Matemaattisen mallinnuksen peruskurssi: Differentiaaliyhtälöt ja systeemiteoria

Koko: px
Aloita esitys sivulta:

Download "Matemaattisen mallinnuksen peruskurssi: Differentiaaliyhtälöt ja systeemiteoria"

Transkriptio

1 Matemaattisen mallinnuksen peruskurssi: Differentiaaliyhtälöt ja systeemiteoria 22. heinäkuuta 24

2 2

3 Sisältö 1 Johdanto: muutoksen mallintaminen 5 2 Diskreettiaikainen mallintaminen Differenssiyhtälöt Mallintaminen differenssiyhtälöillä Käyttäytymisen arviointi differenssiyhtälöllä Rajaton kasvu Rajattu kasvu Differenssiyhtälöryhmä Mallintaminen differenssiyhtälöryhmällä Kilpailevat populaatiot Saalis - saalistaja Ratkaisut Numeerinen ratkaisu ja pitkäaikainen käytös Analyyttinen ratkaisu Tasapainotilat Jatkuva-aikainen mallintaminen Differentiaaliyhtälö Mallintaminen differentiaaliyhtälöllä Populaation kasvu Differentiaaliyhtälöryhmät Mallintaminen differentiaaliyhtälöryhmällä Interaktiiviset populaatiot Dimensioton muoto Ratkaisut Numeerinen Analyyttinen Tasapainoarvot Graafinen tarkastelu Esimerkki - lääkekuurin määrääminen

4 4

5 Luku 1 Johdanto: muutoksen mallintaminen Matemaattisessa mallinnuksessa tarkoituksena on luoda malleja, joiden avulla pystytään selittämään käyttäytymistä tai ennustaa tulevaa. Monesti hyvä lähtökohta on yhtälö nykyinen arvo = vanha arvo + muutos. Usein analyysi aloitetaan tutkimalla vain muutosta. Jos asiat tapahtuvat tietyin aikavälein, tarkastellaan asiaa diskreetissä ajassa. Käytetään differenssiyhtälöitä. Jos aika on taas jatkuvaa, otetaan käyttöön differentiaaliyhtälöt. Jatkuva-aikaista käyttäytymistä voi myös arvioida differenssiyhtälöillä. Toisaalta joskus on hyödyllistä tutkia diskreettiaikaista mallia differentiaaliyhtälöillä. Interaktiivisia järjestelmiä mallintaessa tarvitaan puolestaan differenssi- ja differentiaaliyhtälöryhmiä. Differenssiyhtälöiden teoriassa ja soveltamisessa on monia yhtäläisyyksiä differentiaaliyhtälöiden teoriaan. Seurauksena muunnokset differenssi ja differentiaaliyhtälöiden välillä ovat mahdollisia. 5

6 6

7 Luku 2 Diskreettiaikainen mallintaminen Katsotaan ensin intuitiivinen esimerkki. Esimerkki - Ydinasekilpailu Maat X ja Y ovat ydinasekilpailussa keskenään. Kumpikin maa uskoo, että kunhan silläonohjuksia tietty määrä, toinen ei uskalla hyökätä. Maa Y laskee, ettäse tarvitsee 12 ohjusta vahingoittaakseen vastustajaa. Lisäksi Y laskee, että kahta X:n ohjusta vastaan se tarvitse yhden ylimääräisen. y olkoon Y :n ohjusten määrä ja xx:n ohjusten määrä, jotka Y on havainnut. Y noudattaa tällöin strategiaa y = x. Maa X noudattaa samankaltaista strategiaa. Se laskee, ettäsetarvitsee ainakin 6 ohjusta, sekä lisäksi yhden kolmea Y :n ohjusta kohden. Olkoon x nyt X:n ydinaseiden määrä jayx:n havaitsemat Y :n ydinaseet. X:n strategia on yhtälön x = y mukaista. Miten ydinasekilpailu etenee? Ensimmäisellä askeleella Y rakentaa 12 ohjusta ja X 6. Oletetaan nyt, että X:n ja Y :n tiedustelutiedot ovat täydellisiä, eli kumpikin on tietoinen kaikista toisen maan ohjuksista. Seuraavassa vaiheessa Y lisää kapasiteettinsa y = = 15 ohjukseen. X:n ohjuksia on taas x = = 1. Kun 2 3 merkitsemmä n:nnen vaiheen ohjusmääriä x n :llä jay n :llä, saadaan yhtälöt { yn+1 = x 2 n x n+1 = 6+ 1y. 3 n x =6ja y = 12 ovat mallin alkuarvot, itse yhtälöissä esiintyvät 6, 12, 1 ja 2 ovat mallin parametrejä

8 8 Kun kilpailu jatkuu dynaamisesti (vaiheittain) samojen yhtälöiden mukaisesti tilanteet menevät seuraavasti: n y n x n y y y y 2 3 y 1 x 1 x 2 (12,18) x 3 x x Rakennettavien ohjusten määränäyttääpienenevän vaiheiden edetessä. Y näyttää päätyvän noin 18 ohjukseen, X taas 12 ohjukseen. Ennustaako malli tasapainoarvoja, joihin maat näyttävät päätyvän? Onko tasapainoasema vakaa, eli vaikuttavatko alkuarvojen muutokset paljon siihen? Kuinka herkkä lopputulos on muutoksille mallin parametreissä? Karkaako kilpavarustelu käsistä, jos jompi kumpi poikkeaa strategiastaan hiukan? 2.1 Differenssiyhtälöt Yleisesti k:nnen asteen differenssiyhtälö onmuotoa: f(n, x n+1,x n,x n 1,x n 2,...x n k+1 )= Ensimmäisen asteen differenssiyhtälö Yleensä tullaan toimeen ensimmäisen asteen differenssiyhtälöllä f(n, x n+1,x n )=,

