Klassisssa mekaniikassa määritellään liikemäärä p kl näin:

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Klassisssa mekaniikassa määritellään liikemäärä p kl näin:"

Transkriptio

1 Relativistinen liikemäärä Luento 3 Klassisssa mekaniikassa määritellään liikemäärä p kl näin: pkl = mv. Mekaniikan ilmiöissä on todettu olevan voimassa liikemäärän säilymisen laki: eristetyn systeemin vuorovaikutuksissa kappaleiden kokonaisliikemäärä eli kappaleiden liikemäärien summa ei muutu. Siis P i pkl + pkl +... = Pkl, f = pkl + pkl, kl, = +, i, i, f f jossa i viittaa liikemääriin vuorovaikutuksen alussa ja f lopussa. Tämä laki on yhä voimassa, jos nopeuksiin tehdään Galilein muutos, mutta Lorentzin muunnoksissa se ei säily...., Koetulokset osoittavat, että jos p kl korvataan relativistisella liikemäärällä p = mv v / c liikemäärän säilymisen laki pätee myös suurella nopeudella liikkuville kappaleille. Relativistista liikemäärää ei voi johtaa klassisesta fysiikasta vaan se määritellään näin. Kun v << c, p p kl. On tapana käyttää merkintää, γ = eli p=γ mv. v / c

2 Kun kappaleen nopeus lähestyy valonnopeutta c, relativistinen likkemäärä kasvaa rajatta ja sen suuruus on paljon suurempi kuin mv. Klassinenkin liikemäärä voi kasvaa rajatta, mutta se tapahtuu vain, kun nopeus v kasvaa rajatta. Relativistinen dynamiikka Klassisessa mekaniikassa dynamiikan peruslaki on Newtonin toinen laki p F = d kl = dt d dt mv. Sama laki pätee kokeiden mukaan relativistisille hiukkasille (kappaleille) edellyttäen, että liikemäärä korvataan relativistisella liikemäärällä: d F = dt mv v / c d = γ mv. dt Huomaa, että relativistisessa tapauksessa kiihtyvyys dv/dt ei ole aina voiman suuntainen vektori ( riippuu ajasta). Poikkeuksen muodostavat tilanteet, joissa kokonaisvoima F on kappaleen nopeuden suuntainen tai sitä vastaan kohtisuorassa.

3 Relativistinen työ ja energia Klassisen mekaniikan mukaan siirtymän suuntainen voima tekee siirtymässä x :stä x :een työn W x = x dx F. Relativistisessa tapauksessa työ on siis W x = dx F= x x x dx (- v ma / c ) 3/. Työ-energia-lauseen mukaan kappaleen kineettinen energia on yhtä suuri kuin se työ, jonka voima tekee kiihdyttäessään kappaleen levosta nopeuteen v. Integraalissa oleva adx voidaan kirjoittaa seuraavasti Tästä seuraa dv dx adx = dx= dv= vdv. dt dt K = W v mv = dv ( v / c 0 3 / ). Tämän voi integroida helposti muuttujan vaihdolla. Relatiiviseksi liike-energiaksi saadaan mc K = mc = ( γ ) mc v / c. 3

4 Kun v << c, voidaan kineettinen energia esittää kehitelmänä Lepoenergia 3mv K = mv + 8 c Ensimmäinen termi on sama kuin klassinen liike-energia, johon tulee alhaisen nopeuden tapauksessa vain pieni relativistinen korjaus. Liike-energian lausekkeessa (ed. sivu) on kaksi termiä, joista jälkimmäinen mc ei riipu lainkaan kappaleen nopeudesta. Sitä kutsutaan kappaleen lepoenergiaksi eli sisäenergiaksi: E 0 = mc. Lepoenergia Vapaan kappaleen kokonaisenergia on liike-energian ja lepoenergian summa: E = E + K = mc + K 0 eli E mc = = γ mc. Kokonaisenergia v / c Jos kappale (hiukkanen) on vuorovaikutuksessa toisten hiukkasten kanssa, kokonaisenergiaa tulee lisäksi vuorovaikutuksen potentiaalienergia. 4

