utility and cost functions) - odotettu hyöty tai kustannus (expected utility or cost) Päättely MCMC-näytteistä Slide 4 MCMC-ketjun alkupää ei käyttökelpoinen ennenkuin alkupiste unohtunut - kun ketju konvergoitunut saadaan näytteitä halutusta jakaumasta - kovergoitumista voidaan tutkia konvergenssidiagnostiikalla rinnakkaisten riippumattomien ketjujen vertailu yhden ketjun alku- ja loppupään vertailu - ennen konvergenssia simuloidut näytteet heitettävä pois sisäänajo (burn-in) MCMC-näytteet eivät riippumattomia - Monte Carlo -estimaatit silti päteviä - Monte Carlo -estimaatin epävarmuuden arviointi vaikeampaa - mahdollista arvioida efektiivinen näytteiden määrä ajamalla rinnakkaisia riippumattomia ketjuja käyttämällä aikasarja-analyysin menetelmiä

3 Useiden ketjujen käyttö Useiden riippumattomien käyttö turvallisempaa kuin yhden Ketjujen alustus - aloita eri ketjut eri alkupisteistä Slide 5 - pyri valitsemaan alkupisteet suuremalla hajonnalla kuin posteriorin oletettu hajonta (overdispersed starting points) onnistuu helposti vain kun hyvä arvaus posteriorin massan muodosta ja sijainnista - aloita jokainen ketju eri satunnaislukusiemenellä Ketjujen vertailu - vertaa kaikkia estimoitavia skalaariarvoja parametrit parametreista laskettavat muut kiinnostavat tulevien havaintojen ennusteet log-posterioritiheys log-prediktiivinen tiheys Visuaalinen tarkastelu Gelman et al. aivan oikein varoittavat luottamasta visuaaliseen trendien tarkasteluun - visuaalinen tarkastelu ei riittävä konvergenssin hyväksymiseksi - visuaalinen tarkastelu kuitenkin usein riittävä konvergenssin hylkäämiseksi - visuaalinen tarkastelu antaa vihjeitä mikä voisi olla vialla Slide 6 - ihmisen näköjärjestelmä on tehokas huomaamaan poikkeavia asioita, joita vaikea muotoilla matemaattisesti - mitä enemmän tarkasteltavia suureita, sitä vaikeampaa on visuaalinen tarkastelu

4 Ketjujen odotusarvojen ja varianssien vertailu m riippumatonta ketjua, jokaisen pituus n (kun ensimmäinen puolisko poistettu) - estimoitavien skalaarien simulaationäytteet ψ i j (i = 1,..., n; j = 1,..., m) Gelman et al.: potential scale reduction factor (PSRF) - perustuu ketjujen odotusarvojen ja varianssien vertailuun Slide 7 - sopii jatkuville jakaumille ja diskreeteille jakaumille, joita voidaan hyvin approksimoida normaalijakaumalla - estimoitavat skaalarit hyvä muuntaa siten, että olisivat mahdollisimman normaalijakautuneita esim. ottamalla logaritmi aidosti positiivisesta suureesta - Gelman et al. poistavat ensimmäisen puoliskon ja vertailevat jälkimmäisiä puoliskoja Ketjujen odotusarvojen ja varianssien vertailu Lasketaan ketjujen välinen varianssi B (between) B = n m 1 m ( ψ. j ψ.. ) 2, missä ψ. j = 1 n j=1 n ψ i j, ψ.. = 1 m i=1 m j=1 ψ. j - B/n on ketjujen keskiarvojen varianssi Slide 8 Lasketaan ketjujen sisäinen varianssi W (within) W = 1 m m j=1 s 2 j, missä s2 j = 1 n 1 n (ψ i j ψ. j ) 2 j=1 Estimoidaan estimoitavan marginaaliposteriorivarianssi var(ψ y) W :n ja B:n painotettuna keskiarvona var + (ψ y) = n 1 W + 1 n n B