9 9 joka pyritään kirjoittamaan eksplisiittiseen muotoon x n+1 = g(n, x n ). (Vastaavasti joskus käytetään muotoja f(n, x n,x n 1 )=ja x n = g(n, x n 1 ).) Autonominen yhtälö Differenssiyhtälöä kutsutaan autonomiseksi, mikäli funktio g ei suoraan riipu aikamuuttuja n:stä. x n+1 = g(x n ) Alkuarvotehtävä Alkuarvotehtäväonalkuarvojen ja differenssiyhtälön yhdistelmä. Eksplisiittiseen muotoon sijoittamalla voidaan laskea seuraava arvo. Differenssiyhtälöistä puhuttaessa käytetään usein termejä jono, dynaaminen systeemi, numeerinen ratkaisu jaanalyyttinen ratkaisu. Ensinnäkin differenssiyhtälömäärittelee jonon rekursiivisesti. Jonon termien yhteyden kuvaus on dynaaminen systeemi. Numeerinen ratkaisu on taas taulukko arvoista, jotka toteuttavat differenssiyhtälön. Analyyttinen ratkaisu on taas kaava, jolla jonon n:s alkio voidaan laskea pelkästään n:n perusteella, laskematta edellisiä jonon alkioita etukäteen. Monesti differenssiyhtälön analyyttinen ratkaisu ei ole mahdollinen. 2.2 Mallintaminen differenssiyhtälöillä Kunmuutoksia havaitaan jonkin asian käyttäytymisessä, on hyödyllistä tietää miksi muutos tapahtui kyseisellä tavalla ja mahdollisesti ennustaa mitä tapahtuu seuraavaksi. Matemaattisen mallin avulla voidaan ymmärtääkäyttäytymistä. Voidaan myös kokeilla helposti mitä tapahtuisi, jos alkuehdot tai parametrit muuttuisivat. Jonoja tarkasteltaessa puhutaan ensimmäisistädifferensseistä.jonon A = {a, a 1,a 2,...} n:s ensimmäinen differenssi on a n = a n+1 a n. Usein huomaataan datan muodostaman jonon termien yhteys tarkastelemalla näitä ensimmäisiädifferenssejä. Tämän jälkeen differenssiyhtälön kirjoittaminen onkin vähän helpompaa.

10 1 Käyttämällä ensimmäistä differenssiä voidaan ensimmäisen asteen differenssiyhtälöt kirjoittaa muodossa x n = g(n, x n ), josta näkyykin paremmin yhteys differentiaaliyhtälöihin. Esimerkki - Asuntolaina Otetaan asuntolaina 8 eurolle 2 vuoden ajaksi. Kuukausittain velasta maksetaan euroa, korkoa laina kasvaa kuukausittain 1%. Lainan määrän b n muutos kuukausittain on: b n = b n+1 b n =.1b n Lainan määrä käyttäytyy dynaamisen mallin mukaisesti: { bn+1 = 1.1b n b = 8, jossa b n on siis lainan määrä n:n kuukauden jälkeen. Numeerinen ratkaisu saadaan sijoittamalla differenssiyhtälöön edellinen arvo. n b n b n n

11 Käyttäytymisen arviointi differenssiyhtälöllä Monesti muutoksia ei ole yhtähelppo kuvata tarkasti kuin edellisessäasuntolaina esimerkissä. Olihan kyseessä ihmisen helppoa ymmärrettävyyttä silmällä pitäen luoma tilanne. Yleensä joudutaan esittämään muutos graafisesti, löytämään jokin säännönmukaisuus ja arvioimaan tilannetta matemaattisesti. Kun huomaataan toistuva muutos, pyritään siis löytämään funktion f, joka kuvaa muutosta. Muutoksen mallintaminen onkin pitkälti funktion f löytämistä jaarvioimista. Yleensähän matemaattiset mallit eivät kuvaa tarkasti reaalimaailmaa. Tarvitaan ainakin jonkun verran yksinkertaistuksia ja arviointeja. Eliölajin populaation muutokseen vaikuttaa esimerkiksi syntyvyys, kuolleisuus, ruoan saatavuus, kilpailu ruoasta, saalistajat ja luonnon muutokset. Kaikkien tekijöiden mallintaminen on usein mahdotonta tai ei ainakaan helppoa. Valitaan mukaan helposti mitattavia, helposti mallinnettavia ja malliin vaikuttavia suureita. Samalla kun osa tekijöistäjätetään huomiotta, voidaan tarkasteltava aika muuttaa diskreetiksi, vaikka todellisuudessa tapahtumat olisivatkin luonteeltaan jatkuvia. Erityisen hyödyllistätämäontilanteissa, joissa epäjatkuvia muutoksia tapahtuu tietyin väliajoin, esimerkkinä eläimien vuotuiset lisääntymisajat Rajaton kasvu Yksinkertainen differenssiyhtälömalli saadaan, kun kasvu p n on verrannollista määrään p n : p n = p n+1 p n = αp n p n+1 = p n + αp n, missä α>.tätä kutsutaan Malthusin malliksi. p p n 1 α p n Kuvista huomataan, että malli ennustaa rajatonta kasvua.

