16. TEHOELEKTRONIIKKA

Koko: px
Aloita esitys sivulta:

Download "16. TEHOELEKTRONIIKKA"

Transkriptio

1 6. TEHOELEKTRONKKA 6.. Suuntaajien standardointi Luku 6: Tehoelektroniikka Suomessa ei toistaiseksi ole julkaistu suuntaajia koskevia standardeja eikä myöskään niitä ja niiden ominaisuuksia koskevaa suomenkielistä sanastoa. EC:n ja DlN:n käyttämät nimitykset ja käsitteet eivät ole myöskään täysin johdonmukaisia ja yleiskäyttöisiä. Suuntaajien tyyppi- ja nimellisarvoja määriteltäessä on jatkuvan tasaisen kuormituksen ohelle haluttu standardoida tiettyjä usein esiintyviä kuormitusfunktioita. Näitä vaihtoehtoisia kuormitusvirran ja ajan funktioita kutsutaan käyttöluokiksi ( duty class, Betriebsarten ). Kolme tärkeintä käyttöluokkaa ovat: jatkuva tasainen käyttö, pohjakuorma ja yhytaikainen harvoin esiintyvä ylikuorma ja jaksottainen käyttö. Käyttöolosuhteilla tarkoitetaan erilaisten ympäristötekijöiden yhdistelmää ja syöttävän verkon ominaisuuksia. Standardit tekevät eron tavallisten ja epätavallisten olosuhteiden välillä. Käytännössä olosuhteet voivat olla mitä moninaisimmat, joten ko. määrittelyt antavat vain lähtökohdan vaatimusten muodostamiseksi tapauskohtaisesti. DlN-standardien mukaisesti suuntaajan on mm. kestettävä toiminnan häiriintymättä liitäntäjännitteen ±% ja taajuuden ± % vaihtelu nimellisarvoon verrattuna. Suuntaajaa ei tällöin saa kuormittaa nimellistä tasavirtaa suuremmalla virralla. Epätavallisia käyttöolosuhteita ovat mm: voimakas mekaaninen rasitus ( tärinä, iskut ), jäähdytys tai ympäristöilman sisältämät kiinteät aineet ( pöly, lika ), suolapitoinen ilma, suuri kosteus, tippuva vesi, ilmassa olevat kaasut tai höyryt ja epätavallisen suuret ylijännitteet syötössä tai muut tavallisissa käyttöolosuhteissa mainittujen alueiden ylitykset tai alitukset. DN-standardi määrittelee myös ei jaksollisten ylijännitteiden sietorajat suuntaajille ( DN 576 ). Testauksen tarkoituksena on osoittaa, että suuntaajat täyttävät esitetyt vaatimukset sähköisten ja mekaanisten ominaisuuksien suhteen, erityisesti kuormitusta ja eristystä silmälläpitäen. Standardien mukaan varsinaista kuormituskoetta nimellisarvoilla ei aina tarvitse tehdä, vaan kuormituskyvyn toteamiseksi riittävät laskelmat, jotka perustuvat puolijohteiden ja suuntaajan muiden osien ilmoitettuihin ominaisuuksiin. Kokeet voidaan tehdä myös osittain nimellisvirralla ja osittain nimellisjännitteellä. Standardoituja kokeita ovat mm.: toiminnalliset kokeet, lämpenemiskokeet, ominaiskäyrä ( tasajännitteen riippuvuus kuormitusvirrasta ), hyötysuhde, perusaallon tehokertoimen mittaus, eristyskokeet, jännitteen ja virran yliaallot, radiohäiriötaso, kosketussuojaus ja epätavallisten käyttöolosuhteiden vaatimat kokeet. Taulukossa 6.a ja 6.b on esitetty EC:n ja DlN:n käyttämät kytkentöjen tunnukset, sekä eräät ominaisarvot Taulukoissa on käytetty seuraavia suureiden merkintöjä: p = pulssiluku, q = kommutointiluku, s = suuntaajaan kytkettyjen kommutointiryhmien luku, g = rinnan kytkettyjen kommutointiryhmien luku, ABB:n TTT-käsikirja -7

2 δ = samanaikaisesti kommutoivien ryhmien luku, di = ideaalinen tasajännite, v = vaihtojännitteen tehollisarvo. im = haarajännitteen huippuarvo, d = tasavirran aritmeettinen keskiarvo, p = haaravirran tehollisarvo, î p = haaravirran huippuarvo, pd = haaravirran keskiarvo, v = vaihtovirran tehollisarvo, L = muuntajan ensiöön redusoidun vaihtovirran tehollisarvo, P Li = muuntajan ensiöpuolen näennäisteho ja W i = tasajännitteen aaltoisuus. A = π α π D = α π B = π α π E 3 α π π C = π α π α = ˆ viivekulma Taulukon 6.a arvot pätevät induktiiviselle kuormalle. Ne pätevät myös täysin ohjatulle vastuskuormalle, ellei kaarisuluilla ole ilmoitettu toista arvoa. ABB:n TTT-käsikirja -7

3 Taulukko 6.a. Täysinohjatut suuntaajakytkennät. Kytkennän tunnus Muuntajan kytkentä Suuntaajan kytkentä p q δ qs g di V im di p d î p d pd d V d ' L d P di Li d W i % DN EC Ensiö Toisio M,45 3,4.77,,5.77,5, 48,3 (,785) (,57) (,785) (,555) (,3) M3 B 9 B6 tai tai di 3 di ,675,94,577 (,588) 8,9,57.77 di (,785) di 6 3 6,35,47,577 (,588), (,), (,57), (,45),333,577 (,588),5, (,),333,86 (,8),47 (,478), (,),86 (,8), (,3), (,3),5 (,6) 8,3 48,3 4, B6 S5 3a tai 3 tai di 3,7,47,89,5,67,48,789,, ABB:n TTT-käsikirja -7 3

4 Taulukko 6.b. Puoliohjatut suuntaajakytkennät. Kytkennän tunnus Suuntaajan kytkentä BHZ Kuorma Viivekulma = Ohjattu päähaara Ohjaamaton päähaara Nollahaara DN EC p î p pd p î p pd p î p pd d d d d d d d d d d d BHK L =max,77,,5,77,,5 A A R,785,57,5,785,57,5,, R 9, 3,4,5, 3,4,5,57,57 BHKF B6HK 3 B6HKF 3 L R R L R R L L R R L L R R = max B,785, C,785,,577,577,577,577,577 C,577,577,,57 3,4,,57 3,4,,,698,885,,,698,885 B,5,5 C,5,5,333,333,333,333,333 C,333,333 C,785, C,785,,577,577,577,577,577 C,577,577,,57 3,4,,57 3,4,,,698,885,,,698,885 C,5,5 C,5,5,333,333,333,333,333 C,333,333 D E,, D E v A,,57 A,,57,86 A,86,86,86 A,86,86 ' L A,,57 A,,57,86 A,86,86,86 A,86,86 ABB:n TTT-käsikirja -7 4

5 . Luku 6: Tehoelektroniikka 6.. Suuntaajien termiset ominaisuudet Suuntaajien jäähdytystavat Tehopuolijohteet ovat termisesti muita sähkövoimatekniikan komponentteja kriittisempiä, joten niiden riittävästä jäähdytyksestä on huolehdittava. Puolijohteista ja jäähdytyselementeistä siirretään lämpö pois joko ilman tai nesteen avulla. lmajäähdytys on tavallisin. Sitä on kahta tyyppiä luonnollinen jäähdytys ja tehostettu jäähdytys. ABB:n tehostetusti jäähdytetyissä suuntaajissa on tuuletusilmamäärä,,5 m 3 / s suuntaajatehosta riippuen. Tehopuolijohteen ja jäähdytyselementin lämpövastus Terminen kokonaisvastus voidaan jakaa karkeasti kahteen osaan puolijohteen lämpövastukseen ja jäähdytyselementin lämpövastukseen. Kumpikin koostuu staattisesta lämpövastuksesta ja transienttisesta lämpövastuksesta. Suuntaajan termisten ominaisuuksien perusteella terminen vastus voidaan jakaa neljään osaan kuormitusajan pituudesta riippuen. Transienttinen lämpövastus C/W Luonnollinen jäähdytys Tehostettu jäähdytys Puolijohde, aika/s KVA 6.a. Erään puolijohteen ja jäähdytyselementin transienttinen lämpövastus. Alue a: t < n.,5s Puolijohteen oma transienttinen lämpövastus määrää termiset ominaisuudet. Tällöin lämpöä ei ehdi siirtyä puolijohteesta jäähdytyselementtiin. tse puolijohde lämpenee. Alue b: n.,5s < t < n. s Tällä alueella vaikuttaa puolijohteen ja jäähdytyselementin transienttinen lämpövastus. Puolijohde lämpenee edelleen ja saavuttaa loppulämpötilan n. sekunnissa. Saman-aikaisesti alkaa vähitellen jäähdytyselementin transienttinen lämpövastus vaikuttaa. Alue c: n. s < t < n. 5 min ( koskee tehostetusti jäähdytettyä suuntaajaa ). Termisiin ominaisuuksiin vaikuttavat puolijohteen staattinen lämpövastus ja jäähdytyselementin transienttinen lämpövastus, jolloin lämpöä etupäässä varastoituu jäähdytyselementtiin ( sen lämpötila nousee ). ABB:n TTT-käsikirja -7 5