5 Lepoenergia eli sisäinen energia E 0 =mc oli Einsteinin keksintö. Se on otettava huomioon energian säilymislaissa, mutta jos kappale tai hiukkanen pysyy vuorovaikutuksessa muuttumattomana, sisäinen energia säilyy muuttumattomana. Hiukkasten tapauksessa on kuitenkin tavallista, että hiukkaset muuttuvat vuorovaikutuksissa toisiksi hiukkasiksi ja silloin sisäinen energia on tärkeä. Jos raskas hiukkanen muuttuu keveymmiksi hiukkasiksi (esimerkiksi kun pioni hajoaa elektroniksi ja neutriinoksi), osa sen sisäisestä energiasta muuttuu kevyiden hiukkasten sisäiseksi energiaksi, osa niiden liike-energiaksi. K-mesoni Myoni Elektroni Pioni K π + π + π + + π µ + ν + µ e + µ + ν + ν e µ m K c = 494 MeV m c = 40 MeV m µ c = 06 MeV m e c = 0.5 MeV Jokaisessa hajoamisessa lepoenergiaa muuttuu liike-enegiaksi. 5

6 Ensimmäinen kokeellinen todiste sisäisestä energiasta saatiin v. 93. John Cockcroft ja Ernest Walton kiihdyttivät porrasgeneraattorilla protonin energiaan 700 kev ja hajottivat sillä litiumytimen: Osa litiumin sisäisestä energiasta muuttui heliumytimien liike-energiaksi. 7 4 H + 3Li He+ 4 He Liikemäärän ja energian kaavoista p = mv v / c, E = mc v / c Seuraa (p = p ) p ( mc ) v / c E =, = v / c ( mc ) v / c. Kun yhtälöt vähennetään toisistaan ja hieman säädetään, saadaan energian, liikemäärän ja massan välille relaatio E = ( mc ) + ( pc ). Relativistinen energiayhtälö 6

7 Kun kappale on levossa eli p = 0, sen energia on siis yhtä kuin sen lepoenergia E = E 0 = mc. Massattoman kappaleen energia on puolestaan E = pc. (Massaton kappale) Massattomiin kappaleisiin kuuluu esimerkiksi fotoni, sähkömagneettisen kentän kvantti. Neutriinoilla on hyvin pieni massa, joten useimmissa tilanteissa niidenkin energia on suurella tarkkuudella pc. Energia ja liikemäärä muodostavat Lorentzin muunnosten kannalta samantapaisen suureparin kuin aika ja paikka. Lorentzin muunnokset sekoittavat ne keskenään eli se, joka on toisessa koordinaatistossa energiaa, voi toisessa koordinaatistossa olla energiaa ja liikemäärää. Energia ja liikemäärä esitetään usein yhdessä ns. neliliikemääränä (E/c,p). Suhteellisuusteoriassa pätevät liikemäärän ja energian säilymislait, mutta jälkimmäisessä on huomioitava myös kappaleiden sisäiset energiat. Lyhyesti voidaan puhua neliliikemäärän säilymisestä. 7

8 Yleinen suhteellisuusteoria Vapaassa putoamisliikkeessä (paino ainoa vaikuttava voima) ei ole paikallisesti mahdollista minkään fysikaalisen ilmiön avulla osoittaa gravitaatiovoiman olemassaoloa. Gravitaatio voidaan eliminoida, mikä ilmenee siinä, että kaikilla kappaleilla on niiden massasta riippumatta sama kiihtyvyys g. Gravitaatiovoima ei olekaan tavallisessa mielessä voima vaan näennäisvoima. Sen voi hävittää siirtymällä sopivaan koordinaatistoon, vapaasti putoavan kappaleen lepokoordinaatistoon. Todellinen voima on olemassa koordinaatistosta riippumatta. Kaikki voimat, jotka ovat verrannollisia kappaleen massaan, kuten gravitaatiovoima ja keskipakovoima, ovat näennäisvoimia. Niitä tarvitaan, kun Newtonin mekaniikkaa halutaan soveltaa koordinaatistossa, joka ei ole inertiaalikoordinaatisto. Einsteinin hissiesimerkki osoittaa, että gravitaatiota ei voi erottaa kiihtyvyydestä: Einstein: Gravitaatio on avaruuden ominaisuus. Gravitaatio johtuu avaruuden geometrisesta rakenteesta, sen kaarevuudesta. 8