12 12 Tämä malli sopii hyvin esimerkiksi populaation kasvuun alkuaikoina, kun resurssien vähyys ei vielä pääse vaikuttamaan asiaan.tällöin populaatiossa p n syntymiä tapahtuu populaatioon verrannollinen määrä eli sp n.myös kuolemia tapahtuu populaatioon verrannollinen määrä kp n.koko populaation muutos on siis p n = sp n kp n =(s k)p n = αp n. Myös säästötilin koronkasvu on Malthusin mallin mukaista. Tällöin α on prosentti, jolla korkoa annetaan ja mittausten väli on koronmaksun aikaväli(esimerkiksi kuukausittain). Esimerkki - Hiivan biomassa Halutaan sovittaa malli seuraavaan dataan ( n = aika tunneissa, p n = havannoitu biomassa, p n = p n+1 p n = biomassan muutos): 1 n p n p n p p Graafisesta esityksestä huomataan, että populaation muutos on suunnilleen verrannollinen populaation kokoon. Siis p n = α p n,jollekin α. Kunpiirretään muutosta arvoivan suoran origon kautta, saadaan kulmakertoimeksi α.5.luotu malli on siis p n = p n+1 p n =.5p n p n+1 =1.5p n Rajattu kasvu Joshalutaan mallin ottavan huomioon myös resurssien äärellisen määrän, voidaan menetellä seuraavasti. Olkoon maksimipopulaatio M raja, jota suuremmaksi tutkittu määrä p n ei voi kasvaa ainakaan pysyvästi. Alussa resurssien rajallisuus ei

13 13 vaikuta ja p n noudattaa rajattoman kasvun mallia p n = αp n. Kun p n kasvaa suureksi, kasvun pitäisi hidastua, eli α:n pitäisi pienentyä. Otetaan malliin mukaan kerroin M p n M, jolla on ominaisuudet p n M : p n M : M p n M =1 p n M 1, M p n M. Nyt malli saa muodon p n = α M p n M p n p n+1 = p n + α M (M p n)p n. Johdettumalli pätee alun rajattomaan kasvuun ja lopun vähenevään kasvuun. Tätä mallia kutsutaan Verhulstin malliksi tai logistisen kasvun malliksi. Huomaa, että mallin yhtälön oikea puoli on kvadraattinen p n :een nähden. Tämä dynaaminen systeemi on epälineaarinen ja yleensä sitäeivoida ratkaista analyyttisesti. p p n M 1 α M p n Esimerkiksi eliöpopulaatiot noudattavat tätä mallia, kun niilläonjonkin rajallinenresurssi (esimerkiksi ruoka). Toinen esimerkki voisi ollaflunssan leviäminen kouluympäristössä.

14 14 Esimerkki - Hiivan biomassa Kun tarkastellaan edellisen esimerkin tilannette ajassa pidemmälle saadaan seuraavat tulokset: n p n p n p 4 n n Näyttää selvästi siltä, että kasvuvauhti pienenee ja kasvu jopa pysähtyy, kun populaatio kasvaa tarpeeksi suureksi. Populaation koko näyttää lähenevän maksimipopulaatiota. Graafisen esityksen perusteella voitaisiin olettaa, että maksimipopulaatio on noin 665. Tämä onsiissemäärä hiivaa, jonka kyseessä oleva ympäristövoipitää kerrallaan hengissä. Korjataan malli muotoon p n = k(665 p n )p n. Koitetaan miten tämämalli selittäisi kerättyädataa. Tämävoidaan tehdäesittämällä graafisesti suure p n suureen (655 p n )p n funktiona p n (665 p n )p n

15 Koepisteet ovat suunnilleen origon kautta kulkevalla suoralle. Kulmakertoimeksi saadaan k.81.malli on siis 15 p n = p n+1 p n =.81(665 p n )p n p n+1 = p n +.81(665 p n )p n Graafisesta esityksestä nähdäänmallinpätevyys. Mallinennustamat arvot ovat kohtuullisen lähellä koetulosten arvoja p 4 n koetulokset mallin ennusteet 5 1 n Differenssiyhtälöryhmä Yleisesti eksplisiittinen differenssiyhtälöryhmä onmuotoa x n+1 = g 1 (n, x n,y n,...,x n 1,y n 1,...) y n+1 = g 2 (n, x n,y n,...,x n 1,y n 1,...). eli vektorimuodossa x n+1 = g(n, x n, x n 1,...). Ensimmäisen asteen differenssiyhtälöryhmä Ensimmäisen asteen yhtälöryhmä onvektorimuodossa x n+1 = g(n, x n ). Huomaa, että x n :n komponentit voivat tietysti vaikuttaa toisiinsa.

16 16 Lineaarinen vakiokertoiminen yhtälöryhmä Lineaarinen differenssiyhtälöryhmä voidaan esittää matriisimuodossa x n+1 = Ax n + b. Korkeamman asteen differenssiyhtälö Oletetaan, että käytössä onk:nnen asteen differenssiyhtälö: x n+1 = g(n, x n,x n 1,...,x n k+1 ). Merkitään nyt eli x 1 n+1 = g(n, x 1 n,x 2 n,...x k+1 n ) x 2 n+1 = x 1 n x 3 n+1 = x 2 n. x k+1 n+1 = x k n x n+1 = g(n, x n ). Muunnoksella saadaan siis korkeamman asteen differenssiyhtälö muutettua yhtälöryhmäksi. x n :n ensimmäinen alkio seuraa alkuperäisen yhtälön arvoja, loput toimivat muistina. Samanlailla korkeamman asteen differenssiyhtälöryhmä voidaan muuntaa ensimmäisen asteen yhtälöryhmäksi. 2.5 Mallintaminen differenssiyhtälöryhmällä Kilpailevat populaatiot Oletetaan, että meilläonesimerkiksi 2 eliölajipopulaatiota p n ja q n,jotka kilpailevatjostain yhteisestäresurssista. Toisen lajin poissa ollessa molemmat populaatiot kasvavat rajatta: p n = α 1 p n, q n = α 2 q n, missä α 1,α 2 >. Toinen populaatio hidastaa toisen kasvuvauhtia. Hidastavaa tekijää voidaan mallintaa monin tavoin. Yksinkertaisimmillaan kasvun hidastuminen on verrannollinen populaatioiden mahdollisiin kanssakäymisiin. Populaation