6 Alue d: n. 5 min < t Puolijohteen ja jäähdytyselementin staattiset lämpövastukset ovat määrääviä ja jatkuvuustila on saavutettu. Lämpöä siirtyy jäähdytyselementistä jäähdytysaineeseen ( ilmaan ). Luonnollisella jäähdytyksellä saavuttaa jäähdytyselementin terminen vastus staattisen arvonsa 5 minuutissa jäähdytyselementtityypistä riippuen. Suuntaajien ylikuormitettavuus Lyhytaikaisella ylikuormitettavuudella tarkoitetaan virtaa d, millä suuntaajaa voidaan kuormittaa tietyn esikuormitustilanteen d jälkeen. Ylikuormitustilanteissa sen paremmin kuin jatkuvuustilassakaan puolijohteen liitoslämpötila ei saa nousta suurinta sallittua lämpötilaa, esim. 5 C, suuremmaksi. Ylikuormitettavuusominaisuudet ovat voimassa vain määritellyissä olosuhteissa, joihin vaikuttavat mm. suuntaajatyyppi ( jäähdytyselementti ), jäähdytystapa ( ilmamäärä ), jäähdytysaineen lämpötila, virran käyrämuoto, puolijohdetyyppi ja syöttöjännitteen taajuus. d Esikuormituskerroin k, d n jossa d = suuntaajan lähtövirta ennen ylikuormitustilannetta, dn = suuntaajan nimellisvirta. d dn,4,,,8,6,4, k= k=,5 k=,5 k=,75 min min 5 min min aika/s KVA 6.b. Luonnollisesti jäähdytetyn suuntaajan ylikuormitettavuuskäyrät Kuvissa 6.b ja 6.c on esitetty luonnollisesti ja tehostetusti jäähdytetyn suuntaajan suhteellinen ylikuormitettavuus d / dn ajan t ollessa parametreinä. Esikuormituskerroin on k. Ominaista suuntaajien suhteelliselle ylikuormitettavuudelle on se, että mitä tehokkaampi jäähdytys on sitä pienempi on ylikuormitettavuus. Käytännön näkökohtia Suuntaajien jäähdytysilman tulee olla kuivaa ja puhdasta. Tarvittaessa tuleva jäähdytysilma on suodatettava Tulevan jäähdytysilman lämpötilaksi suositetaan 5 5 C ( suuntaajat on spesifioitu 36 C lämpötilassa ja ympäristölämpötilan ollessa korkeampi, on tehoa alennettava ). lmastointijärjestelyissä on otettava huomioon. että suuntaajissa on häviöitä noin % suuntaajien nimellistehosta. ABB:n TTT-käsikirja -7 6

7 Tärkeimpänä huoltotoimenpiteenä suosittelemme, että suuntaajakentät puhdistetaan pölystä ja mahdollisesta liasta nor maal in vuosihuollon yhteydessä. d dn,3, k=,75 k=,5 k= k=,5, min min 5 min min aika/s KVA 6.c. Erään tehostetusti jäähdytetyn suuntaajan ylikuormitettavuuskäyrät ( SMEK 38 A ( Kl 5 ) ). Kuvien 6.b ja 6.c ylikuormitettavuuskäyrät edellyttävät, että ennen kutakin ylikuormaa lämpötilat suuntaajassa ovat tasaantuneet Verkkokommutoidut suuntaajat Verkkokommutoiduilla suuntaajilla tarkoitetaan suuntaajakytkentöjä, joissa kommutointijännite ja -teho saadaan suuntaajaa syöttävästä vaihtovirtaverkosta. Tällaisia suuntaajia sanotaan monesti luonnollisesti kommutoiviksi suuntaajiksi. Käytännössä yleisimmät suuntaajakytkennät ovat 3- ja -vaiheiset siltakytkennät. Jäljempänä käsitellään lähemmin 3- vaiheista täysin ohjattua siltakytkentää sekä -vaiheisia täysin- ja puoliohjattuja siltakytkentöjä. Ohjaamattomat suuntaajat (diodisuuntaajat) ovat tavallaan ohjattujen suuntaajien erikoistapauksia ( Esitetyt yhtälöt soveltuvat näihin, kun ohjauskulma = = ). Kolmivaiheinen siltakytkentä 3-vaiheisen tyristorisillan kytkentä on esitetty kuvassa 6.3a. Silta on täysin ohjattu, joten vaihtosuuntauskäyttö on mahdollinen. Sillan tasajännite saadaan yhtälöstä: d = di cos =, () jossa 3 d i π L,35 L, () L = syöttöverkon pääjännite, = = ohjauskulma. Kuvassa 6.3a on esitetty sillan toiminta ja tasajännitteen muodostuminen, kun = = 4, 9 ja 4. Kuvasta on nähtävissä myös sillan sytytyspulssit sekä tyristorien ja verkon virrat v ja L, jotka saadaan tasavirrasta. ABB:n TTT-käsikirja -7 7

8 v v 3 d,577 d, (3) 3 d,8 d, (4) Kuva 6.3a sekä yhtälöt ( ) ( 4 ) edellyttävät, että tasasähköpiirin induktanssi on hyvin suuri. Sulakkeita ja johtimia mitoitettaessa yhtälöt ( ) ja ( 4 ) on otettava huomioon. L L L 3 a) b) u X vl u u 3 u u u 3 u 3 u 3 u 3 u u u 3 u 3 u 3 u 3 u c) V V3 V5 V V3 V5 X L u 3 u = L u d d V4 V4 V6 V6 V V d _ K L L3 X vt F F Mt Mt V V V3 V4 V5 V6 V V4 V V4 V L V3 V6 V3 V6 V6 L V5 V V5 V V5 L3 u = u L - L jne. KVA F = = F 6.3a. Kolmivaiheisen täysinohjatun tyristorisillan toiminta. Sillan tasajännite ei ole puhdasta tasajännitettä, vaan sisältää tasajännitekomponentin ( ) lisäksi yliaaltoja. Kuvassa 6.3b a ) on esitetty kuvan 6.3a sillan jänniteyliaaltoja ohjauskulman = funktiona. ABB:n TTT-käsikirja -7 8

9 a) b) n di % n di % yliaalto (3Hz) 8. yliaalto (Hz) 5 5. yliaalto 8. yliaalto 4. yliaalto Ohjauskulma = yliaalto 6. yliaalto 8. yliaalto Ohjauskulma = KVA 6.3b. 3- ja -vaiheisten täysin ohjattujen tyristorisiltojen tasajännitteen yliaallot a ) 6-sykesuuntaaja. b ) -sykesuuntaaja. Kuvassa 6.3c on esitetty sillan kommutointi. Verkon kannalta kommutointi vastaa - vaiheista oikosulkua, joten vaiheiden välinen jännite on nolla kommutoinnin ajan. Kommutointi päättyy, kun oikosulkuvirta k on tasavirran d suuruinen.,u k u u u 3 u 3 u u 3 u 3 u u 3 u 3 Mt Vaihtosuuntauksen kippauspiste. KVA 6.3c. 3-vaihesillan jännite, kun kommutointikulma on.. Piirin reaktanssien vuoksi kommutointi ei tapahdu äärettömän nopeasti ajassa nolla, vaan vaatii aikaa. Kommutointiin kuluva aika ilmaistaan kommutointikulman avulla. Se voidaan laskea yhtälöstä: d µ arc cos (cos α ) α, (5) iˆ jossa k L i ˆ k X, (6) L L = syöttöverkon pääjännite, X L = verkon vaiheen kokonaisreaktanssi (mahdollinen kommutointikuristin mukaan laskettuna). Jos = =, saadaan alkukommutointikulma yhtälöstä d µ arc cos ( ) iˆ k (7) tai vaihtoehtoisesti d µ arc cos ( uk dn ) (8) jossa u k = sillan eteen kytketyn kuristimen tai muuntajan suhteellinen oikosulkujännite. ABB:n TTT-käsikirja -7 9