9 Avaruusaika on kaareutunut. Vapaa liike (ei voimia) seuraa avaruuden geodeettisia viivoja. Niitä pitkin matka paikasta toiseen on lyhin.,75 Auringonvalon taipuminen Auringon lähellä havaittiin 99. Gravitaatiolinssi-ilmiö, jossa edessä olevat taivaankappaleet toimivat taittavana linssinä takana olevasta kohteesta tulevalle valolle, on nykyään tuttu asia ja sitä käytettään mm. pimeän massan kartoitukseen. 9

10 Ajan kaareutuminen ilmenee niin, että kellon käynti on sitä hitaampaa mitä lähempänä ollaan jotain painavaa kappaletta. GPS-paikallistamislaitteissa pitää ottaa tämä huomioon. Toiseen suuntaan vaikuttaa GPS-satelliittien liikkeeseen liittyvä ajan dilaatio. Dilaatio: -7 s Heikompi painovoima: +45 s Satelliittien kellot edistävät 38 s päivässä Yleisen suhteellisuusteorian ennustuksia ovat myös mustat aukot. Hyvin raskaiden kappaleiden lähistöllä avaruus on niin kaareutunut, että kaikkien hiukkasten, fotonit mukaan luettuina, radat kaareutuvat takaisin. Kappaleen ympärillä on alue, josta ei tule mitään tietoa ulkomaailmaan. Tätä aluetta kutsutaan mustaksi aukoksi. Mustia aukkoja on nähty Linnunradassa useita, ja useimpien Galaksien keskellä on luultavasti hyvin suuri musta aukko. 0

11 Musta aukko voi syntyä mm. suuren tähden romahtaessa, kun ydinreaktiot sen keskellä lakkaavat ja säteilypaine ei enää vastusta gravitaation vaikutusta. Kaikki aine romahtaa yhteen pisteeseen, singulariteettiin. Galaksi M87 Yleinen suhteellisuusteoria ennustaa myös gravitaatioaallot. Niistä ei ole vielä kokeellisia todisteita. LIGO

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä

S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Luento 10 Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Tällä luennolla tavoitteena: Gravitaatio jatkuu Konservatiivinen voima Mitä eroa on energia-

Lisätiedot

Analyyttinen mekaniikka I periodi 2012

Analyyttinen mekaniikka I periodi 2012 Analyyttinen mekaniikka I periodi 2012 Luennot: Luennoitsija: Kurssin kotisivu: ma & to 10-12 (E204) Rami Vainio, Rami.Vainio@helsinki.fi http://theory.physics.helsinki.fi/~klmek/ Harjoitukset: to 16-18

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Energia, energian säilyminen ja energiaperiaate

Energia, energian säilyminen ja energiaperiaate E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman

Lisätiedot

Moderni fysiikka. Syyslukukausi 2008 Jukka Maalampi

Moderni fysiikka. Syyslukukausi 2008 Jukka Maalampi Moderni fysiikka Syyslukukausi 008 Jukka Maalampi 1 1. Suhteellisuus Galilein suhteellisuuus Fysiikan lakien suhteellisuus Suppea suhteellisuusteoria Samanaikaisuuden suhteellisuus Ajan dilaatio Pituuden

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson

Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa. Tapio Hansson Suhteellisuusteoriasta, laskuista ja yksiköistä kvantti- ja hiukkasfysiikassa Tapio Hansson Laskentoa SI-järjestelmä soveltuu hieman huonosti kvantti- ja hiukaksfysiikkaan. Sen perusyksiköiden mittakaava