5 Ketjujen odotusarvojen ja varianssien vertailu Slide 9 Estimoidaan var(ψ y) W :n ja B:n painotettuna keskiarvona var + (ψ y) = n 1 W + 1 n n B - tämä yliarvioi marginaaliposteriorivarianssin jos alkupisteet ovat riittävän ylihajonneita, koska silloin B suurempi - harhaton stationäärisessä tilassa tai kun n Äärellisellä n, W aliarvioi marginaaliposteriorivarianssin - yksittäiset ketjut eivät ole ehtineet käydä jakauman joka pisteessä, joten niissä on vähemmän vaihtelua - kun n, E(W) var(ψ y) Koska var + (ψ y) yliarvioi ja W aliarvioi, lasketaan var ˆR + = W Ketjujen odotusarvojen ja varianssien vertailu Potentiaalinen skaalanpienennyskerroin (potential scale reduction factor) ˆR = var + W Slide 10 - estimoi kuinka paljon ψ:n tämänhetkisen jakauman skaala voisi pienentyä jos simulaatiota jatkettaisiin rajalle n - R 1, kun n - jos R on iso, on syytä uskoa, että lisäsimulaatio voi parantaa arviota kyseisen estimoitavan skalaarin jakaumasta - jos R ei ole kaikille estimoitaville skalaareille lähes 1, jatka simulaatiota - lähes 1 tarkoittaa usein alle 1.1, mutta joskus voi olla tarvetta tarkempaankin Esim8_1.m Vaikka R lähes 1, ketju ei ole välttämättä konvergoitunut

6 Simulaationäytteisiin perustuvat konvergenssidiagnostiikat Simulaationäytteisiin perustuvat konvergenssidiagnostiikat voivat paljastaa vain jos konvergenssia ei ole tapahtunut - vaikka diagnostiikan mukaan konvergenssi olisi mahdollinen, on myös aina mahdollista, että lähtöpisteiden ja algoritmin yhteisvalinnan sekä sattuman vuoksi yksikään ketju ei ole käynyt alueilla joissa merkittävästi massaa - tyypillinen ongelmatapaus on multimodaalinen jakauma Slide 11 Joidenkin skalaarien marginaalijakauma voi näyttää konvergoituneelta vaikka yhteisjakauma ei olisi - moniulotteisen ei-normaalijakautuneen jakauman konvergenssidiagnostiikka on vaikeaa Lisäksi PSRF:ssä - jos ketjujen alkupisteet lähekkäin, voi R olla lähes 1, vaikka ei konvergenssia Täydellinen poiminta (perfect sampling)* Joillekin malleille on algoritmeja joissa tiedetään varmasti milloin konvergenssi tapahtunut - mahdollista poimia varmasti riippumattomia näytteitä - algoritmeja kehitetään jatkuvasti eri mallivaihtoehdoille Slide 12

7 Konvergenssidiagnostiikoita* Konvergenssidiagnostiikoita on lukuisia, itse olen käyttänyt pääasiassa - useiden ketjujen ajo - visuaalinen tarkastelu - potential scale reduction factor Slide 13 - Kolmogorov-Smirnov goodness-of-fit hypothesis test sopii myös ei normaalijakautuneille Sisäänajo (burn-in) Gelman et al. tutkivat konvergenssia ketjun loppupuoliskolle - arvioidun konvergenssin jälkeen voidaan alkupuolisko heittää pois ja jatkaa ketjuja kunnes saatu haluttu määrä näytteitä - puoliksi jakaminen ei välttämättä tehokasta kuten demossa näkyi Slide 14

8 Efektiivinen näytteiden määrä Jos ketjun n simulaationäytettä olisivat riippumatomia, ketjujen välinen varianssi B olisi posteriorivarianssin var(ψ y) harhaton estimaatti ja meillä olisi yhteensä mn riippumatonta näytettä Yleisesti MCMC-ketjujen näytteet korreloivat ja B on odotusarvoisesti suurempi kuin var(ψ y) Slide 15 Efektiivinen näytteiden määrä voidaan arvioida seuraavasti n eff = mn var+ (ψ y) B - jos m pieni, tämä on varsin karkea estimaatti - supertehokas simulaatio, missä n eff > mn, mahdollinen, mutta käytännössä epätodennäköinen - Gelman et al. ilmoittavat varmuudeksi min(n eff, mn) Montako simulaationäytettä tarvitaan? Lasketaan tarvittavien näytteiden määrä riippumattomille näytteille Simuloidaan kunnes efektiivinen näytteiden määrä riittävän suuri Slide 16

9 Ohennus (thinning) Ei välttämätöntä Ohennuksessa talletetaan vain joka k:s MCMC-näyte - valitsemalla k riittävän isoksi jäljelle jääneet näytteet lähes riippumattomia k > mn/n eff Slide 17 - säästää muistia ja levytilaa - nopeuttaa simulaationäytteisiin perustuvaa päättelyä - helpottaa Monte Carlo -epävarmuuden arvioimista (jos k arvioitu oikein) Aikasarja-analyysi* Autokorrelaatioita tutkimalla nähdään riippuvuuksien määrä - algoritmien tehokkuuksia vertailtaessa usein verrataan autokorrelaatiosarjoja Efektiivisten näytteiden määrää voidaan arvioida autokorrelaatioista - Geyer s initial convex/monotone sequence estimator arvioi k:n, josta voi arvioida n eff :n Slide 18 - Esim8_2.m Monte Carlo tarkkuuksia voidaan arvioida helposti osalle yhteenvetoarvoista (esim. odotusarvo) ilman ohennusta