10 Kommutointi aiheuttaa induktiivisen jännitteenaleneman ja pienentää tasajännitettä. Jos kommutointi kestää vaihtosuuntauksessa niin kauan, ettei virta ehdi kokonaan siirtyä tyristorilta toiselle kommutoivan jännitteen ollessa positiivinen, tapahtuu ns. vaihtosuuntauskippaus. Virta kasvaa tällöin oikosulkuluonteisesti ja tyristorisulakkeet palavat (ks, kuva 6.3c). Tämä ilmiö esiintyy suurella ohjauskulmalla lähellä arvoa = = 8. Kippausilmiön estämiseksi rajoitetaan suurin ohjauskulma arvoon noin = = 5. Kun = >, tyristorisillan ottama verkkovirta ei ole vaihejännitteiden kanssa samanvaiheista Tästä johtuva loisteho on ohjausloistehoa. Loistehoa kuluu myös kommutoinnissa. Sitä sanotaan kommutointiloistehoksi. L L L L L = =º M t = L = =6º M t KVA6.3d. Tyristorisillan ohjausloistehon synty. L = virran perusaalto, L, = vaihejännite, = perusaallon vaihesiirto. Kuvassa 6.3d. on esitetty ohjausloistehon syntyminen. Tyristorisillan cos saadaan likimäärin yhtälöstä. d cos (9) d Kommutointi aiheuttaa verkkojännitteeseen loven (kuvassa 6.3a vinoviivoitettu alue). Vinoviivoitettua pinta-alaa voidaan tarvittaessa pienentää kommutointikuristimilla, (X Vt kuvassa 6.3a). Mitoituksessa voidaan käyttää likimääräistä yhtälöä u k X V L u L, () X X V L V t jossa, u k = loven syvyys pääjännitteessä, X VL = syöttöverkon vaiheen reaktanssi ja X Vt = kommutointikuristimen reaktanssi. Tyristorien sammuessa syntyvä takavirtapiikki aiheuttaa radiohäiriöitä, jotka on tarvittaessa vaimennettava suodattimilla. Tyristorisillan verkosta ottama virta ei ole sinimuotoista ( kuva 6.3a ), vaan sisältää yliaaltoja. Jos sillan tasavirta on täysin tasaista, ja vaihtovirtapuolen reaktanssit ovat nollia, muodostuu verkkovirta suorakaidepulsseista. Tällöin yliaallot voidaan laskea yhtälöstä n, c p () jossa n = suorakulma aallon n:nnen yliaallon tehollisarvo, = suuntaajan verkkovirran perusaalto. 6 pulssisillalla,78 d pulssisillalla,9 d ABB:n TTT-käsikirja -7

11 c = positiivinen kokonaisluku,,3... p = suuntaajan pulssiluku Yksivaiheiset siltakytkennät Kuvassa 6.3e a ) on esitetty -vaiheinen täysin ohjattu siltakytkentä ja kuvassa 6.3e b ) vastaava puoliohjattu kytkentä. Näitä käytetään pienitehoisissa moottori- ja magnetoin-tikäytöissä sekä ratakäytöissä. Kuvan 6.3e a ), siltakytkentä on vaihtosuuntauskelpoinen. Puoliohjattua siltaa käytetään mm. sen pienen loistehon tarpeen vuoksi. a) b) X t V V4 X t V V4 L d= L d= i v V V3 i d X d i v V V3 i d X d KVA 6.3e. a ) Täysin ohjattu -vaihesiltakytkentä. b) Puoliohjattu -vaihesiltakytkentä. Kuvassa 6.3f on esitetty tasajännitteen muodostuminen ohjauskulman ollessa = = 3. Täysin ohjatun -vaihesillan tasa jännite saadaan yhtälöstä d d i cos α () ja puolioh jatun yhtälöstä cos α, (3) d d i jossa d i L,9 L. (4) π Tasajännitteessä olevat yliaallot on esitetty kuvassa 6.3b b ) ohjauskulman funktiona ( -pulssisilta ). ABB:n TTT-käsikirja -7

12 KVA 6.3f. Tasajännitteen muodostuminen -vaiheisessa täysin ohjatussa tyristorisillassa. Kuvassa 6.3g on esitetty -vaihesillan kommutointi kun ohjauskulma = = 3 ja kommutointikulma = 3. KVA 6.3g. Täysin ohjatun -vaiheisen tyristorisillan kommutointi. Kommutointikulma voidaan laskea yhtälöstä X V L d µ arc cos ( cos α ) α, (5) Jos = =, on alkukommutointikulma, L ABB:n TTT-käsikirja -7

13 µ Luku 6: Tehoelektroniikka X V L d arc cos ( ). (6) Tasajännite voidaan laskea yhtälöstä L d d i [ cos α cos ( α µ ) ]. (7) vaihesilta ottaa verkosta induktiivista ohjausloistehoa ja kommutointiloistehoa kuten 3 vaihesilta ( ks. kuva 6.3d ). Kuvan 6.3h diagrammi esittää ohjausloistehoa tasajännitteen funktiona. Jos kommutointiloisteho otetaan huomioon, muuttuu diagrammin muoto. Q = di d Täysin ohjattu v-silta,5 Puoliksi ohjattu v-silta KVA,5.5 d= di 6.3h. Täysin ohjatun ja puoliohjatun -vaihesiltakytkennän ohjausloisteho. Ratakäytössä käytetään ohjausloistehon pienentämiseksi seurantaohjausta. Kytkemällä kaksi - vaihesiltaa sarjaan kuvan 6.3j mukaisesti, saadaan kuvassa 6.3j b ) oleva ohjausloistehon diagrammi. a) b) Q = di d M =,5 lman seurantaohjausta Seurantaohjauksen kanssa.5 d= di KVA 6.3j. a ) Kahden puoliohjatun -vaihesillan kytkentä seurantaohjauksessa ratakäytössä. b ) Kytkennän ohjausloistehodiagrammi Pakkokommutoidut suuntaajat Pakkokommutoidussa suuntaajassa on erillinen kommutointipiiri, johon varastoidaan ja josta puretaan kommutointiin tarvittava energia. Kommutoinnin aikana energia puretaan sammutettavan tyristorin kautta kuormitusvirtaa vastaan. Onnistuneen kommutoinnin edellytyksenä on, että virta katkeaa tyristorin toipumisajaksi, minkä jälkeen tyristori kestää syttymättä päästösuuntaisen jännitteen. Tasavirtakatkoja Tasavirtakatkojalla voidaan ohjata kuorman tasajännitteen keskiarvo syöttävää tasajännitettä pienemmäksi tai sen suuruiseksi. ABB:n TTT-käsikirja -7 3

14 a) b) i Tk i d B D i D X R d B d i d d T Te t T t i i D i i D t KVA 6.4a. Tasavirtakatkojan toimintaperiaate. Kuva 6.4a esittää tasavirtakatkojan periaatteellisen toiminnan induktiivisella kuormalla. Kytkin K suljetaan jaksoittain aikavälin T kuluttua ajaksi T e = a T, a. Katkojan lähtöjännitteen keskiarvo on d = a B. Jos kuormitusvirta i d on täysin tasoittunut, on verkosta otettu tasavirta i = a i d. deaalinen tasavirtakatkoja muuttaa tasasähköjännitteen suuruutta häviöttömästi. Katkojan lähtöjännite voidaan säätää halutuksi pitämällä katkojataajuus vakiona ja muuttamalla kerrointa a, pitämällä kytkin K kiinni vakioajan ja muuttamalla katkontataajuutta tai muuttamalla katkontataajuutta ja kytkimen kiinnioloaikaa. Vaihtosuuntaaja Vaihtosuuntaajan eli invertterin avulla muutetaan tasajännite vaihtojännitteeksi, jonka taajuutta, amplitudia tai molempia voidaan ohjata. Jos vaihtosuuntausyksikössä ohjataan vain taajuutta, pidetään syöttävä tasajännite vakiona. Koska vaihtosähköpiirin reaktanssit ovat riippuvaisia vaihtosähkön taajuudesta, on vaihtosuuntaajan jännitettä yleensä muutettava taajuuden muutosta vastaavasti. Tällöin ohjataan sekä taajuutta että jännitettä. Jännitteen ohjaus voidaan suorittaa ennen invertteriä, invertterin jälkeen tai usean invertterin yhteiskytkennällä. Pulssileveysmoduloidun (PWM) invertterin lähtöjännitteen kukin puoliaalto muodostuu monesta pulssista, joitten leveyttä voidaan ohjata. Täten samalla tehoasteella voidaan ohjata sekä jännitettä että taajuutta. Erään PWM - invertterin toiminta Tarkasteltava kytkentä on kehitetty ns. Mc-Murray -kytkennästä. a) L k b) dc C p dc dc C k C k i k L k V V 5 V 3 i i A dc A V 4 V V 6 KVA 6.4b. a ) nvertterin yhden vaiheen kytkentä. b ) nvertterin vaiheen vaihtokytkinmalli. Kuva 6.4b a ) esittää kolmivaiheinvertterin yhden vaiheen kytkentää, jota havainnollistaa kuvan 6.4b b ) vaihtokytkinmalli. Ohjauksesta riippuen vaihtokytkin voidaan kytkeä joko tai ABB:n TTT-käsikirja -7 4