17 p n kukin yksilö voijoutua kanssakäymisiin kunkin toisen populaation q n :n yksilön kanssa. Eli kasvun hidastuminen on verrannollinen tuloon p n q n : 17 { pn = α 1 p n β 1 p n q n, q n = α 2 q n β 2 p n q n jossa β 1 ja β 2 ovat positiivisia vakioita, lajien suhteelliset haitat. Esimerkki - Pöllöt ja haukat Olkoon meilläpöllöpopulaatio P n ja haukkapopulaatio H n.nekilpailevat samasta ravinnosta (hiiristä), joten niiden voidaan olettaa noudattavan kilpailevien lajien differenssiyhtälömallia. Olkoon yhtälöt { Pn+1 = 1.2P n.1p n H n H n+1 = 1.3H n.2p n H n Katsotaan mitä tapahtuu, kun lähdetään liikkeelle populaatioista P 1 = 151, H 1 = 21. n P n H n Pöllöt Haukat Haukat näyttävät kuolevan vaikka niitä alussa olikin selvästi enemmän. Pöllöpopulaatiolla menee hyvin Saalis - saalistaja Olkoon nyt p n saalispopulaatio ja q n saalistajapopulaatio. Saalispopolaatio kasvaa kuten kilpailevien lajien kohdalla, kasvun hidastuminen on verrannollinen mahdollisiin kanssakäymisiin saalistajien kanssa:

18 18 p n = α 1 p n β 1 p n q n, Saalistajan kohdalla asiat ovat toisin. Jos saalita ei olisi, saalistajapopulaatio kuolisi pois, esimerkiksi populaatioon verrannollisella vauhdilla α 2 q n.saaliiden olemassaolo puolestaan lisää kasvuvauhtia verrannollisena mahdollisiin kanssa käymisiin β 2 p n q n : jossa siis α 2,β 2 >.Yhteensä: q n = α 2 q n + β 2 p n q n, { pn = α 1 p n β 1 p n q n q n = α 2 q n + β 2 p n q n Esimerkki - Pöllöt ja hiiret Pöllöpopulaation P n ja hiiripopulaation M n voidaan olettaa noudattavan saalissaalistaja mallia. Olkoon malli { Mn+1 = 1.2M n.1p n M n P n+1 =.7P n +.2P n M n n P n H n Hiiret Pöllöt Yhteiselo sujuu ainakin jonkin aikaa. Kun hiiriä onpaljon pöllöpopulaatio alkaa kasvaa nopeammin. Kun pöllöjä onpaljon hiiripopulaatio vähenee, joka taas aiheuttaa pöllöpopulaation kutistumisen. n

19 Ratkaisut Numeerinen ratkaisu ja pitkäaikainen käytös Differenssiyhtälön numeerinen ratkaisu on taulukko, jossa arvot on laskettu edellisten arvojen perusteella. Aikaisemmin on ollut useita esimerkkeja tästä. Pitkällä aika välillä numeerinen ratkaisu voi käyttäytyä monin tavoin: kasvaa rajatta vähenee rajatta lähenee raja arvoa värähtelee jaksottain värähtelee vaimenevasti värähtelee voimistuen Auton jousituksen mallintamisessa voimistuva tai jaksollinen värähtely ei olisi toivottavaa. Ilmaston keskilämpötilan puolestaan kuuluu värähdellä vuodenaikojen vaihtuessa. Esimerkki - Dynaamiset systeemit muotoa a n+1 = ra n Dynaaminen systeemi muotoa a n+1 = ra n, alkuehto a annettuna ratkeaa helposti analyyttisesti: a n = r n a.

20 2 Systeemi käyttäytyy seuraavasti: r>1 kasvaa rajatta r =1 vakioratkaisu a 1 >r> suppenee tasaisesti kohti nollaa r = vakioratkaisu >r> 1 suppenee oskilloiden kohti nollaa r = 1 oskilloi ± a r< 1 oskilloi voimistuen Esimerkki - Epälineaariset systeemit Epälineaarisilla systeemeillä eiyleensä ole analyyttistä ratkaisua. Epälineaariset systeemit ovatkin hyvin herkkiä alkuarvoista ja parametreistä. Tarkastellaan differenssiyhtälöä a n+1 = r(1 a n )a n alkuarvolla a =.2.Katsotaan mitä tapahtuu, kun r saa arvot 2, 3, 3.6 ja r=2 1 r= r= r= Kun r =2lähestytään tasaisesti raja-arvoa. Kun r =3tai r =3.6 systeemi värähtelee. Kun r =3.7 systeemi käyttäytyy suorastaan kaoottisesti.

21 Analyyttinen ratkaisu Epälineaarisillädifferenssiyhtälöilläeiole ratkaisua yleisesti. Lineaarisilla vakiokertoimisilla systeemeillä analyyttinen ratkaisu on. Yleensä hyvästrategia yksinkertaisempien differenssiyhtälöiden ratkaisussa on: 1. Kirjoita differenssiyhtälöävastaavan jonon termejä. Huomaa jokin säännönmukaisuus. 2. Kirjoita kaava päätellylle säännönmukaisuudelle, eli ehdotelma analyyttiselle ratkaisulle. 3. Varmista/todista kaavan toimivuus sijoittamalla se differenssiyhtälöön. Seuraavassa esitetään lineaaristen differenssiyhtälöiden ratkaisut suoraan kaavamuodossa. Lineaarinen vakiokertoiminen homogeninen yhtälö Yhtälön ratkaisu alkuarvolla x on selvästi Lineaarinen vakiokertoiminen yhtälö Tarkastellaan mallia x n+1 = Ax n x n = A n x. x n+1 = Ax n + b, jolle on annettu alkuarvo x.otetaan käyttöön askelfunktio { n< u n = 1 n jolloin differenssiyhtälön voi kirjoittaa muodossa Tämän yhtälön analyyttinen ratkaisu on missä x n+1 = Ax n + u n b. x n = ˆx n +(u h) n,