10 Gibbs-poiminta (luku 11.8) Muunnokset ja uudelleen parametrisoinnit - jos muuttujat olisivat riippumattomia olisi Gibbs-poiminnan tehokkuus 1/d - pyritään saamaan parametrit mahdollisimman riippumattomiksi Apumuuttujat - esim. t-jakauman esittäminen sekaskaalanormaalijakaumana Slide 19 Parametriavaruuden laajentaminen - lisäparametri jonka avulla voidaan hypätä pidempiä matkoja parametriavaruudessa ja siten saavuttaa nopeampi konvergenssi - lisäparametrin takia malli ali-identifioituva, mutta kiinnostavat suureet edelleen identifioituvia Over-relaxation* - poimitaan uusi piste mielummin ehdollisen jakauman vastakkaiselta puolelta Metropolis-algoritmi (luku 11.9) Muunnokset ja uudelleen parametrisoinnit "Optimaalinen" hylkäystaajuus - jos ehdotusjakauma samanmuotoinen kuin kohdejakauma (mikä harvinaista) - optimaalinen skaala c 2.4/ d - tehokkuus olisi 0.3/d Slide 20 - hylkäystaajuus riippuen ulottuvuuksien määrästä Adaptiivisuus - aloitetaan esim. normaalijakauma-approksimaatiolla - poimitaan näytteitä - valitaan uusi ehdotusjakauma näytteiden perusteella esim. normaalijakauma jonka kovarianssi valitaan näytteiden perusteella myös hylkäystaajus voidaan adaptoida - suoritetaan varsinainen poiminta

11 Adaptiivisista menetelmistä Adaptiiviset menetelmät hyviä, mutta oltava huolellinen, ettei adaptiivisuus estä konvergenssia haluttuun jakaumaan - esim. edellä mainittu yksinkertainen adaptiivinen Metropolis ok, kun adaptointi suoritetaan ennen varsinaista ajoa, joka ei ole adaptiivinen Slide 21 Muita menetelmiä* Erilaisia kehittyneempiä menetelmiä hyvin paljon Kirjan luvussa 13 mainitaan muutama hyödyllisimmistä - hybrid Monte Carlo hyödyntää gradientti-informaatiota Slide 22 - slice sampling sopii erityisesti 1-ulotteisille (vrt. Gibbs) täydellisesti paikallisesti adaptoituva - simulated tempering korkeammassa lämpötilassa moodinvaihto onnistuu helpommin - reversible jump MCMC sallii hypyt parametriavaruudesta toiseen myös ulottuvuuksien määrä voi vaihtua sopii mallin rakenteen valintaan

12 Päätösanalyysi (decision analysis) Gelman et al. väheksyvät päätösanalyysin merkitystä - ehkä koska heidän ongelmissaan hyötyfunktioiden valinta hyvin vaikeaa ja siksi niihin ei ole haluttu ottaa kantaa, tai eivät ole ymmärtäneet asiaa - kirjan ensimmäisessä painoksessa päätösanalyysia ei ollut ollenkaan Slide 23 Moni muu pitää päätösanalyysia erottamattomana osana bayesilaista todennäköisyysteoriaa - todennäköisyydet ja hyödyt (utilities) erottamattomia - päätösten vaikutusten arviointi ei poikkea muusta bayesilaisesta päättelystä - mallien posteriorijakaumien ja yhteenvetolukujen ilmoittaminen perusteltavissa päätösanalyysilla - tilastollisesti merkittävä vs. käytännössä merkittävä - mallien arviointi, vertailu ja valinta on päätösanalyysia - "Todennäköisyysteoria ilman päätösteoriaa on kuin auto ilman polttoainetta. Se on olemassa, mutta sillä ei pääse minnekään." Bayesilainen päätöksenteko Mahdolliset päätökset d (decision) - usein myös puhutaan toimenpiteistä a (action) Mahdolliset seuraamukset x - x voi olla nominaalinen, ordinaalinen, reaalinen, skalaari, vektori,... Seuraamuksien todennäköisyysjakaumat annettuna päätökset p(x d) Slide 24 - päätöksenteossa päätökset ovat kontrolloituja, joten p(d) ei määritelty Hyötyfunktio U(x) (utility function) kuvaa seuraamuksen reaaliluvuksi - esim. euroiksi tai odotettavaksi elinajaksi - joskus puhutaan erikseen hyödyistä (utility) ja kustannuksista (cost) Hyödyn todennäköisyysjakauma p(u(x) d) Odotettu hyöty E(U(x) d) (expected utility) - voidaan ilmoittaa myös koko jakauma tai muu yhteenvetoarvo Valitaan päätös d, joka maksimoi odotetun hyödyn E(U(x) d)