15 napaan. nvertterin kommutointitaajuudella tarkoitetaan vaihtoehtokytkinmallin toimintataajuutta, jolloin yhden jakson aikana kytkin kääntyy asennosta toiseen ja takaisin. Piirin toiminta induktiivisella kuor malla olettaen, että kuormitusvirta i pysyy tarkasteluajan vakiona on seuraava: DC Alkutila: V johtaa, lähtöjännite - pisteeseen nähden u A. t Kuormitusvirran kommutointi V :tä V 3:lle aloitetaan sytyttämällä aputyristori V 3 ja poistamalla ohjaus päätyristorilta V. t t Kuormitusvirta kommutoituu V :lta V 3:lle. t t 3 Kuormitusvirran ylittävä osa kommutointivirrasta i k kulkee V 5:n kautta, V toipuu t 3 t 4 (läpijohtoaika): Sytytetään V, V 5:n virta siirtyy V :lle, V on toipunut. t 4 t 5 Jälleenvaraus alkaa, kommutointikondensaattorit syöttävät kuormaa, kuormitusvirran ylittävä osa i k :sta kulkee V :n kautta. t 5 t 6 Kuormitusvirta kommutoituu V 3:lta V 6:lle. t 6 t 7 D C Jälleenvaraus on päättynyt, lähtöjännite - pisteeseen nähden on u A. t 7 t 8 Aloitetaan uusi kommutointi sytyttämällä V 4 ja poistamalla ohjaus V :lta. V 6:n kautta kulkee kuormitusvirran ja i k :n summavirta. t 8 t 9 ( läpijohtoaika ): Sytytetään V, V 6:n virta laskee ja V :n nousee. Kuormitusvirta siirtyy V :lle. t 9 t Jälleenvarausvirta ja kuormitusvirta kulkevat V :n kautta. t vastaa alkuhetkeä. Aikaa t t 3 (t 7 t 8 ) kutsutaan kommutointiviiveeksi, jona aikana sammutettavan tyristorin tulee toipua. Minimipulssiaika on se aika, jonka vaihtokytkimen tulee vähintään olla jommassa kummassa asennossa. Tämä aika määräytyy kommutointipulssin pituudesta ( t t 6 ). Kolmivaiheinvertterissä kukin vaihe muodostuu edellä esitetyn kaltaisesta ohjattavasta puolijohdekytkimestä. nvertterin lähtöjännitteen ja taajuuden ohjausperiaate on esitetty oikosulkumoottorikäyttöjä käsittelevässä kohdassa. Pakkokommutoitujen suuntaajien komponenttien ominaisuuksia Pakkokommutoitujen suuntaajien kommutointitaajuus, joka voi tapauksesta riippuen vaihdella muutamasta sadasta hertsistä kilohertseihin, sekä kommutoinnin aikana esiintyvät suuret virran ja jännitteen muutosnopeudet asettavat suuntaajien komponenteille erityisvaatimuksia verrattuna verkkokommutoitujen laitteiden komponentteihin. Puolijohteiden tulee olla tyypiltään ns. nopeita. Diodin kohdalla nopeuden mittana käytetään toipumisvarausta, jonka tulee olla pieni. Nopean tyristorin ominaisuuksia ovat pienet kytkentähäviöt sytytettäessä ja tyristorin lyhyt toipumisaika sammutettaessa sekä suuri sallittu toistuva virran nousunopeus ( di/dt - arvo ) tyristoria sytytettäessä. Vastaavasti kommutointikondensaanorien ja kuristimien tulee olla pienihäviöisiä suurten kommutointitaajuuksien saavuttamiseksi. RC -suojan kondensaattoreilla tulee lisäksi olla pieni induktanssi ja niiden tulee sallia suuret huippuvirta arvot ( suuri du / dt - kestoisuus ). Pakkokommutoiduissa suuntaajissa käytetään lähes poikkeuksetta hilalta kommutoivia tehokomponentteja. Komponenttien kehittyminen on suhteellisen nopeata, joten taulukoidut suoritusarvot voivat olla vain ohjeellisia. Taulukossa 6.4a on esitetty eräiden tehopuolijohteiden suurimpia arvoja annettuna ajankohtana. ABB:n TTT-käsikirja -7 5

16 Taulukko 6.4a. Ohjattujen tehopuolijohteiden suoritusarvot ja käyttöönottoajat. Symboli Puolijohdetyyppi Jännite V Virta A Taajuus Hz Teho W Pinta-ala cm Vuosi SCR GTO Bipolari transistori > 985 GBT FET MCT FETh > / Taulukossa 6.4a on käytetty seuraavia lyhennyksiä: SCR Tyristori, GTO Hilalta ohjattu tyristori ( Gate Turn Off Thyristor ), GBT nsulated Gate Bipolar Transistor, FET Field Effect Transistor, MCT MOS Control Thyristor ja FETh Field Effect Thyristor Hilakommutoidut suuntaajakytkennät Hilakommutointi Verkkokommutoiduissa laitteissa verkon jännitteet muodostavat kommutointijännitteen, joka sammuttaa puolijohdeventtiilin. Esimerkiksi tavallinen tyristori sammuu, jos sen yli vaikuttaa negatiivinen jännite riittävän kauan. Kun pakkokommutoiduissa laitteissa halutaan sammuttaa tyristori, muodostetaan monimutkaisilla kommutointipiireillä johtavan tyristorin yli negatiivinen jännite. Tällöin kommutointipiireissä täytyy olla aputyristoreita, kondensaattoreita ja kuristimia. Hilakommutoiduissa laitteissa johtavan venttiilin virran katkaisu tapahtuu kytkemällä hila negatiiviseen jännitteeseen ja varaustenpoistoajan kuluttua virta katkeaa. Hilakommutoituja suuntaajakytkentöjä käytetään inverttereissä, koska rakenne tulee yksinkertaiseksi ja invertterin ominaisuudet paranevat verrattuna pakkokommutoituihin kytkentöihin. nvertterin vaihtokytkinmalli d 3 KVA 6.5a. -tasoisen vaiheen kytkinmalli ( ), lähdön potentiaali pulssisuhteella : ( ) ja sinimoduloitu lähdön potentiaali ( 3 ). Kuten kuvasta 6.5a nähdään, on invertterin kukin vaihe itse asiassa vaihtokytkin, jolla vaiheen lähtö voidaan kytkeä joko tasajännitelähteen plus - tai miinusnapaan. Tasajännitelähde on pieni-impedanssinen, joten kytkimen asento määrää yksikäsitteisesti vaiheen lähdön potentiaalin. nverterin toiminta perustuu siihen, että kytkinmallissa vaihtokytkintä käännetään suurehkolla taajuudella ( tyypillisesti ~ khz ) edestakaisin. Tätä taajuutta nimitetään kytkentätaajuudeksi. Jos vaihtokytkin on yhtä kauan ylä- ja ala-asennossa, on vaiheen lähtö keskimäärin tasajännitelähteen keskipisteen potentiaalissa ( kuva 6.5a ). Tällöin pulssisuhde on :. ABB:n TTT-käsikirja -7 6

17 Antamalla pulssisuhteelle eri arvoja voidaan lähtöjännitteen potentiaalia asetella. Normaalisti invertterissä pulssisuhdetta moduloidaan halutulla lähtötaajuudella ( kuva 6.5a ). Tästä johtuu nimitys pulssinleveysmodulaatio, Pulse Width Modulation, PWM. Kuvan 6.5a invertteri on -tasoinen ( -level ), ts. sen kunkin vaiheen lähtö voidaan kytkeä kahteen potentiaaliin. Lähes kaikki näihin päiviin asti konstruoidut invertterit ovat olleet - tasoisia. KVA 6.5b. 3-tasoisen invertterin yhden vaiheen kytkinmalli ( ) ja lähdön potentiaali pulssisuhteella :: ( ). Hilalta sammutettavilla tehopuolijohteilla voidaan toteuttaa myös 3- tasoisia inverttereitä, joiden kytkinmalli nähdään kuvasta 6.5b. Siinä vaiheen lähtö voidaan kytkeä tasajännitelähteen plusnapaan, keskipisteeseen tai miinusnapaan. Kuvasta 6.5b nähdään lähdön potentiaalin vaihtelu kytkimen tasaisessa askelluksessa. Vaihtokytkimien toteutus hilalta sammutettavilla tehokomponenteilla -tasoinen invertteri Kuvasta 6.5c nähdään, miten - tasoinen invertteri toteutetaan GTR:illä ja GTO:illa. Selvyyden vuoksi kuviin ei ole piirretty kytkimen käännössä tarvittavia suojauspiirejä. Vaihe koostuu ylä- ja alahaarasta, joissa kummassakin on GTR ( tai GTO ) ja ns. - diodi vastarinnankytkettyinä. Tämä on yhteinen kaikille hilakommutoiduille inverttereille. Niiden kaikki haarat muodostuvat GTR ( tai GTO ) diodi-kombinaatiosta. Se merkitsee, että kussakin haarassa virta pääsee kulkemaan kumpaan suuntaan tahansa. a) b) V V N N KVA 6.5c. a ) - tasoisen invertterin vaiheen toteutus tehotransistorilla ( GTR ) b ) hilaohjatulla tyristorilla ( GTO ). Hilakommutoiduissa kytkennöissä voi lähtöjännitteen ja -virran vaihesiirto asettua vapaasti kuormituksen määräämään arvoon. Näin ollen hilakommutoitu kytkentä voi luonnostaan syöttää pätötehoa joko kuormaan tai tasavirtalähteeseen päin ja syöttää kuormaan loistehoa ( tai ottaa sieltä loistehoa eli toimia aitona loistehogeneraattorina ). Kuvasta 6.5c nähdään suoraan, miten vaihetta ohjataan. Kun V on ohjattu johtavaksi, kytkeytyy vaiheen lähtö tasasähkölähteen plusnapaan riippumatta lähtövirran suunnasta: vastaavasti lähtö kytkeytyy miinusnapaan V :en ollessa ohjattu johtavaksi. Kuvasta 6.5d nähdään 3- tasoisen invertterin yhden vaiheen toteutus GTO:illa. Siihen kuuluu 4 vastaavanlaista haaraa kuin - tasoinvertterissä ja lisäksi kaksi clamping-diodia N 5 ja N6. N N ABB:n TTT-käsikirja -7 7