22 22 ˆx n on homogeenisen yhtälön ˆx n+1 = Aˆx n ratkaisu alkuehdolla ˆx = x.(general Solution, Yleinen ratkaisu) (u h) n on diskreetti konvoluutio (u h) n = n u i h n i, i= jossa edelleen h n on systeemin h n+1 = Ah n + δ n b ratkaisu alkuehdolla h = (Particular Solution, Erikoisratkaisu). Tässä siis δ n on diskreetti herätefunktio δ n = { 1 n = muuten Lineaarisen differenssiyhtälöryhmän ratkaisu saatiin kahden eri yhtälöryhmän ratkaisujen summaksi. Nämä yksinkertaisemmat yhtälöryhmät onkin sitten helppo ratkaista. ˆx n = A n x { n = h n = A n 1 b muuten Mikäli matriisi A on diagonalisoituva, matriisipotenssit saadaan laskettua helposti ominaisarvohajotelman kautta. A n = (PΛP 1 ) n = PΛ n P 1 = P λ n 1... λ n p P 1 Muita menetelmiämatriisipotenssin nopealle laskemiselle löytyy kirjallisuudesta.

23 23 Esimerkki - asuntolaina Haetaan yhtälön b n+1 =1.1b n 88.87, analyyttinen ratkaisu esitetyllä kolmivaiheisella menettelyllä, kun b = Kirjoitetaan jonon termejä. b = 8 b 1 = 1.1b b 2 = 1.1(1.1b 88.87) =1.1 2 b Yhtälön ratkaisu voisi olla (sievennetään käyttäen geometrisen sarjan summakaavaa): ˆbn = 1.1 n n n n 1 = 1.1 n i i= = 1.1 n n = 1.1 n n Todennetaan, että annettu ratkaisu ˆb n todella ratkaisee alkuarvotehtävän. Alkuarvo: ˆb = = 8 Rekursiokaava(oletetaan, että b n = ˆb n ja osoitetaan b n+1 = ˆb n+1 ): b n+1 = 1.1b n = 1.1(1.1 n n 1 ) = 1.1 n n = 1.1 n ( 1.1n = 1.1 n n ) = ˆb n+1

24 24 Esimerkki - Ydinasekilpailu Kirjoitetaan malli ensin matriisimuodossa: ( ) ( xn+1 1 = 3 1 y n+1 x n+1 = Ax n + b 2 )( xn y n ) + ( 6 12 ) Alkuehtona siis x = (6, 12) T.Analyyttinen ratkaisu on x n = ˆx n +(u h) n n 1 = A n x +( A i ) b i= = A n x +(I A) 1 (I A n )b geometrisen sarjan summakaava Lasketaan ratkaisun arvo, kun n =4.Tarvittu matriisipotenssi saadaan ominaisarvohajotelman A = PΛP 1 avulla. Ja lopulta ratkaisun arvo Tasapainotilat ( ).484 Λ =.484 ( ) P = ( ).278 A 4 = PΛ 4 P 1 =.278 x 4 = A 4 x +(I A) 1 (I A 4 )b (118, 178) T Dynaamisen systeemin tasapainotila on jokin tila, jossa systeemin tila pysyy vakiona ajan kasvaessa. Esimmäisen asteen autonomisen differenssiyhtälöryhmän p n+1 = g(p n ) tasapainopiste( eli g:n kiinteä piste ) toteuttaa yhtälön josta se siis voidaan ratkaista. z = g(z),

25 Tasapainopiste on (asymptoottisesti) stabiili, jos tasapainopisteen läheisyydestä lopulta lähestytään kyseistä tasapainopistettä. Linearisoidaan funktio g tasapainopisteen z ympärillä: Linearisoitu malli ratkeaa analyyttisesti: g(p n ) g(z)+g (z)(p n z) p n = z + g (z) n (p z). p n suppenee kohti tasapainopistettä z kaikilla p, mikäli g (z) n O. Analyyttisen ratkaisun yhteydessä olleen ominaisarvohajotelman perusteella saadaan, että yksittäiset lim n λ n i =. Eli stabiilisuusehto: Esimerkki - Hiivan biomassa Hiivan biomassaa kuvasi yhtälö joten tasapainopisteet ovat yhtälön λ eig(g (z)) : λ < 1. p n+1 = p n +.82(665 p n )p n, z = z +.82(665 z)z = g(z) ratkaisut, jotka ovat selvästi z 1 =ja z 2 = 665. g :n derivaatta on g (z) =1+.82(665 z).82z. g (z 1 )=g () = g (z 2 )=g (665) =.4547 Siis z 1 on epästabiili ja z 2 on stabiili. Jos pisteestä z 1 =poiketaan positiiviseen suuntaan, hiivan biomassa alkaa lisääntyärajusti. Jos taas pisteestä z 2 = 665 poiketaan, palautuu hiivan biomassa takaisin z 2 :een. Jos alkuarvo on p =,ei lähestytä stabiilia tasapainopistettä z 2.Josp >, niinp n z 2. Esimerkki - Ydinasekilpailu Maiden X ja Y ydinohjusmäärät mallinnettiin yhtälöillä: { xn+1 = y n y n+1 = x n 25