13 Päätösanalyysin ja päätösteorian erosta Gelman et al. lepertelevät sekavia päätösanalyysin ja päätösteorian eroista -... statistical decision theory, a mathematical framework that is formally Bayesian but which we find too abstract to be directly useful for real decision problems. - These mathematical results are interesting but we do not see their relevance in practice. Slide 25 Aivan oikein piste-estimaattien sijasta mielummin esittävät koko posteriorijakauman tai intervalleja, mutta unohtavat, että joskus on pakko valita yksi luku - esim. tehtaassa koneen säätöä varten valittava yksi luku ja lopputuloksena saadaan yhtä lopputuotetta - jos muita hyötyfunktioita ei ole käytettävissä, on parempi käyttää edes yleiskäyttöisiä "abstrakteja" hyötyfunktioita Muissa yhteyksissä ainakin Gelman puhunut järkevämpiäkin Esimerkki päätöksenteosta Matti on lähdössä sienimetsään kun huomaa matkalla suuren käpälän jäljen, joka näyttää koiran tai suden jäljeltä Slide 26 Matti mittaa jäljen pituudeksi 14 cm ja menee kotiin tarkistamaan eläinkirjasta eläinten jalkojen kokoja ja sen perusteella yritää päätellä onko otus susi vai koira Todennäköisyys p(x C) C= Susi C= Iso koira Jäljen pituus x (cm) havaitun jäljen pituus on merkitty kuvaan pystyviivalla Pelkästään tämän perusteella suden todennäköisyys 0.92

14 Esimerkki päätöksenteosta Matti olettaa lisäksi, että irrallaan juoksevia koiria on sata kertaa enemmän kuin susia, tällöin siis a priori todennäköisyys sudelle, kun mitään piirteitä ei ole havaittu, on n. 1%. Eri luokkien uskottavuudet ja posteriori-todennäköisyydet Luokitus Uskottavuus Posteriori-todennäköisyys Slide 27 Susi Koira Tämän perusteella suden todennäköisyys 0.10 Esimerkki päätöksenteosta Matti miettii uskaltaako lähteä poimimaan sieniä Oikealle luokitukselle voitaisiin asettaa nollariski Jos otus on koira ja pysytään kotona, seuraa pieni tappio, kun sieniretki jää aiheettomasti tekemättä Slide 28 Jos taas otus on susi, mutta sitä luullaan koiraksi ja lähdetään sienimetsään, on tappio paljon suurempi, koska susi voi syödä Matin suihinsa Otuksen luokka Toiminta Susi Koira Toiminta Ehdollinen riski Pysytään kotona 1 1 Lähdetään metsään Tappiomatriisi Pysytään kotona 1 Lähdetään metsään 100 Eri toimintojen ehdolliset riskit

15 Esimerkki päätöksenteosta Sudesta jää havaitun kokoinen jälki paljon todennäköisemmin kuin koirasta, joten suurimman uskottavuuden luokitus on susi Havaitun kokoinen jälki on paljon todennäköisemmin jäänyt koirasta, koska koirat ovat niin paljon yleisempiä, ja suurimman todennäköisyyden luokitus on koira Minimiriskipäätös on pysyä kotona, vaikka otus on todennäköisemmin koira Slide 29 - lähtöoletusten mukaan suden tapaaminen metsässä aiheuttaa suuren odotetun tappion, ja se huomioon ottaen otukseen kannattaa suhtautua kuin se olisi susi, jotta kokonaisriski minimoituu Esimerkistä näkyy selvästi, että kaikkien vaihtoehtojen todennäköisyydet täytyy pitää mukana lopulliseen päätöksentekoon asti - jos luokkien todennäköisyyksien perusteella tehdään päätös, että kyseessä on koira, ei sen jälkeen ole enää mahdollista tehdä minimiriskipäätöstä, jossa otetaan huomioon väärän luokituksen aiheuttamat riskit Esimerkki päätöksenteosta Professori Gelmanilla on purkillinen neljännedollareita - purkkiin ensin vedetty viiva ja sitten purkki täytetty viivaan asti kolikoilla, joten kolikoiden määrää ei ole valittu etukäteen - Prof. Gelman ei itse tiedä kolikoiden määrää - Prof. Gelman tarjoaa luokalle mahdollisuutta voittaa kaikki purkin kolikot jos luokaa arvaa kolikoiden määrän oikein Slide 30 - niille tiedoksi, jotka eivät olleet luennolla, esimerkki käsiteltiin loppuun suullisesti ja taululla