18 N 5 N 6 V V V3 N N N3 V4 N4 KVA 6.5d. 3- tasoisen invertterin yhden vaiheen toteutus GTO:lla. Vaihetta ohjataan seuraavasti: Kun halutaan vaiheen lähdön kytkeytyvän plusnapaan ohjataan GTO:t V ja V johtaviksi. Vastaavasti GTO:den V 3 ja V 4 ollessa johtavia kytkeytyy lähtö miinusnapaan. Tasa jännitelähteen keskipisteeseen saadaan lähtö kytkettyä ohjaamalla GTO:t V ja V 3 johtaviksi, jolloin diodit N5 ja N6 pakottavat lähdön keskipisteen potentiaaliin. Tästä nimitys NPC (Neutral Point Clamped-invertteri). NPC- invertterissä pääkomponenttien jänniterasitus suhteessa tasasähköjännitteeseen on puolet - tasoisen invertterin jänniterasituksesta ja näin ollen NPC- invertteri voidaan rakentaa - kertaiselle jännitteelle - tasoiseen verrattuna ilman GTO:itten varsinaista sar jaankytkentää ja siihen liittyviä ongelmia. Kytkentätaajuus NPC-invertterissä voidaan valita puoleksi - tasoisen kytkentätaajuudesta ja kuitenkin päästään pienempiin lähdön yliaaltoihin. Tämä sopii hyvin yhteen sen kanssa, että suurijännitteisissä GTO:issa kytkentähäviöt ovat suhteellisesti suuremmat kuin pienijännitteisissä. NPC-invertteri onkin ideaalinen invertterikytkentä välijännitteille. - vaihesilta Edellä on käsitelty invertterin yhtä vaihetta. Käytännössä useimmat hilakommutoidut kytkennät ovat siltoja. Tarkastellaan aluksi - vaihesillan kytkinmallia. - tasoinen -vaihesilta - vaihesilta muodostuu kahdesta vaiheesta, jotka kytketään samaan tasasähkölähteeseen ja joiden lähtönapojen väliin kuor ma kytketään ( kuva 6.5e ). C C d C t C C 3 KVA 6.5e. -tasoisen - vaihesillan kytkinmalli ( ) lähtöjännitetasot ja niitä vastaavat kytkinten asennot ( ) ja esimerkki sinikäyrän osaa vastaavasta lähtöjännitteen käyrämuodosta. Silta sisältää siis kaksi vaihtokytkintä. Kun kumpikin voi olla kahdessa asennossa, on - vaihesillalla = 4 kytkinasentokombinaatiota ( ), ( ), ( ) ja ( ). Tässä merkintä ( ) tarkoittaa, että vaihe on kytketty plusnapaan ja vaihe vastaavasti miinusna- ABB:n TTT-käsikirja -7 8

19 paan. Kuvaan 6.5e on piirretty em. asentokombinaatiota vastaavat lähtöjännitetasot. Niitä on kolme u c, ja - u c, koska ( ) ja ( ) tuottavat molemmat jännitteen. Siltakytketyn - tasoisen invertterin lähtöjännitteellä on siis kolme mahdollista tasoa, ts. kolme vaihtoehtoista hetkellisarvoa. Modulaation tehtävänä on määrittää, miten ja missä suhteessa näitä kolmea tasoa käytetään, jotta invertterin lähtöjännite vastaa mahdollisimman hyvin haluttua. Kuvasta 6.5e näkyy, miten sinikäyrän osa moduloidaan. 3-tasoinen -vaihesilta 3- tasoisella sillalla on vastaavasti ( kuva 6.5f ) 3 = 9 kytkinasentokombinaatiota ja 5 mahdollista lähtöjännitetasoa (kytkinasento kuvassa tarkoittaa kytkentää tasasähkölähteen keskipisteeseen). Kuvasta 6.5f nähdään, miten muutamia sinikäyrän osia toteutetaan em. tasoja käyttäen. C C KVA 6.5f. C C C C C t C C C 3- tasoisen - vaihesillan kytkinmalli ( ), lähtöjännitetasot ja kytkinasennot ( ) ja esimerkki moduloinnista ( 3 ). - tasoinen 3- vaihesilta Kun - vaihesiltaa laajennetaan yhdellä vaiheella, tullaan 3- vaihesiltaan ( kuva 6.5g ) - tasoisella 3- vaihesillalla on 3 = 8 kytkinasentokombinaatiota ( kuva 6.5g ). a) b) d V W C Vaihe asentovaihtoehto V W KVA 6.5g. - tasoisen 3- vaihesillan kytkinmalli ( ) ja kytkimien asentokombinaatiot ( ). Perinteisin keinoin on vaivalloista määrittää, miten näitä kolmea vaihetta tulee ohjata, jotta tuloksena on symmetrinen 3- vaihejännite, jonka lähtötaajuus ja - jännite voi muuttua nollasta nimellisarvoonsa ja jonka yliaaltosisältö on minimissään. Moderni työväline moduloinnin määräämiseen on 3- vaihejärjestelmän paikkaosoitinesitys ja sitä hyväksikäyttävä tähtimodulaatio. Tähtimodulaation erityinen etu on siinä, että se sopii hyvin toteutettavaksi mikroprosessoritekniikalla. Kolmivaihejärjestelmä voidaan kuvata yhdellä pyörivällä osoittimella. Tämä ns. paikkaosoitin pyörii samalla nopeudella kuin sen kuvaama 3- vaihejärjestelmä. Kuvassa 6.5h on 3- vaihesillan kytkimien asentokombinaatiot esitetty paikkaosoittimien avulla. Kuusi asentokombinaatiota tuottavat paikkaosoittimet 6, jotka ovat muuten identtisiä, mutta 6 º:n vaihesiirrossa keskenään. Asentokombinaatiot ( ) ja ( ) tuottavat - osoittimen. ABB:n TTT-käsikirja -7 9

20 Osoittimet 6 kuvaavat invertteriä sen käydessä täydellä jänniteohjeella ilman PWMtoimintaa (ns. 6- step inverter). Tällöin paikkaosoitin hyppii vakioamplitudisena 6 º:n askelin, eikä - osoitinta esiinny KVA 6.5h. - tasoisen 3- vaiheinvertterin paikkaosoitinesitys ja tahtimoduloinnin periaate. Varsinainen PWM- modulointi toteutetaan jakamalla :n kiertymiskulma vakiosuuruisiin kulmaviipaleisiin, joiden kesto on noin ms ja käyttämällä viipaleen aikana useita kytkinasentokombinaatioita, kuvan tapauksessa (,, ), (,, ) ja (,, ) tai (,, ). Optimikombinaatiot päättelee ja niiden kestoajat laskee mikroprosessori ennen kutakin viipaletta. Kuvattua modulointimenetelmää nimitetään tähtimoduloinniksi. Sillä saadaan 3- vaihejärjestelmä suuruisin askelin tai se voidaan myös kokonaan pysäyttää ja vaihtaa pehmeästi sen pyörimissuuntaa. Myös toimittaessa nimellisjännitteen lähellä tähtimodulointi tuo merkittäviä etuja. ABB:n TTT-käsikirja -7

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

Oikosulkumoottorikäyttö

Oikosulkumoottorikäyttö Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

Transistoreiden merkinnät

Transistoreiden merkinnät Transistoreiden merkinnät Yleisesti: Eurooppalaisten valmistajien tunnukset muodostuvat yleisesti kirjain ja numeroyhdistelmistä Ensimmäinen kirjain ilmaisee puolijohdemateriaalin ja toinen kirjain ilmaisee

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

9. LOISTEHON KOMPENSOINTI JA YLIAALTOSUOJAUS

9. LOISTEHON KOMPENSOINTI JA YLIAALTOSUOJAUS 9. LOISTEHON KOMPENSOINTI J YLILTOSUOJUS 9.1. Loistehon kompensointitarpeen määrittäminen Tietyt sähköverkkoon liitettävät kuormitukset tarvitsevat toimiakseen pätötehon P ohella myös loistehoa Q. Näitä

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.