26 26 Ratkaistaan tasapainopiste: { x = 6+ 1 y { 2 x = 12 y = x y = 18 3 Jacobin matriisi on ( jolla on ominaisarvot λ 1 = 1/ 6.41 ja λ 2 = 1/ Tasapainopiste on siis stabiili. Tämä huomattiin jo numeerisen ratkaisun yhteydessä, ohjusmäärät näyttivät lähenevän tässä selvitettyä tasapainopistettä. ),

27 Luku 3 Jatkuva-aikainen mallintaminen 3.1 Differentiaaliyhtälö k:nnen kertaluvun differentiaaliyhtälö onyleisesti muotoa f(t, x(t),x (t),x (t),...,x (k) (t)) =. Ensimmäisen kertaluvun differentiaaliyhtälö Ensimmäisen kertaluvun yhtälö f(t, x(t),x (t)) = pyritään kirjoittamaan eksplisiittiseen muotoon x (t) =g(t, x(t)). Yleensä oletetaan vielä, että funktio g on sopivan säännöllisesti käyttäytyvä. Autonominen yhtälö Autonomisessa yhtälössä g ei riipu suoraan ajasta x (t) =g(x(t)). Differentiaaliyhtälölläonanalyyttinen ratkaisu, aina tätäeikuitenkaan voi kirjoittaa missään eksplisiittisessä muodossa. Alkuarvotehtävässä etsitään ratkaisua, joka kulkee annetun alkupisteen kautta. Numeerinen ratkaisu merkitsee differentiaaliyhtälön numeerista arviointia esimerkiksi differenssiyhtälöllä. Myös graafisesti saadaan paljon kvalitatiivista tietoa systeemin käyttäytymisestä. 27

28 Mallintaminen differentiaaliyhtälöllä Differentiaaliyhtälöt ovat käteviä mallintamisen apuvälineitä, kun meilläontietoa jonkin riippuvan muuttujan muutoksesta toisten riippumattomien muuttujien arvojen vaihtuessa. Differentiaaliyhtälöitäkäytetään yleensä, kun muutos on jatkuvaaikaista. Kun riippuvan muuttujan muutoksesta on malli, tulevan käyttäytymisen ennustaminen on helpompaa. Yleensäpärjätään ensimmäisen kertaluvun differentiaaliyhtälöillä. Tällöin derivaatta f (t) =df /dt merkitsee hetkellistä muutosnopeutta. Tällöin muutoksen keskiarvo ajan t aikana on suure: f t eli keskinopeus. Tilanteesta riippuu kuinka nämä suureet suhtautuvat reaalimaailmaan. Esimerkiksi mallinnettaessa kaloja, jotka lisääntyvät vain keväisin, koko vuoden keskilisääntymisnopeudella ei oikein ole merkitystä. Toisaalta joskus on hyödyllistä käyttää differentiaaliyhtälöitä diskreetin systeemin mallintamisessa. Tällöin derivaattalla df /dt arvioidaan muutoksen keskinopeutta. Differentiaalilaskennan teoria saadaan käyttöön, ja muuttujien funktionaalisen suhteen selvittäminen voi olla helpompaa. Differentiaaliyhtälöä ei monesti saada ratkaistua analyyttisesti. Tällöin joudutaan arvioimaan differentiaaliyhtälöädiskreetillädifferenssiyhtälölläjasennumeerisella ratkaisulla. Tietenkäänei ole järkevää ensinarvioida differenssiyhtälöä differentiaaliyhtälölläjasitten käyttääjälleen differenssiyhtälöitä numeerisen ratkaisun saamiseksi. Parempi on käyttää suoraan differenssiyhtälöitä Populaation kasvu Edellisen luvun diskreettiaikaiset mallit voidaan kirjoittaa jatkuvassa muodossa (M oli maksimipopulaatio, α kasvukerroin): p (t) =αp(t) (Malthusin malli / rajaton kasvu) p (t) = α (M p(t))p(t) (Verhulstin malli / rajattu kasvu / logistinen kasvu) M Perustelut jatkuva-aikaisille malleille ovat samat kuin diskreettiaikaisille. Kuten aiemmin on todettu sammakoiden ja kalojen populaatiota kannattaa mallintaa differensseillä kutuaikojen jälkeen, hiivan kasvuun differentiaaliyhtälöiden käyttö on perusteltua.

29 29 Esimerkki - Hiivan biomassa Sovitetaan hiivan biomassalle jatkuva-aikainen Verhulstin malli ja tutkitaan kuvaako se paremmin populaation kasvuprosessia kuin aiemmin luotu diskreettiaikainen malli. Edelleen maksimipopulaatio M = 665. Myöhemmin annettavan analyyttisen ratkaisun yhteydessä saadaan differentiaaliyhtälölle muoto joten piirretään suure ln ln p(t) M p(t) = αt + C, p(t) aikamuutujan t funktiona. 665 p(t) 6 ln(p(t)/(665 p(t))) t Saadaan α.53 ja C Malli on ja sen analyyttinen ratkaisu p (t) =.53 (665 p(t))p(t), 665 p(t) = MCeαt C = e C = Ce αt e.53t = = 1.37e.53t e.53t e.53t Jälleen kuvasta nähdään mallin pätevyys:

30 p(t) mallin ennusteet koetulokset t Malli on huomattavasti parempi, kun aiemmin esitetty differenssiyhtälömalli. Voidaan päätellä, että hiivalla populaation kasvu on luonteeltaan jatkuvaa ja toisaalta differenssiyhtälömallin termien aikaväli on liian suuri. 3.3 Differentiaaliyhtälöryhmät Yleinen k:nnen kertaluvun differentiaaliyhtälöryhmä onmuotoa f(t, x(t), x (t),...x (k) (t)) =. Tämä pyritään kirjoittamaan eksplisiittiseen muotoon x (k) (t) =g(t, x(t), x (t),...,x (k 1) (t)). Lineaarinen vakiokertoiminen yhtälöryhmä Ensimmäisen asteen lineaarinen vakiokertoiminen yhtälöryhmä onmuotoa: x (t) =Ax(t)+b. Korkeamman asteen differentiaaliyhtälö Kuten differenssiyhtälöilläkin korkeamman kertaluvun differentiaaliyhtälöä voidaan tarkastella ensimmäisen kertaluvun differentiaaliyhtälöryhmänä. Eksplisiittisestä p:nnen kertaluvun differentiaaliyhtälöstä x (p) (t) =g(t, x(t),x (t),...,x (p 1) (t))