16 Hyötyfunktion valinnan vaikeudesta 1) Varmasti 1 tai todennäköisyydellä p ja 1 p 1 0 2) Varmasti 1 tai p 2 10 Varmasti 10 tai p Varmasti 100 tai p Varmasti 1000 tai p Slide 31 Hyötyfunktion valinnan vaikeudesta Jos seuraavat vaihtoehdot samanarvoiset henkilölle Varmasti 10 tai todennäköisyydellä 55% 20 ja 45% 0 Varmasti 20 tai todennäköisyydellä 55% 30 ja 45% 10 Slide 32 Varmasti x tai todennäköisyydellä 55% (x+10) ja 45% (x-10), x=30,40,50,... niin mikä on y Varmasti y tai todennäköisyydellä 50% 1 miljardi ja 50% 0 y on jotain välillä 30 40!

17 Hyötyfunktion valinnan vaikeudesta Ihmiset huonoja arvioimaan todennäköisyyksiä Extrapolointi tuottaa outoja tuloksia Epävarmuuden pelkoa eli riskin välttämistä ei voida selittää odotetun hyödyn maksimoinilla ja konkaavilla hyötyfunktiolla Slide 33 Epävarmuuden kustannukset ovat vaikeita määritellä Hyötyjä ja kustannuksia on vaikea arvioida esim. terveydenhoidossa. - mitä sairauksia ja millä kustanuksilla niitä pitäisi hoitaa? - yksittäisen ihmisen hyöty on, että hän ja hänen läheisensä ovat terveitä - lääkärin hyödystä osa voi tulla bonuksina jos syntyy säästöjä, jne Paljonko ympäristön puhtaus tai maapallon lämpeneminen maksaa rahassa Usein lopullisessa päätöksenteossa niin monenlaiset ihmisarvot, että siinä matemaattinen teoria on pulassa Esimerkki Monivaiheinen päätöksenteko: lääketieteellinen seulonta - kirja luku vuotiaalla kasvain joka mahdollisesti pahalaatuinen - esimerkissä laskettiin odotettua elinaikaa Slide 34 - mitä jos hoitojen kustannukset olisivat mukana? kuinka paljon 95-vuotiaan odotettu lisäelinkuukausi voisi maksaa kuinka paljon 5-vuotiaan odotettu lisäelinkuukausi voisi maksaa

18 Elämän hinta? 1) Kuinka paljon pitäisi sinulle maksaa, että suostuisit kuolemaan? 2) Saat valita (a) jatkat elämistä (b) todennäköisyydellä p kuolet ja todennäköisyydellä (1- p) saat ) Onko autossasi turvatyyny? Slide 35 - turvatyyny maksaa auto käytössä 10 vuotta - amerikkalaisen tutkimuksen mukaan turvatyyny pelastaa n. 2% tapauksista - Suomessa kuolee liikenteessä n. 300 vuodessa - oletetaan, että ajat varovasti, etkä aja humalassa - todennäköisyys, että turvatyyny pelastaa henkesi, on n. 1e-8 - odotusarvohinta hengellesi n. 100 miljardia euroa - vrt. Gelman et al. s. 566 odotusarvohinta hengelle radonmittauksissa ja -korjauksissa n. 1 miljoona dollaria Yhteys mallien arviointiin ja valintaan Mikä on odotettu hyöty jos käytämme mallia ennustamiseen ja päätöksentekoon tulevaisuudessa - mallin odotettu hyöty - voidaan arvioida onko mallista käytännön hyötyä - voidaan vertailla mallien odotettuja hyötyjä Slide 36

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu

Lisätiedot

S-114.600 Bayesilaisen mallintamisen perusteet

S-114.600 Bayesilaisen mallintamisen perusteet S-114.600 Bayesilaisen mallintamisen perusteet Laajuus: 2 ov Opettajat: TkT Aki Vehtari, DI Toni Tamminen Slide 1 Sisältö: Bayesilainen todennäköisyysteoria ja bayesilainen päättely. Bayesilaiset mallit

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Muuttujien eliminointi

Muuttujien eliminointi 228 Muuttujien eliminointi Toistuvat alilauseet voidaan evaluoida kerran ja niiden arvo talletetaan käytettäväksi aina tarvittaessa Tarkastellaan muuttujien eliminointi -algoritmia lausekkeen P(Murto jussikäy,

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

Approksimatiivinen päättely

Approksimatiivinen päättely 218 Approksimatiivinen päättely Koska tarkka päättely on laskennallisesti vaativaa, niin on syytä tarkastella ratkaisujen approksimointia Approksimointi perustuu satunnaiseen otantaan tunnetusta todennäköisyysjakaumasta

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 4 Ratkaisuehdotuksia 1. Olkoon herra K.:n hyötyfunktio u(x) = ln x. (a) Onko herra K. riskinkaihtaja, riskinrakastaja vai riskineutraali?