Lisätiedot

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä 1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin

Lisätiedot

PERUSRAKENTEET Forward converter, Myötävaihemuunnin ( BUCK regulaattori )

PERUSRAKENTEET Forward converter, Myötävaihemuunnin ( BUCK regulaattori ) HAKKRIKYTKENNÄT H. Honkanen PERSRAKENTEET Forward converter, Myötävaihemuunnin ( BCK regulaattori ) Toiminta: Kun kytkin ( = päätetransistori ) on johtavassa tilassa, siirtyy virta I 1 kelan kautta kondensaattoriin

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)

Lisätiedot

Ari Ravantti Taajuusmuuttajat. ABB Group November 26, 2014 Slide 1

Ari Ravantti Taajuusmuuttajat. ABB Group November 26, 2014 Slide 1 Ari Ravantti Taajuusmuuttajat November 26, 2014 Slide 1 Miksi taajuusmuuttaja? Prosessin säätö Pieni käynnistysvirta Energian säästö Mekaanisten rasitusten väheneminen Lopputuotteen paraneminen November

Lisätiedot

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä? -08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

Varauspumppu-PLL. Taulukko 1: ulostulot sisääntulojen funktiona

Varauspumppu-PLL. Taulukko 1: ulostulot sisääntulojen funktiona Varauspumppu-PLL Vaihevertailija vertaa kelloreunoja aikatasossa. Jos sisääntulo A:n taajuus on korkeampi tai vaihe edellä verrattuna sisääntulo B:hen, ulostulo A on ylhäällä ja ulostulo B alhaalla ja

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.

Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta. TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.

Lisätiedot

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015

SATE1050 PIIRIANALYYSI II / MAARIT VESAPUISTO: APLAC, MATLAB JA SIMULINK -HARJOITUSTYÖ / SYKSY 2015 1 SAT1050 PANAYYS / MAAT VSAPUSTO: APA, MATAB JA SMUNK -HAJOTUSTYÖ / SYKSY 2015 Harjoitustyön tarkoituksena on ensisijaisesti tutustua Aplac-, Matab ja Simulink simulointiohjelmistojen ominaisuuksiin ja

Lisätiedot

1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina

1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina 1 Kohina Kohina on yleinen ongelma integroiduissa piireissä. Kohinaa aiheuttavat pienet virta- ja jänniteheilahtelut, jotka ovat komponenteista johtuvia. Myös ulkopuoliset lähteet voivat aiheuttaa kohinaa.

Lisätiedot

Ylivirtasuojaus. Monta asiaa yhdessä

Ylivirtasuojaus. Monta asiaa yhdessä Ylivirtasuojaus Pekka Rantala Kevät 2015 Monta asiaa yhdessä Suojalaitteiden valinta ja johtojen mitoitus on käsiteltävä yhtenä kokonaisuutena. Mitoituksessa käsiteltäviä asioita: Kuormituksen teho Johdon

Lisätiedot

Pehmeäkäynnistin. Mitä haittoja arvelet staattorijännitteen leikkaamisesta olevan momentin pienenemisen lisäksi (Vihje: mieti, onko virta sinimäistä)?

Pehmeäkäynnistin. Mitä haittoja arvelet staattorijännitteen leikkaamisesta olevan momentin pienenemisen lisäksi (Vihje: mieti, onko virta sinimäistä)? Pehmeäkäynnistin 1 TEL-1400 Sähkömoottorikäyttöjen laboratoriotyöt TTY/TEL 28.9.2000 5.2.2007 Pehmeäkäynnistin P. Puttonen J. Alahuhtala 1 Johdanto Pehmeäkäynnistintä käytetään teollisuudessa monipuolisesti

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Aurinkopaneelin lataussäädin 12/24V 30A. Käyttöohje

Aurinkopaneelin lataussäädin 12/24V 30A. Käyttöohje Aurinkopaneelin lataussäädin 12/24V 30A Käyttöohje 1 Asennuskaavio Aurinkopaneeli Matalajännitekuormitus Akku Sulake Sulake Invertterin liittäminen Seuraa yllä olevaa kytkentäkaaviota. Sulakkeet asennetaan

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu TN 3 / SÄHKÖASIOITA Viitaniemen koulu SÄHKÖSTÄ YLEISESTI SÄHKÖ YMPÄRISTÖSSÄ = monen erilaisen ilmiön yhteinen nimi = nykyihminen tulee harvoin toimeen ilman sähköä SÄHKÖN MUODOT SÄHKÖN MUODOT pistorasioista

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

Yleistä DIN-kiskoasenteisista PULS teholähteistä

Yleistä DIN-kiskoasenteisista PULS teholähteistä Keskus Teho Yleistä DIN-kiskoasenteisista PULS teholähteistä Yleistä PULS Puls on saksalainen yritys joka on erikoistunut DIN-kiskoasenteisten hakkuriteholähteiden valmistukseen. Innovatiivisuus ja jatk

Lisätiedot

Muuntaja yleisesti MUUNTAJAN OMINAISUUKSISTA TEHO TYHJÄKÄYNTIJÄNNITE HYÖTYSUHDE POIKKEAMAT TYYPPITEHOSTA

Muuntaja yleisesti MUUNTAJAN OMINAISUUKSISTA TEHO TYHJÄKÄYNTIJÄNNITE HYÖTYSUHDE POIKKEAMAT TYYPPITEHOSTA lähde: http://www.trafomic.fi/muuntaja, luettu 2.9.2014 Muuntaja yleisesti Muuntaja on sähkölaite ilman liikkuvia osia. Sen toiminta perustuu sähkömagneettiseen induktioon, joten se toimii vain vaihtovirralla.

Lisätiedot

ja sähkövirta I lämpövirtaa q, jolloin lämpövastukselle saadaan yhtälö

ja sähkövirta I lämpövirtaa q, jolloin lämpövastukselle saadaan yhtälö Säteily Konvektio Johtuminen iitosjohto astu Kansi Kotelo Pinni Kaikki lämmönsiirtomuodot käytössä. Eri mekanismien voimakkuus riippuu kuitenkin käyttölämpötilasta ja kotelosta. astun ja kehyksen liitos

Lisätiedot

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.

Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan

Lisätiedot

VLT HVAC Drive FC-102 Pikaohje ulkopuoliselle ohjaukselle

VLT HVAC Drive FC-102 Pikaohje ulkopuoliselle ohjaukselle HVAC Drive - Pikaohjeita VLT HVAC Drive FC-102 Pikaohje ulkopuoliselle ohjaukselle 1 HVAC Drive ohjaus ulkopuolisella säätimellä... 2 1.1 Parametrit Quick Menun alta (02 quick set-up)... 3 1.2 Parametrit

Lisätiedot

TEHTÄVÄT KYTKENTÄKAAVIO

TEHTÄVÄT KYTKENTÄKAAVIO TEHTÄÄT KYTKENTÄKIO 1. a) Mitkä kytkentäkaavion hehkulampuista hehkuvat? b) Kuinka monta eri kulkureittiä sähkövirralla on pariston plusnavalta miinusnavalle? 2. Piirrä sähkölaitteen tai komponentin piirrosmerkki.

Lisätiedot

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan

Lisätiedot

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä.

Tämä symboli ilmaisee, että laite on suojattu kokonaan kaksoiseristyksellä tai vahvistetulla eristyksellä. 123 Turvallisuus Tämä symboli toisen symbolin, liittimen tai käyttölaitteen vieressä ilmaisee, että käyttäjän on katsottava oppaasta lisätietoja välttääkseen loukkaantumisen tai mittarin vaurioitumisen.

Lisätiedot

4B. Tasasuuntauksen tutkiminen oskilloskoopilla.

4B. Tasasuuntauksen tutkiminen oskilloskoopilla. TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 4B. Tasasuuntauksen tutkiminen oskilloskoopilla. Teoriaa oskilloskoopista Oskilloskooppi on laite, joka muuttaa sähköisen signaalin näkyvään muotoon. Useimmiten sillä

Lisätiedot

Modulaatio-ohjauksen toimimoottori AME 85QM

Modulaatio-ohjauksen toimimoottori AME 85QM Modulaatio-ohjauksen toimimoottori AME 85QM Kuvaus AME 85QM -toimimoottoria käytetään AB-QM DN 200- ja DN 250 -automaattiisissa virtauksenrajoitin ja säätöventtiileissä. Ominaisuudet: asennon ilmaisu automaattinen

Lisätiedot

BL20A0500 Sähkönjakelutekniikka

BL20A0500 Sähkönjakelutekniikka BL0A0500 Sähkönjakelutekniikka Oikosulkusuojaus Jarmo Partanen Oikosulkuvirran luonne Epäsymmetriaa, vaimeneva tasavirtakomponentti ja vaimeneva vaihtovirtakomponentti. 3 Oikosulun eri vaiheet ja niiden

Lisätiedot

KÄYTTÖOHJE - INVERTTERI 12V tai 24V -> 230V 55Hz

KÄYTTÖOHJE - INVERTTERI 12V tai 24V -> 230V 55Hz KÄYTTÖOHJE - INVERTTERI 12V tai 24V -> 230V 55Hz G-12-015, G-12-030, G-12-060 G-24-015, G-24-030, G-24-060 1. Laitteen kuvaus Virta päällä merkkivalo Virhe-merkkivalo (ylikuormitus, alhainen/korkea akun

Lisätiedot

DEE Sähkötekniikan perusteet

DEE Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä

Lisätiedot

KÄYTTÖ-OHJE EVERLAST

KÄYTTÖ-OHJE EVERLAST KÄYTTÖ-OHJE EVERLAST Power Plasma 50 Power Plasma 60 Power Plasma 80 HUOMIO! TAKUU EI KATA VIKAA JOKA JOHTUU LIAN AIHEUTTAMASTA LÄPILYÖNNISYÄ PIIRIKORTILLA/KOMPONENTEISSA. Jotta koneelle mahdollistetaan

Lisätiedot

Sähkötekiikka muistiinpanot

Sähkötekiikka muistiinpanot Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri

Lisätiedot

Van der Polin yhtälö

Van der Polin yhtälö Van der Polin yhtälö RLC-virtapiirissä oleva vastus vaikuttaa varsin olennaisesti piirissä esiintyviin värähtelyilmiöihin. Kuitenkin aivan uuden elementin komponenttitekniikkaan toivat aikoinaan puolijohdediodeja

Lisätiedot

Kuormanerotuskytkimet Sarja HA

Kuormanerotuskytkimet Sarja HA uormanerotuskytkimet Sarja H uormakytkimet H HC HD HE H304 H306 HC306 HC308 HC310 HD310 HD312 HE310 HE312 HE316 H404 H406 HC406 HC408 HC410 HD410 HD412 HE410 HE412 HE416 Nimellisvirta (n) 40 63 63 80 100

Lisätiedot

Kytkentäkentät, luento 2 - Kolmiportaiset kentät

Kytkentäkentät, luento 2 - Kolmiportaiset kentät Kytkentäkentät, luento - Kolmiportaiset kentät Kolmiportaiset kytkentäkentät - esitystapoja ja esimerkkejä Kytkentäkenttien vertailuperusteet ƒ Estottomuus, looginen syvyys, ajokyky Closin -verkko Paull

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa SATE2010 Dynaaminen kenttäteoria syksy 2010 1 /8 Tehtävä 1. Häviötön linja (70 Ω), joka toimii taajuudella 280 MHz, on päätetty kuormaan Z = 60,3 /30,7 Ω. Käytä Smithin karttaa määrittäessäsi, kuinka suuri

Lisätiedot

BL20A0500 Sähkönjakelutekniikka

BL20A0500 Sähkönjakelutekniikka BL20A0500 Sähkönjakelutekniikka Pienjänniteverkot Jarmo Partanen Pienjänniteverkot Pienjänniteverkot 3-vaiheinen, 400 V Jakelumuuntamo pylväsmuuntamo, muuntaja 16 315 kva koppimuuntamo, 200 800 kva kiinteistömuuntamo,

Lisätiedot

VAATIMUKSIA YKSINKERTAISILLE VIKAILMAISIMILLE HSV:N KJ-VERKOSSA

VAATIMUKSIA YKSINKERTAISILLE VIKAILMAISIMILLE HSV:N KJ-VERKOSSA VAATIMUKSIA YKSINKERTAISILLE VIKAILMAISIMILLE HSV:N KJ-VERKOSSA Versio 30.4.2012 Tavoitteena on kehittää Helen Sähköverkko Oy:n keskijännitteiseen kaapeliverkkoon vikailmaisin, joka voitaisiin asentaa

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

MITOITUS-OHJELMA ESIMERKKI

MITOITUS-OHJELMA ESIMERKKI MITOITUS-OHJELMA ESIMERKKI 10.2014 Copyright Ols-Consult Oy 1 Yleistä Sähkön turvallinen käyttö edellyttää aina mitoitusta joka voidaan suorittaa vain laskemalla. Tietenkin huolellinen ja osaava suunnittelu

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Energian hallinta Energiamittari Tyyppi EM110

Energian hallinta Energiamittari Tyyppi EM110 Energian hallinta Energiamittari Tyyppi EM110 Yksivaihe energiamittari Luokka 1 (kwh) EN62053-21 mukaan Luokka B (kwh) EN50470-3 mukaan Sähkömekaaninen näyttö Energialukema näytössä: 6+1 numeroa Mittaukset

Lisätiedot

Oikosulkumoottorikäyttö

Oikosulkumoottorikäyttö Oikosulkumoottorikäyttö 1 DEE-33030 Sähkömoottorikäytöt TTY Oikosulkumoottorikäyttö 1 Johdanto Mittauksista saatuja tuloksia katseltaessa kannattaa huomata, että käyttöpaneelista saatavat mittaustulokset

Lisätiedot

YLEISMITTAREIDEN KÄYTTÄMINEN

YLEISMITTAREIDEN KÄYTTÄMINEN FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

KÄYTTÖOPAS. Tarkkuuskosteus-lämpömittari. Malli RH490

KÄYTTÖOPAS. Tarkkuuskosteus-lämpömittari. Malli RH490 KÄYTTÖOPAS Tarkkuuskosteus-lämpömittari Malli RH490 Johdanto RH490-kosteus-lämpömittari mittaa kosteutta, ilman lämpötilaa, kastepistelämpötilaa, märkälämpötilaa ja vesihöyryn määrää ilmassa. Edistyneitä

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

KÄYTTÖ-OHJE EVERLAST

KÄYTTÖ-OHJE EVERLAST KÄYTTÖ-OHJE EVERLAST SUPER CUT 50 ESITTELY SUPER CUT-50 plasmaleikkureiden valmistuksessa käytetään nykyaikaisinta MOSFET invertteri tekniikka. Verkkojännitteen 50Hz taajuus muunnetaan korkeaksi taajuudeksi

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

215.3 MW 0.0 MVR pu MW 0.0 MVR

215.3 MW 0.0 MVR pu MW 0.0 MVR Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi

Lisätiedot

38-sarja - Relesovitinmoduulit 0, A Ominaisuudet

38-sarja - Relesovitinmoduulit 0, A Ominaisuudet Ominaisuudet 1-napaiset - 6 A sähkömekaaniset relesovitin-moduulit, leveys 6,2 mm. Ihanteellinen PLC- ja elektroniikkajärjestelmiin - Herkkäkelainen DC tai AC/DC-kelamallit - Integroitu ilmaisin- ja suojauspiiri

Lisätiedot

mm porausrasteri 2 napaa 8 A. 1 napa 16 A. Piirilevylle tai piirilevykantaan A = Näkymä juotospuolelta

mm porausrasteri 2 napaa 8 A. 1 napa 16 A. Piirilevylle tai piirilevykantaan A = Näkymä juotospuolelta .3 =.7.3 =.7.3 =.7 4-sarja - Matalat piirilevyreleet 8 - - 6 A Ominaisuudet - ja -napaiset - matalat, korkeus 5,7 mm 4.3 - napa A, rasteri 3,5 mm 4.5 - napaa 8 A, rasteri 5 mm 4.6 - napa 6 A, rasteri 5

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden

Lisätiedot

Oma nimesi Puolijohteet

Oma nimesi Puolijohteet Puolijohteet Puolijohdetekniikan perusteet Puolijohdeaineet Puolijohteet ovat oma selvä ryhmä johteiden ja eristeiden välissä. Puhtaista alkuaineista pii ja germanium käyttäytyvät puolijohteiden tavoin.