31 31 merkitään x 1 (t) = x(t) x 2 (t) = x (t). x p (t) = x (p 1) (t) saadaan alkuperäinen differentiaaliyhtälö kirjoitettua differentiaaliyhtälöryhmänä x 1(t) = x 2 (t) x 2(t) = x 3 (t). x p 1(t) = x p (t) x p(t) = g(t, x 1 (t),x 2 (t),...,x p (t)) eli vektorimuodossa x (t) =g(t, x(t)). 3.4 Mallintaminen differentiaaliyhtälöryhmällä Differentiaaliryhmiä tarvitaan interaktiivisten systeemien jatkuva-aikaiseen mallintamiseen. Hyviä sovellusaloja voisi olla taloustiede, ekologia, sähkötekniikka, erilaiset mekaaniset systeemit, taivaankappaleiden liikeradat ja erilaiset säätösysteemit. Kuten diskreettiaikaisessa mallintamissa yhtälöistä muodostuu usein epälineaarisia, joille ei ole helppo löytää analyyttisia ratkaisuja. Tällöin joudutaan taas turvautumaan numeeriseen arviointiin sekä tasapainopistetarkasteluihin (linearisoimalla yhtälöitä). Myös graafisista esityksista on usein suurta apua Interaktiiviset populaatiot Diskreettiaikaiset mallit voidaan kirjoittaa jatkuvassa muodossa: { p (t) = α 1 p(t) β 1 p(t)q(t) q (t) = α 2 q(t) β 2 p(t)q(t) (kilpailevat populaatiot) { p (t) = α 1 p(t) β 1 p(t)q(t) q (t) = α 2 q(t)+β 2 p(t)q(t) (q saalistaa p:tä) Jatkossa on analysoitu varsinkin kilpailevien populaatioiden mallia monin tavoin. Näissäsysteemistä ainakin keskinäisiähaittoja voisi pitää jatkuva-aikaisina.

32 Dimensioton muoto Yhtälöitä kannattaa kirjoittaa dimensiottomaan muotoon, mikäli parametrejä on liian monta. Kun parametrien määrää saadaan vähennettyä, esimerkiksi graafinen tarkastelu käy helpommaksi. Yleensä tarkasteltava yhtälöryhmän yhtälöt kannattaa jakaa jollain parametreistä. Sitten suureiden y(t) paikalle kirjoitetaan Y (t) = y(t)/y,jossa y on alkuarvotehtävän alkuarvo. Lopulta valitaan uudet parametrit ja muokataan aikamuuttujaa t siten, että derivaatat pitävät paikkaansa. Myös differenssiyhtälöitä voi kirjoittaa dimensiottomaan muotoon. Esimerkki - Kilpailevat populaatiot Tarkastellaan kilpailevien populaatioiden differentiaaliyhtälömallia, jossa on alunperin 6 parametria (alkuarvot p ja q mukaanlukien). Kirjoitetaan malli edelleen dimensiottomaan muotoon. { p (t) =α 1 p(t) β 1 p(t)q(t) /p α 1 q (t) =α 2 q(t) β 2 p(t)q(t) /q α 1 { p (t)/(α 1 p )=p(t)/p (β 1 /α 1 )q (p(t)/p )(q(t)/q ) q (t)/(α 1 q )=(α 2 /α 1 )(q(t)/q ) (β 2 /α 1 )p (p(t)/p )(q(t)/q ) Kirjoitetaan nyt P (T ) = p(t/α 1) p p:n suhteellinen määrä Q(T ) = q(t/α 1) q q:n suhteellinen määrä γ = α 2 α 1 q:n suhteellinen kasvu δ 1 = β 1 q α 1 q:n suhteellinen haitta p:lle δ 2 = β 2 α 1 p p:n suhteellinen haitta q:lle jolloin selvästi: P (T ) = p(t/α 1) α 1 p Q (T ) = q(t/α 1) α 1 q

33 33 Malli saadaan lopulta kirjoitettua muotoon { P (T ) = P (T ) δ 1 P (T )Q(T ) Q (T ) = γq(t ) δ 2 P (T )Q(T ), jossa on enää 3parametria. Alkuehdoiksi saadaan P () = p()/p =1,Q() = q()/q = Ratkaisut Numeerinen Olkoon käytössä ensimmäisen kertaluvun differentiaaliyhtälö x (t) =g(t, x(t)), alkuarvolla x() = x.monissa tapauksissa tätä alkuarvotehtävää eivoida ratkaista analyyttisesti. Numeerinen ratkaisu(approksimointi) voidaan suorittaa yksinkertaisimmillaan seuraavasti. Valitaan askelpituus t. Lasketaan funktion x(t) derivaatan arvo pisteessä t =, x () = g(, x ).Siirrytään sitten derivaatan suuntaan askelpituus t. Päädytään pisteeseen x + t g(, x ).Tässä pisteessä lasketaan taas derivaatta ja jatketaan sen suuntaan. Differentiaaliyhtälöä voidaan näin arvioida differenssiyhtälöllä: x = x x n+1 = x n + t g(n t, x n ) Jos yhtälöitä onvähän arviointia on hyvä tarkastella graafisesti. Muuten differenssiyhtälöryhmän numeerinen ratkaisu on esitettävä taulukkona. Selvästi mitä pienemmäksi askelpituus t valitaan sitä tarkempi ratkaisu on. g( t,x 1 ) x 1 x(t) g(2 t,x 2 ) x 2 g(,x ) x t 2 t t