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA

SUHTEELLISUUSTEORIAN TEOREETTISIA KUMMAJAISIA MUSTAT AUKOT FAQ Kuinka gravitaatio pääsee ulos tapahtumahorisontista? Schwarzschildin ratkaisu on staattinen. Tähti on kaareuttanut avaruuden jo ennen romahtamistaan mustaksi aukoksi. Ulkopuolinen havaitsija

Lisätiedot

Maailmankaikkeuden kriittinen tiheys

Maailmankaikkeuden kriittinen tiheys Maailmankaikkeuden kriittinen tiheys Tarkastellaan maailmankaikkeuden pientä pallomaista laajenevaa osaa, joka sisältää laajenemisliikkeessä olevia galakseja. Olkoon pallon säde R, massa M ja maailmankaikkeuden

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaist 5 Kevät 26. Aberraatio shteellissteoriassa a) Tlkoon valo kten tehtävän kvassa (x, y)-tason x, y > neljänneksestä: x ˆx + y ŷ c cos θ ˆx c sin θ ŷ. () Lorenz

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi

perushiukkasista Perushiukkasia ovat nykykäsityksen mukaan kvarkit ja leptonit alkeishiukkasiksi 8. Hiukkasfysiikka Hiukkasfysiikka kuvaa luonnon toimintaa sen perimmäisellä tasolla. Hiukkasfysiikan avulla selvitetään maailmankaikkeuden syntyä ja kehitystä. Tutkimuskohteena ovat atomin ydintä pienemmät

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

YLEINEN SUHTEELLISUUSTEORIA

YLEINEN SUHTEELLISUUSTEORIA YLEINEN SUHTEELLISUUSTEORIA suppean suhteellisuusteorian yleistys mielivaltaisiin, ei-inertiaalisiin koordinaatistoihin teoria painovoimasta lähtökohta: periaatteessa kahdenlaisia massoja F mia hidas,

Lisätiedot

Suhteellisuusteorian perusteet 2017

Suhteellisuusteorian perusteet 2017 Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaisut 5 Keät 23. Aberraatio suhteellisuusteoriassa Tulkoon alo kuten tehtään kuassa (x, y)-tason x, y > neljänneksestä: u u x ˆx + u y ŷ c cos θ ˆx c sin θ ŷ. ()

Lisätiedot

YLEINEN SUHTEELLISUUSTEORIA

YLEINEN SUHTEELLISUUSTEORIA YLEINEN SUHTEELLISUUSTEORIA suppean suhteellisuusteorian yleistys mielivaltaisiin, ei-inertiaalisiin koordinaatistoihin teoria painovoimasta lähtökohta: periaatteessa kahdenlaisia massoja F mia hidas,

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Suhteellisuusteorian vajavuudesta

Suhteellisuusteorian vajavuudesta Suhteellisuusteorian vajavuudesta Isa-Av ain Totuuden talosta House of Truth http://www.houseoftruth.education Sisältö 1 Newtonin lait 2 2 Supermassiiviset mustat aukot 2 3 Suhteellisuusteorian perusta

Lisätiedot

Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto

Hiukkasfysiikka. Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Hiukkasfysiikka Katri Huitu Alkeishiukkasfysiikan ja astrofysiikan osasto, Fysiikan laitos, Helsingin yliopisto Nobelin palkinto hiukkasfysiikkaan 2013! Robert Brout (k. 2011), Francois Englert, Peter

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

Sisällysluettelo. Alkusanat 11. A lbert E insteinin kirjoituksia

Sisällysluettelo. Alkusanat 11. A lbert E insteinin kirjoituksia Sisällysluettelo Alkusanat 11 A lbert E insteinin kirjoituksia Erityisestä ja yleisestä su hteellisuusteoriasta Alkusanat 21 I Erityisestä suhteellisuusteoriasta 23 1 Geometristen lauseiden fysikaalinen

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa

SUPER- SYMMETRIA. Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa SUPER- SYMMETRIA Robert Wilsonin Broken Symmetry (rikkoutunut symmetria) Fermilabissa USA:ssa Teemu Löyttinen & Joni Väisänen Ristiinan lukio 2008 1. Sisällysluettelo 2. Aineen rakenteen standardimalli

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

Lataa Maailmanviiva - Jukka Maalampi. Lataa

Lataa Maailmanviiva - Jukka Maalampi. Lataa Lataa Maailmanviiva - Jukka Maalampi Lataa Kirjailija: Jukka Maalampi ISBN: 9789525329513 Sivumäärä: 221 Formaatti: PDF Tiedoston koko: 28.94 Mb Sata vuotta sitten Albert Einstein ilmestyi kuin tyhjästä

Lisätiedot

Suhteellisuusteoria. Jouko Nieminen Tampereen Teknillinen Yliopisto Fysiikan laitos

Suhteellisuusteoria. Jouko Nieminen Tampereen Teknillinen Yliopisto Fysiikan laitos Suhteellisuusteoria Jouko Nieminen Tampereen Teknillinen Yliopisto Fysiikan laitos Ketkä pohjustivat modernin fysiikan? Rømer 1676 Ampere Fizeau 1849 Young 1800 Faraday Michelson 1878 Maxwell 1873 Hertz

Lisätiedot

Vuorovaikutuksien mittamallit

Vuorovaikutuksien mittamallit Vuorovaikutuksien mittamallit Hiukkasten vuorovaikutuksien teoreettinen mallintaminen perustuu ns. mittakenttäteorioihin. Kenttä viittaa siihen, että hiukkanen kuvataan paikasta ja ajasta riippuvalla funktiolla

Lisätiedot

Kvarkeista kvanttipainovoimaan ja takaisin

Kvarkeista kvanttipainovoimaan ja takaisin 1/31 Kvarkeista kvanttipainovoimaan ja takaisin Niko Jokela Hiukkasfysiikan kesäkoulu Helsinki 18. toukokuuta 2017 2/31 Säieteorian perusidea Hieman historiaa 1 Säieteorian perusidea Hieman historiaa 2

Lisätiedot

763306A Johdatus suhteellisuusteoriaan 2 Kevät 2013 Harjoitus 1

763306A Johdatus suhteellisuusteoriaan 2 Kevät 2013 Harjoitus 1 763306A Johdatus suhteellisuusteoriaan 2 Kevät 2013 Harjoitus 1 1. Koordinaatiston muunnosmatriisi a) Osoita että muunnos x = x cos φ + y sin φ y = x sin φ + y cos φ (1) kuvaa x y tason koordinaatiston

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Liikemäärä ja voima 1

Liikemäärä ja voima 1 Liikemäärä ja voima 1 Tällä luennolla tavoitteena Kinematiikan ongelma ja sen ratkaisu: Miten radan ja nopeuden saa selville, jos kappaleen kiihtyvyys tunnetaan? Analyyttinen ratkaisu Liikemäärän, voiman

Lisätiedot

Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9

Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9 : Valtteri Lindholm (Helsingin Yliopisto) Horisonttiongelma 21.11.2013 1 / 9 Horisonttiongelma Valtteri Lindholm Helsingin Yliopisto Teoreettisen fysiikan syventävien opintojen seminaari Valtteri Lindholm

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria

Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria Fysiikkaa runoilijoille Osa 5: kvanttikenttäteoria Syksy Räsänen Helsingin yliopisto, fysiikan laitos ja fysiikan tutkimuslaitos www.helsinki.fi/yliopisto 1 Modernin fysiikan sukupuu Klassinen mekaniikka

Lisätiedot

Neutriino-oskillaatiot

Neutriino-oskillaatiot Neutriino-oskillaatiot Seminaariesitys Joonas Ilmavirta Jyväskylän yliopisto 29.11.2011 Joonas Ilmavirta (JYU) Neutriino-oskillaatiot 29.11.2011 1 / 16 Jotain vikaa β-hajoamisessa Ytimen β-hajoamisessa

Lisätiedot

JOHDATUS SUHTEELLISUUSTEORIAAN

JOHDATUS SUHTEELLISUUSTEORIAAN JOHDATUS SUHTEELLISUUSTEORIAAN Esko Suhonen Fysikaalisten tieteiden laitos Oulun yliopisto 2001, pienin korjauksin 2010 Sisältö 1 SUHTEELLISUUSTEORIAN SYNTY 2 11 Newtonin mekaniikan peruslait ja Newtonin

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Ensimmäisen luennon aihepiirit Auringonsäteily: Auringon säteilyintensiteetin mallintaminen: mustan kappaleen säteily Sähkömagneettisen säteilyn hiukkasluonne: fotonin energia Aurinkovakio

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014

Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 Opetusesimerkki hiukkasfysiikan avoimella datalla: CMS Masterclass 2014 CERN ja LHC LHC-kiihdytin ja sen koeasemat sijaitsevat 27km pitkässä tunnelissa noin 100 m maan alla Ranskan ja Sveitsin raja-alueella.

Lisätiedot

5 Kentät ja energia (fields and energy)

5 Kentät ja energia (fields and energy) 5 Kentät ja energia (fields and energy) Mansfield and O Sullivan: Understanding Physics, kappaleen 5 alkuosa 5.1 Newtonin gravitaatiolaki Newton: vetovoima kahden kappaleen välillä on tai tarkemmin F m

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään

Lisätiedot

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Luku 7 Sähkömagneettinen induktio Toistaiseksi on tarkasteltu vain ajasta riippumattomia kenttiä. Ne voi mainiosti kuvitella kenttäviivojen avulla, joten emme ole törmänneet mihinkään, mikä puolustaisi

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset

Lisätiedot

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan

Lisätiedot

Todennäköisyys ja epämääräisyysperiaate

Todennäköisyys ja epämääräisyysperiaate Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain

Lisätiedot

8 Suhteellinen liike (Relative motion)

8 Suhteellinen liike (Relative motion) 8 Suhteellinen liike (Relative motion) 8.1 Inertiaalikoordinaatistot (Inertial reference of frames) Newtonin I laki on II lain erikoistapaus. Jos kappaleeseen ei vaikuta ulkoisia voimia, ei kappaleen liikemäärä

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

Luvun 13 laskuesimerkit

Luvun 13 laskuesimerkit Luvun 13 laskuesimerkit Esimerkki 13.1 Olkoon Cavendishin vaa'an pienen pallon massa m 1 = 0.0100 kg ja suuren pallon m 2 = 0.500 kg (molempia kaksi kappaletta). Miten suuren gravitaatiovoiman F g pallot

Lisätiedot

JOHDATUS SUHTEELLISUUSTEORIAAN

JOHDATUS SUHTEELLISUUSTEORIAAN JOHDATUS SUHTEELLISUUSTEORIAAN Erkki Thuneberg Fysiikan laitos Oulun yliopisto 2016 Järjestelyjä Johdatus suhteellisuusteoriaan -kurssi on jaettu kahteen osaan, 1 ja 2. Osa 1 käsittää tämän monisteen luvut

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

2r s b VALON TAIPUMINEN. 1 r. osittaisdifferentiaaliyhtälö. = 2 suppea suht.teoria. valo putoaa tähteen + avaruus kaareutunut.

2r s b VALON TAIPUMINEN. 1 r. osittaisdifferentiaaliyhtälö. = 2 suppea suht.teoria. valo putoaa tähteen + avaruus kaareutunut. MUSTAT AUKOT FAQ Miten gravitaatio pääsee ulos tapahtumahorisontista? massa ei sylje gravitaatiota kuin tennispalloja. Tähti on käyristänyt avaruuden jo ennen romahtamistaan mustaksi aukoksi, eikä tätä

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Alkeishiukkaset. Standarimalliin pohjautuen:

Alkeishiukkaset. Standarimalliin pohjautuen: Alkeishiukkaset Alkeishiukkaset Standarimalliin pohjautuen: Alkeishiukkasiin lasketaan perushiukkaset (fermionit) ja alkeishiukkasbosonit. Ne ovat nykyisen tiedon mukaan jakamattomia hiukkasia. Lisäksi

Lisätiedot