Lisätiedot

KÄYTTÖOHJE JA TUOTETIEDOT LUE KOKO KÄYTTÖOHJE ENNEN KÄYTTÖÄ -Säilytä ohje myöhempää käyttöä vartenv.1.0

KÄYTTÖOHJE JA TUOTETIEDOT LUE KOKO KÄYTTÖOHJE ENNEN KÄYTTÖÄ -Säilytä ohje myöhempää käyttöä vartenv.1.0 KÄYTTÖOHJE JA TUOTETIEDOT LUE KOKO KÄYTTÖOHJE ENNEN KÄYTTÖÄ -Säilytä ohje myöhempää käyttöä vartenv.1.0 Mitat P x L x K 480x289x100 DC / AC INVERTTERI 12V 2500W 230V AC 50Hz 1702-8571 Matkailuautot Husbilar

Lisätiedot

Aurinko-C20 asennus ja käyttöohje

Aurinko-C20 asennus ja käyttöohje Aurinko-C20 laitetelineen asennus ja käyttö Laitetelineen osat ja laitteet:. Kääntyvillä pyörillä varustettu laiteteline. Laitteet on kiinnitetty ja johdotettu telineeseen (toimitetaan akut irrallaan).

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

VLT HVAC Drive. VLT HVAC Drive 102 pikaohjeita

VLT HVAC Drive. VLT HVAC Drive 102 pikaohjeita VLT HVAC Drive 102 pikaohjeita VLT HVAC Drive 102 pikaohjeita s. 1-4 1. VLT HVAC Drive 102 ohjaus ulkopuolisella säätimellä s. 5 4. Huomioitavaa asennuksessa 1. HVAC Drive 102 ohjaus ulkopuolisella säätimellä

Lisätiedot

DEE Sähkötekniikan perusteet

DEE Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Theveninin ja Nortonin ekvivalentit, kuorman maksimiteho Luennon keskeinen termistö ja tavoitteet Theveninin ekvivalentti Nortonin ekvivalentti kuorman

Lisätiedot

KÄYTTÖ-OHJE EVERLAST

KÄYTTÖ-OHJE EVERLAST KÄYTTÖ-OHJE EVERLAST Power i_tig 201 HUOMIO! TAKUU EI KATA VIKAA JOKA JOHTUU LIAN AIHEUTTAMASTA LÄPILYÖNNISTÄ PIIRIKORTILLA/KOMPONENTEISSA. Jotta koneelle mahdollistetaan pitkä ja ongelmaton toiminta edellytämme

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Käyttölaite tyyppi ABNM-LOG/LIN AB-QM, 0-10 V, ohjausjännitteellä

Käyttölaite tyyppi ABNM-LOG/LIN AB-QM, 0-10 V, ohjausjännitteellä Käyttölaite tyyppi ABNM-LOG/LIN AB-QM, 0-10 V, ohjausjännitteellä Käyttökohteet Huonetermostaatti tai valvontajärjestelmä (DDC) ohjaa toimitaiteitta 0-10 V:n jännitteellä. Toimilaite muuntaa 0-10 V:n signaalin

Lisätiedot

Työn ohjaajana toimi DI Kimmo Rauma ja tarkastajina professori Pertti Silventoinen ja professori Olli Pyrhönen.

Työn ohjaajana toimi DI Kimmo Rauma ja tarkastajina professori Pertti Silventoinen ja professori Olli Pyrhönen. LAPPEENRANNAN TEKNILLINEN YLIOPISTO SÄHKÖTEKNIIKAN OSASTO IGBT:N KYTKENTÄVIIVEIDEN MITTAAMINEN Diplomityön aihe on hyväksytty Lappeenrannan teknillisen yliopiston sähkötekniikan osaston osastoneuvoston

Lisätiedot

VIANETSINTÄ - MICROMAX JA VVX-MOOTTORIT

VIANETSINTÄ - MICROMAX JA VVX-MOOTTORIT VIANETSINTÄ - MICROMAX JA VVX-MOOTTORIT SISÄLLYSLUETTELO SIVU VIANETSINTÄ MICROMAX, MICROMAX180, MICROMAX370, MICROMAX750 OHJAUSYKSIKKÖ ON LAUENNUT KIERTOVAHDIN JOHDOSTA MAGNEETTIANTURIN TARKISTUS (KOSKEE

Lisätiedot

KYTKENTÄOHJEET. MicroMax370

KYTKENTÄOHJEET. MicroMax370 KYTKENTÄOHJEET ROTAATIOLÄMMÖNVAIHTIMEN OHJAUSYKSIKKÖ MicroMax370 Tarkistettu 04-12-13 1.1 F21037902FI Valmistajan seloste Valmistajan vakuutus siitä, että tuote on EMC-DIREKTIIVIN 89/336/EEG ja sen lisäysten

Lisätiedot

RCL-vihtovirtapiiri: resonanssi

RCL-vihtovirtapiiri: resonanssi CL-vihtovirtapiiri: resonanssi Olkoon tarkastelun kohteena tavallinen LC-vaihtovirtapiiri. Piirissä on kolme komponenttia, ohmin vastus, L henryn induktanssi ja C faradin kapasitanssi. Piiriin syötettyyn

Lisätiedot

Pehmokäynnistimet. Tyyppi PSR. Uusi. Esite PSR1FI06_11 1SFC132003C1801

Pehmokäynnistimet. Tyyppi PSR. Uusi. Esite PSR1FI06_11 1SFC132003C1801 Pehmokäynnistimet Tyyppi PSR Esite PSR1FI06_11 1SFC132003C1801 Uusi ABB-pehmokäynnistimet Yleistä Vasemmalla: yhdistelmä, jossa on PSR ja moottorinsuojakytkin MS116 Yllä: PSR16, PSR30 ja PSR 45 *) Moottorin

Lisätiedot

Pienjännitekojeet. Tekninen esite. FuseLine Kahvasulakkeet OFAA, OFAM. Esite OF 1 FI 96-02. ABB Control Oy

Pienjännitekojeet. Tekninen esite. FuseLine Kahvasulakkeet OFAA, OFAM. Esite OF 1 FI 96-02. ABB Control Oy Tekninen esite Pienjännitekojeet FuseLine Kahvasulakkeet, OFAM Esite OF FI 96-0 ABB Control Oy 95MDN5447 Kahvasulakkeet ja OFAM gg -sulakkeet johdon ylikuormitus- ja oikosulkusuojaksi -sulakkeet on suunniteltu

Lisätiedot

EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003

EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 LABORATORIOTÖIDEN OHJEET (Mukaillen työkirjaa "Teknillisten oppilaitosten Elektroniikka";

Lisätiedot

KOMPONENTIT JA ERIKOISKAAPELIT 9

KOMPONENTIT JA ERIKOISKAAPELIT 9 HÄLYTYS- LAITTEET KOMPONENTIT JA ERIKOISKAAPELIT 9 SKS-automaatio Oy Martinkyläntie 50, PL 122, 01721 Vantaa, sähköposti: automaatio@sks.fi, faksi 852 6820, puh. *852 661 Etelä-Suomi Martinkyläntie 50

Lisätiedot

3-VAIHEISEN TYRISTORISUUNTAAJAN SUUNNITTELU JA TOTEUTUS

3-VAIHEISEN TYRISTORISUUNTAAJAN SUUNNITTELU JA TOTEUTUS 3-VAIHEISEN TYRISTORISUUNTAAJAN SUUNNITTELU JA TOTEUTUS Simo Rapo Opinnäytetyö Marraskuu 2014 Sähkötekniikka Sähkövoimatekniikka TIIVISTELMÄ Tampereen ammattikorkeakoulu Sähkötekniikka Sähkövoimatekniikka

Lisätiedot

Pienet sähkötoimilaitteet 90 käännöllä

Pienet sähkötoimilaitteet 90 käännöllä Pienet sähkötoimilaitteet 90 käännöllä Rotork-toimilaitteet Yksi toimilaitetekniikan johtavista valmistajista Rotork on luotettava ja tuotteet ovat pitkälle kehitettyjä. Rotorkilla on yli neljänkymmenen

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain

Lisätiedot

S Suurjännitetekniikka

S Suurjännitetekniikka S-18.3146 Suurjännitetekniikka Osittaispurkausten (PD) mittaukset Paikka: L308 Aalto ELEC 1 (6) Suurjännitetekniikka/PH/PT/SK 2015 Esiselostus 1. Luettele ja kuvaile erilaisia osittaispurkaustyyppejä.

Lisätiedot

Taitaja2007/Elektroniikka

Taitaja2007/Elektroniikka 1. Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä saatavaa virtaa b) rikkoo jännitelähteet c) pienentää kytkennästä saatavaa virtaa d) ei vaikuta jännitelähteistä saatavan virran suuruuteen 2.

Lisätiedot

DPA UPScale ST kw Luotettavaa sähkönsyöttöä ensiluokkaisella modulaarisella UPSjärjestelmällä

DPA UPScale ST kw Luotettavaa sähkönsyöttöä ensiluokkaisella modulaarisella UPSjärjestelmällä Kolmivaiheiset online modulaariset UPS-järjestelmät DPA UPScale ST 10 120 kw Luotettavaa sähkönsyöttöä ensiluokkaisella modulaarisella UPSjärjestelmällä Suuren järjestelmän edut keskitehon sovelluksiin

Lisätiedot