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

3. Laske osittaisintegroinnin avulla seuraavat integraalit

3. Laske osittaisintegroinnin avulla seuraavat integraalit Harjoitus 1 / syksy 2001 1. Laske seuraavat derivaatat 2 a) D ( 5x + 5) x, b) D (-e 2x ), c) D (-ln x) ja d) D (sin 2x + cos x). 2. Laske seuraavat integraalit 2 x 5x 5 dx, a) ( + ) x b) ( e 2 ) dx, c)

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

1 Peruskäsitteet. Dierentiaaliyhtälöt

1 Peruskäsitteet. Dierentiaaliyhtälöt Teknillinen korkeakoulu Matematiikka Dierentiaaliyhtälöt Alestalo Tässä monisteessa käydään läpi tavallisiin dierentiaaliyhtälöihin liittyviä peruskäsitteitä ja ratkaisuperiaatteita. Esimerkkejä luennoilla

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Differentiaaliyhtälöt

Differentiaaliyhtälöt Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 1. joulukuuta 2015 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujono Lukujono on diskreetti funktio

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0

a 1 y 1 (x) + a 2 y 2 (x) = 0 vain jos a 1 = a 2 = 0 6. Lineaariset toisen kertaluvun yhtälöt Toisen kertaluvun differentiaaliyhtälöt ovat tuntuvasti hankalampia ratkaista kuin ensimmäinen. Käsittelemmekin tässä vain tärkeintä erikoistapausta, toisen kertaluvun

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 1

Mat Dynaaminen optimointi, mallivastaukset, kierros 1 Mat-214 Dynaaminen optimointi, mallivastaukset, kierros 1 1 a) Sekoitussäiliöön A virtaa puhdasta vettä virtauksella v A, säiliöstä A säiliöön B täysin sekoittunutta liuosta virtauksella v AB ja säiliöstä

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 5.4.06 5. laskuharjoituksien esimerkkiratkaisut. Etsitään homogeenisen vakiokertoimisen lineaarisen differentiaaliyhtälön kaikki ratkaisut (reaalisessa muodossa). y (5) +4y (4)

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1

Harjoitus 6: Simulink - Säätöteoria. Syksy 2006. Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoitus 6: Simulink - Säätöteoria Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen säätötekniikkaan Takaisinkytkennän

Lisätiedot

Tilayhtälötekniikasta

Tilayhtälötekniikasta Tilayhtälötekniikasta Tilayhtälöesityksessä it ä useamman kertaluvun differentiaaliyhtälö esitetään ensimmäisen kertaluvun differentiaaliyhtälöryhmänä. Jokainen ensimmäisen kertaluvun differentiaaliyhtälö

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

MS-C1420 Fourier-analyysi osa II

MS-C1420 Fourier-analyysi osa II MS-C142 Fourier-analyysi osa II G. Gripenberg Aalto-yliopisto 14. helmikuuta 214 G. Gripenberg (Aalto-yliopisto) MS-C142 Fourier-analyysiosa II 14. helmikuuta 214 1 / 36 1 Fourier-sarjat ja Fourier-integraalit

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

1. Kuinka monta erilaista tapaa on 10 hengen seurueella istuutua pyöreän pöydän ympärille?

1. Kuinka monta erilaista tapaa on 10 hengen seurueella istuutua pyöreän pöydän ympärille? Diskreetti matematiikka, syksy 00 Harjoitus -, ratkaisuista. Kuinka monta erilaista tapaa on 0 hengen seurueella istuutua pyöreän pöydän ympärille? Ratkaisu. Paikat identtisiä, istumajärjestys oleellinen,

Lisätiedot

dy dx = y x + 1 dy dx = u+xdu dx, u = y/x, u+x du dx = u+ 1 sinu eli du dx = 1 1 Erotetaan muuttujat ja integroidaan puolittain: y = xln(ln(cx 2 )).

dy dx = y x + 1 dy dx = u+xdu dx, u = y/x, u+x du dx = u+ 1 sinu eli du dx = 1 1 Erotetaan muuttujat ja integroidaan puolittain: y = xln(ln(cx 2 )). Harjoitus Tehtävä 5. d) Jakamalla annettu yhtälö puolittain xsin(y/x):llä saadaan Sijoitetaan taas jolloin saadaan dy dx = y x + 1 sin ( y). u = y/x, x dy dx = u+xdu dx, u+x du dx = u+ 1 sinu du dx = 1

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C340 Lineaarialgebra ja differentiaaliyhtälöt Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 205 / 3 R. Kangaslampi Matriisihajotelmista Differentiaaliyhtälöitä ratkaistaessa

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Valintakoe

Valintakoe Valintakoe 7.3.05 Kokeessa saa käyttää kirjoitusvälinewiden lisäksi ainoastaan kokeessa jaettavaa funktiolaskinta ja taulukkoa Pisteytys 8*3p=4p. Tehtävien alakohtien pistemäärät voivat poiketa toisistaan..

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Matematiikan tukikurssi, kurssikerta 4

Matematiikan tukikurssi, kurssikerta 4 Matematiikan tukikurssi, kurssikerta 4 1 Raja-arvo äärettömyydessä Tietyllä funktiolla f() voi olla raja-arvo äärettömyydessä, jota merkitään f(). Tämä tarkoittaa, että funktio f() lähestyy jotain tiettyä

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 14. helmikuuta 2011 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun olemassaolosta ja yksikäsitteisyydestä...........

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot