3/2014. Tähtitieteellinen yhdistys Tampereen Ursa ry.

Koko: px
Aloita esitys sivulta:

Download "3/2014. Tähtitieteellinen yhdistys Tampereen Ursa ry."

Transkriptio

1 Radiantti 3/2014 Tähtitieteellinen yhdistys Tampereen Ursa ry.

2 Kansikuva Radiantti Tampereen Ursa ry:n jäsenlehti 3/2014 Aurinko on saavuttanut aktiivisuusmaksiminsa ja ensimmäiset merkit aktiivisuuden vähenemisestä nähtiin heinäkuussa (2014). Heinäkuun alkupuoli oli runsaiden pilkkuryhmien ja pilkkujen aikaa, mutta pudotus oli nopeaa tultaessa kuukauden jälkipuoliskolle. Ensimmäinen täysin pilkuton vuorokausi nähtiin parisen viikkoa kuvan ottamisen ( ) jälkeen. Tekniset tiedot: kaukoputki Ikharos (102/714 mm), Astrosolar-suodin, kamera Imaging Source DMK 41AU02.AS ja 2 barlow. Radiantti Tähtitieteellinen yhdistys Tampereen Ursa ry:n jäsenlehti 31. vuosikerta Julkaisija Tampereen Ursa ry. PL. 18, Tampere Toimitus Päätoimittaja Kari A. Kuure kari.kuure@tampereenursa.fi Radiantti ilmestyy neljä kertaa vuodessa: helmi-, touko-, elo- ja marraskuussa. Toimitukselle osoitettu aineisto tulee olla perillä ilmestymiskuukauden ensimmäisenä päivänä. Lehdessä julkaistuista kirjoituksista ja kuvista ei makseta käyttökorvauksia. 2

3 Sisällyluettelo Radiantti Tampereen Ursa ry:n jäsenlehti 3/2014 Astromatkailua Arizonassa... 5 Arizona tarjoaa tähtitieteen harrastajille useita näkemisen arvoisia kohteita, joista kaksi tunnetuinta lienevät Percival Lowellin perustama observatorio Flagstaffissa ja maailman parhaiten säilynyt törmäyskraatteri, Meteor Crater, noin 50 km Flagstaffista itään. Kesälomaamme kuului automatka Yhdysvalloissa, ja Grand Canyon -vierailun yhteyteen oli luontevaa sovittaa myös nämä kaksi muuta mielenkiintoista nähtävyyttä. Artikkelin tässä osassa kerron Lowellista ja hänen observatoriostaan. Astromatkailua Arizonassa Arizona tarjoaa tähtitieteen harrastajille useita näkemisen arvoisia kohteita, joista kaksi tunnetuinta lienevät Percival Lowellin perustama observatorio Flagstaffissa ja maailman parhaiten säilynyt törmäyskraatteri, Meteor Crater, noin 50 km Flagstaffista itään. Kesälomaamme kuului automatka Yhdysvalloissa, ja Grand Canyon -vierailun yhteyteen oli luontevaa sovittaa myös nämä kaksi muuta mielenkiintoista nähtävyyttä. Artikkelin tässä osassa kerron kraatterista, joka maallikosta näyttää selkeästi meteoriittitörmäyksen aiheuttamalta, mutta jonka alkuperästä tiedeyhteisö väitteli vielä 1960-luvulle asti. Aurinkoa kuvaamassa Auringon valokuvaamisella Tampereen Ursassa on jo vuosien perinteet. Viime vuosikymmenellä hankimme ensimmäisten joukossa silloin uuden laitevalmistajan Lunt Solarsystemsin valmistaman LS60T H-alfa -kaukoputken. Se on ollut ahkerassa käytössä tähän vuoteen asti. Kokemukset kaukoputken käytöstä olivat niin hyvät, että uskalsimme hankkia tänä vuonna saman valmistajan jo paljon kehittyneemmän ja suurikokoisemman version tyyppimerkinnältään LS100T H-alfa. Ennakko-odotukset olivat suuret laitteen suorituskyvystä, mutta kukaan ei arvannut kuinka erinomainen laite on kyseessä. Syyskauden tähtitaivas Syksyn tähtitaivas voi tarjota hyviä havaintomahdollisuuksia aina vain pidempää pimeänä pysyttelevälle taivaalle. Etenkin alkusyksy syyskuussa voi olla antoisinta aikaa: tähtitaivas on niin pimeä kuin vain mahdollista ja lämpötila pysyttelee aika mukavissa lukemissa. Lokakuussa sää käy aina vain epävakaisemmaksi. so. pilvisemmäksi, ja lämpötila saattaa tipahtaa jo pakkaselle. Marraskuussa on sitten jo selkeästi talvityypin säätilat vallitsevia ja taivas pysyttelee pilvisenä ja sateisena viikkoja. 3