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta:

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta: RMS22 Päätöksenteko epävarmuuden vallitessa Syksy 28 Harjoitus 8 Ratkaisuehdotuksia Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta: Pankki harkitsee myöntääkö 5. euron lainan asiakkaalle 12%

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

YLEISKUVA - Kysymykset

YLEISKUVA - Kysymykset INSIGHT Käyttöopas YLEISKUVA - Kysymykset 1. Insight - analysointityökalun käytön mahdollistamiseksi täytyy kyselyn raportti avata Beta - raportointityökalulla 1. Klikkaa Insight välilehteä raportilla

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

Reikä. Säätila. Hammassärky Osuma

Reikä. Säätila. Hammassärky Osuma 190 Nuolen X Y intuitiivinen merkitys on, että X vaikuttaa suoraan Y:hyn Verkon topologia solmut ja nuolet määräävät muuttujien ehdolliset riippumattomuudet Kun topologia on kiinnitetty, pitää vielä määrätä

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. päätöspuiden avulla tarkastellaan vasta seuraavissa harjoituksissa.

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. päätöspuiden avulla tarkastellaan vasta seuraavissa harjoituksissa. ORMS00 Päätöksenteko epävarmuuden vallitessa Syksy 008 Harjoitus Ratkaisuehdotuksia Nämä harjoitukset liittyvät päätöspuiden rakentamiseen: varsinaista päätöksentekoa päätöspuiden avulla tarkastellaan

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4 TILTP1 Tilastotieteen johdantokurssin harjoitustyö Tampereen yliopisto 5.11.2007 Perttu Kaijansinkko (84813) perttu.kaijansinkko@uta.fi Pääaine matematiikka/tilastotiede Tarkastaja Tarja Siren 1 Johdanto...2

Lisätiedot

Luonnollisen kielen tilastollinen käsittely. T-61.281 (3 ov) L. Luento 2, 21.1.2003. Luentokalvot: Krista Lagus ja Timo Honkela

Luonnollisen kielen tilastollinen käsittely. T-61.281 (3 ov) L. Luento 2, 21.1.2003. Luentokalvot: Krista Lagus ja Timo Honkela Luonnollisen kielen tilastollinen käsittely T-61.281 (3 ov) L Luento 2, 21.1.2003 Luennot: Laskuharjoitukset: Timo Honkela Vesa Siivola Luentokalvot: Krista Lagus ja Timo Honkela 0.1 Laskuharjoitukset

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen I UUSINTATENTTI 4.3.1996

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen I UUSINTATENTTI 4.3.1996 1 VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen I UUSINTATENTTI 4.3.1996 Tehtävä 1. Eräässä diktatuurimaassa on edelleenkin käytössä kuolemanrangaistus

Lisätiedot

Automaatiojärjestelmät. Häiriöihin ja onnettomuuksiin liittyy kauaskantoisia seurauksia. Tekniset tuotantojärjestelmät ovat monimutkaistuneet

Automaatiojärjestelmät. Häiriöihin ja onnettomuuksiin liittyy kauaskantoisia seurauksia. Tekniset tuotantojärjestelmät ovat monimutkaistuneet 1. JOHDANTO Päätökset tehdään epävarmuuden vallitessa Tuotantojärjestelmien häiriöt voivat johtaa suuriin taloudellisiin menetyksiin Häiriöihin ja onnettomuuksiin liittyy kauaskantoisia seurauksia Tekniset

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla

Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen. Pekka Leskinen ja Tuomo Kainulainen Metla \esitelm\hki0506.ppt 18.5.2006 Tilastotieteellisiä malleja välimatka- ja suhdeasteikollisten preferenssien mittaamiseen Pekka Leskinen ja Tuomo Kainulainen Metla FORS-iltapäiväseminaari 24.5.2006: Operaatiotutkimus

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi

DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi DBN Mitä sillä tekee? Dynaamisten Bayes-verkkojen määrittely aikasarja-analyysissä Janne Toivola jtoivola@iki.fi Historiaa Bayesin kaavan hyödyntäminen BN-ohjelmistoja ollut ennenkin Tanskalaisten Hugin

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Optimal Harvesting of Forest Stands

Optimal Harvesting of Forest Stands Optimal Harvesting of Forest Stands (Presentation of the Complete Work) 11 April 2011 Instructor: Janne Kettunen Supervisor: Ahti Salo Tausta Ass. Prof. Janne Kettunen käsittelee osana väitöskirjatyötään

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti

Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti 16.5.2012/1(6)/tp Kuormat on yhdistettävä rakennesuunnittelussa riippuvasti Pysyvät kuormat ovat riippumattomia, mutta ne yhdistetään nykyisissä rakennesuunnittelunormeissa aina riippuvasti 1. Pysyvä ja

Lisätiedot

Aikasarjamallit. Pekka Hjelt

Aikasarjamallit. Pekka Hjelt Pekka Hjelt Aikasarjamallit Aikasarja koostuu järjestyksessä olevista havainnoista, ja yleensä se on tasavälinen ja diskreetti eli havaintopisteet ovat erillisiä. Lisäksi aikasarjassa on yleensä autokorrelaatiota

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 5 (Koetentti)

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 5 (Koetentti) ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 200 Harjoitus 5 (Koetentti) Ratkaisuehdotuksia. Öljy-Yhtiö Oy on tehnyt herra K.:n maapalasta ostotarjouksen 200kC. Herra K. voi joko myydä maapalan

Lisätiedot

Luento 5: Peliteoria

Luento 5: Peliteoria Luento 5: Peliteoria Portfolion optimointi Sijoittajan tehtävä Nashin tasapaino Vangin ongelma Nashin neuvotteluratkaisu 1 Portfolion optimointi Varallisuus A sijoitetaan n:ään sijoituskohteeseen (osake,

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Vuoden 2005 eläkeuudistuksen

Vuoden 2005 eläkeuudistuksen Vuoden 2005 eläkeuudistuksen vaikutus eläkkeelle siirtymiseen Roope Uusitalo HECER, Helsingin yliopisto Aktuaariyhdistys 23.10. 2013 Tutkimuksen tavoite Arvioidaan vuoden 2005 uudistusten kokonaisvaikutus

Lisätiedot

2016/06/21 13:27 1/10 Laskentatavat

2016/06/21 13:27 1/10 Laskentatavat 2016/06/21 13:27 1/10 Laskentatavat Laskentatavat Yleistä - vaakageometrian suunnittelusta Paalu Ensimmäinen paalu Ensimmäisen paalun tartuntapiste asetetaan automaattisesti 0.0:aan. Tämä voidaan muuttaa

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Johdanto peliteoriaan Kirja kpl. 2

Johdanto peliteoriaan Kirja kpl. 2 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 1 Johdanto peliteoriaan Kirja kpl. 2 Ilkka Leppänen 20.1.2010 Aalto-yliopiston TKK Mat-2.4142 K2010 Esitelmä 1 Ilkka Leppänen 2 Aiheet Laajennettu

Lisätiedot

Aikasarja-analyysiä taloudellisilla aineistoilla

Aikasarja-analyysiä taloudellisilla aineistoilla Aikasarja-analyysiä taloudellisilla aineistoilla Leena Kalliovirta, Luonnonvarakeskus Leena.kalliovirta@luke.fi Kurssi Tilastotiede tutuksi HY matematiikan ja tilastotieteen laitos 1 Leena Kalliovirta

Lisätiedot

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama.

Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarjat Tilastotieteessä aikasarja tarkoittaa yleensä sarjaa, jossa peräkkäisten havaintojen aikaväli on aina sama. Aikasarja on laajassa mielessä stationäärinen (wide sense stationary, WSS), jos odotusarvo

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta

Luento 5 Riippuvuudet vikapuissa Esimerkkejä PSA:sta Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo Teknillinen korkeakoulu L 1100, 0015 TKK 1 Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä

Lisätiedot

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä 7 Osa 7: Pidempiä esimerkkejä R:n käytöstä R:n pääasiallinen käyttö monelle on tilastollisten menetelmien suorittaminen. Käydään nyt läpi joitain esimerkkitilanteita, alkaen aineiston luvusta ja päättyen

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

Tieteellinen laskenta 2 Törmäykset

Tieteellinen laskenta 2 Törmäykset Tieteellinen laskenta 2 Törmäykset Aki Kutvonen Op.nmr 013185860 Sisällysluettelo Ohjelman tekninen dokumentti...3 Yleiskuvaus...3 Kääntöohje...3 Ohjelman yleinen rakenne...4 Esimerkkiajo ja käyttöohje...5

Lisätiedot

Muuttujien riippumattomuus

Muuttujien riippumattomuus 199 Muuttujien riippumattomuus Jos esimerkkiin lisätään muuttuja Säätila, jolla on 4 mahdollista arvoa, on edellä ollut yhteisjakauman taulukko monistettava neljästi Koska hammasongelmat eivät vaikuta

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13

LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 AS OY PUUTARHAKATU 11-13 2 LÄMMITYSENERGIA- JA KUSTANNUSANALYYSI 2014 Yhtiössä otettiin käyttöön lämmön talteenottojärjestelmä (LTO) vuoden 2013 aikana. LTO-järjestelmää

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi)

Vektorit. Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Vektorit Kertausta 12.3.2013 Seppo Lustig (Lähde: avoinoppikirja.fi) Sisällys Vektorit Nimeäminen Vektorien kertolasku Vektorien yhteenlasku Suuntasopimus Esimerkki: laivan nopeus Vektorit Vektoreilla

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

Simulointi. Varianssinhallintaa Esimerkki

Simulointi. Varianssinhallintaa Esimerkki Simulointi Varianssinhallintaa Esimerkki M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Mallintamisesta. Mallintamisesta

Mallintamisesta. Mallintamisesta Laajasti ymmärtäen jonkin tarkasteltavan ilmiön kuvaamista (esim. matemaattista) kuhunkin tarkoitukseen (ennustaminen, analysointi, visualisointi) parhaiten sopivalla tavalla. Ilmiön pukemista helposti

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 29-31.10.2008. 1 Tällä viikolla 1. Käytännön järjestelyistä 2. Kurssin sisällöstä ja aikataulusta 3. Johdantoa Mitä koneoppiminen

Lisätiedot

TYYPIN 1 DIABETEKSEN MATEMAATTISISTA ENNUSTAMISMENETELMISTÄ. Perttu Markula. Pro gradu -tutkielma Helmikuu 2005

TYYPIN 1 DIABETEKSEN MATEMAATTISISTA ENNUSTAMISMENETELMISTÄ. Perttu Markula. Pro gradu -tutkielma Helmikuu 2005 TYYPIN 1 DIABETEKSEN MATEMAATTISISTA ENNUSTAMISMENETELMISTÄ Perttu Markula Pro gradu -tutkielma Helmikuu 2005 UNIVERSITY OF TURKU DEPARTMENT OF MATHEMATICS FIN-20014 TURKU FINLAND TURUN YLIOPISTO Sovelletun

Lisätiedot

Sopimusteoria: Salanie luku 3.2

Sopimusteoria: Salanie luku 3.2 Sopimusteoria: Salanie luku 3.2 Antti Pirjetä Taloustieteiden kvantitatiiviset menetelmät Helsingin kauppakorkeakoulu 12.2.2008 1 Kilpaillut markkinat, yksi tai useampi päämies Agenttien 1 ja 2 tuottamat

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

SIMULINK S-funktiot. SIMULINK S-funktiot

SIMULINK S-funktiot. SIMULINK S-funktiot S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

ASCII-taidetta. Intro: Python

ASCII-taidetta. Intro: Python Python 1 ASCII-taidetta All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/18cplpy to find out what to do.

Lisätiedot

Jouni Huotari OLAP-ohjetekstit kopioitu Microsoftin ohjatun OLAP-kuution teko-ohjeesta. Esimerkin kuvaus ja OLAP-määritelmä

Jouni Huotari OLAP-ohjetekstit kopioitu Microsoftin ohjatun OLAP-kuution teko-ohjeesta. Esimerkin kuvaus ja OLAP-määritelmä OLAP-kuution teko Jouni Huotari OLAP-ohjetekstit kopioitu Microsoftin ohjatun OLAP-kuution teko-ohjeesta Esimerkin kuvaus ja OLAP-määritelmä Tavoitteena on luoda OLAP-kuutio Northwind-tietokannan tilaustiedoista

Lisätiedot

TIETOJEN TUONTI TIETOKANNASTA + PIVOT-TAULUKON JA OLAP-KUUTION TEKO

TIETOJEN TUONTI TIETOKANNASTA + PIVOT-TAULUKON JA OLAP-KUUTION TEKO TIETOJEN TUONTI TIETOKANNASTA + PIVOT-TAULUKON JA OLAP-KUUTION TEKO JOUNI HUOTARI 2005-2010 OLAP-OHJETEKSTIT KOPIOITU MICROSOFTIN OHJATUN OLAP-KUUTION TEKO-OHJEESTA ESIMERKIN KUVAUS JA OLAP-MÄÄRITELMÄ

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014

MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 MAATALOUS-METSÄTIETEELLISEN TIEDEKUNNAN VALINTAKOE 2014 KOE 2: Ympäristöekonomia KANSANTALOUSTIEDE JA MATEMATIIKKA Sekä A- että B-osasta tulee saada vähintään 10 pistettä. Mikäli A-osan pistemäärä on vähemmän

Lisätiedot