4 Tornin vierestä Romahtaa, ei romahda, romahtaa... Makeita munkkeja ontujalle. Juice avaruuteen. Kuu ei upota. Ensimmäinen koira Kuussa kootut kolumnit Tampereen Ursa ry. tiedottaa Tampereen Ursa ry:n yhteistyökumppanit

5 Astromatkailua Arizonassa Pekka Rautajoki Osa 1 Arizona tarjoaa tähtitieteen harrastajille useita näkemisen arvoisia kohteita, joista kaksi tunnetuinta lienevät Percival Lowellin perustama observatorio Flagstaffissa ja maailman parhaiten säilynyt törmäyskraatteri, Meteor Crater, noin 50 km Flagstaffista itään. Kesälomaamme kuului automatka Yhdysvalloissa, ja Grand Canyon -vierailun yhteyteen oli luontevaa sovittaa myös nämä kaksi muuta mielenkiintoista nähtävyyttä. Artikkelin tässä osassa kerron Lowellista ja hänen observatoriostaan. Barringerin kraatteri Arizonassa. Artikkelin kaikki kuvat Pekka Rautajoki. 5

6 Marsin kanavat alkusysäyksenä observatoriolle Lowellin observatorioon liittyvät erottamattomina kaksi aurinkokuntamme kohdetta: Mars ja Pluto. Observatorion siemenet kylvettiin, kun varakas bostonilaisliikemies ja innokas tähtiharrastaja Percival Lowell kuuli italialaistähtitieteilijä Giovanni Schiaparellin havainneen Marsin pinnalla kanavien kaltaisia muodostelmia luvun lopun Mars-kartoissa oli jo aiemminkin kuvattu maankaltainen planeetta napajäätiköineen, merineen, järvineen ja mantereineen, mutta Schiaparellin havainnot olivat Lowellille viimeinen sysäys hän päätti sijoittaa rahojaan omaan huippuobservatorioon. Päätökseen vaikutti myös valitettava käännösvirhe italiasta englantiin; Schiaparellin raporteissa käytettiin sanaa canali, joka viittaa luonnonmukaiseen kanaaliin tai uraan ja jolle oikea englanninkielen sana olisi ollut channel. Se kuitenkin käännettiin muotoon canal, joka puolestaan viittasi keinotekoiseen alkuperään ja älykkääseen kanavanrakentajasivilisaatioon. Lowell lähetti avustajansa Andrew Douglassin Yhdysvaltojen lounaisosiin etsimään aavikkoiselta alueelta sopivaa paikkaa observatoriolle. Flagstaffissa oli havaintojen mukaan paras seeing, eli rauhallisin ilmakehä, verrattuna muihin ehdokkaisiin kuten Tombstone, Tucson, Tempe ja Prescott. Niinpä vuonna 1893, vuotta ennen Marsin suotuisaa oppositiota, Flagstaffin läheisellä kukkulalla aloitettiin rakennustyöt. Tämä metriä merenpinnan yläpuolelle ulottuva paikka nimettiin myöhemmin Mars-kukkulaksi. Observatorion pääkaukoputki, Alvin Clarkin rakentama 24-tuumainen linssikaukoputki eli refraktori, valmistui kuitenkin vasta vuonna Sitä ennen Lowell havainnoi Mars-planeettaa lainatuilla 18 ja 12-tuumaisilla refraktoreilla. Haasteita sään ja seeingin kanssa Väliaikaisille putkille oli rakennettu Massachusettsissa tähtitieteilijä William Pickeringin suunnittelema kupu, joka kuljetettiin Flagstaffiin osina (eräs Flagstaffin valintaa observatorion paikaksi puolsi myös sijainti rautatien varrella). Ensivalot uudella, 24-tuumaisella putkella saatiin 23. heinäkuuta vuonna Väliaikainen, halkaisijaltaan 34-jalkainen kupu, oli 32 jalkaa pitkälle refraktorille selkeästi liian pieni ja joissakin asennoissa putken linssipää itse asiassa työntyi kuvun luukkujen ulkopuolelle. Paikalliset Sykesin veljekset omistivat Flagstaffissa polkupyöräkorjaamon, ja mainostivat pystyvänsä rakentamaan ja korjaamaan mitä tahansa. He saivat Lowellilta tehtäväksi rakentaa uuden, suuremman observatoriokuvun uudelle putkelle. Kuvun tuli olla kevytrakenteinen, joten materiaaliksi valittiin paikallinen mäntypuu. Ponderosa-männyistä sahatut lankut eivät kuitenkaan olleet kovin tukevia tai kestäviä, joten perinteisen puolipallon sijaan valmis kupu muistuttaa ylösalaisin käännettyä sankoa. Vuoden 1894 talvella Flagstaffin sääolot olivat erittäin huonot, ja Lowell oli vähällä siirtää observatorionsa pysyvästi Meksikoon Lowell rakennutti kuvun seinät lähelle Mexico Cityä, ja siirrätti sekä 24-tuumaisen refraktorin että Sykesin veljesten rakentaman kuvun sinne joulukuussa Flagstaffissa oli sitä ennen hirtehishuumorilla kehitetty uusi seeing-asteikko huonoimmasta, ykkösestä, parhaaseen eli kymppiin, joka saavutettiin, kun pystyttiin näkemään Kuu. Viitosen seeingissä nähtiin kaukoputki, ja ykkösen seeingissä lumisade oli niin ankara, että havaitsija ainoastaan tunsi kaukoput- Clark-kupu ulkoa. 6

7 ken kosketuksella, muttei enää nähnyt sitä! Meksikon talvi oli armeliaampi, mutta suurin osa Mars-havainnoista Meksikon-observatoriossa tehtiin itse asiassa päiväsaikaan, koska seeing oli silloin yötä parempi mutta kuitenkin, yleisesti niin paljon Flagstaffia huonompi, että jo huhtikuussa 1897 Lowell pakkasi tavaransa junaan ja siirsi refraktorin ja kuvun takaisin Yhdysvaltoihin. Kokeiluja pyöritysmekanismien kanssa 24-tuumaisen refraktorin kuvun alla oli alun perin 24 rautapyörää, jotka liikkuivat seinän yläreunassa olevaa puista kiskoa pitkin. Uudelleen Flagstaffissa koottu kupu liikkui kuitenkin todella huonosti; seinät joustivat, kuvun purkaminen ja kokoaminen olivat luultavasti muuttaneet sen muotoa hieman, ja kuvun alkuperäisten kangasseinien korvaaminen puu- ja alumiiniosilla lisäsi sen painoa. Niinpä kuvun liikuttelu vetovaijereita kiskomalla vaati yleensä kaksi henkilöä. Ratkaisuksi keksittiin kelluttaa kupu veden varassa; puinen kisko korvattiin alumiinisella kaukalolla, joka täytettiin jäätymisen estämiseksi suolavedellä. Kupuun puolestaan kiinnitettiin lukuisia kolmemetrisiä ponttoneja. Kun kourun vuodot oli tukittu, järjestelmä toimi mainiosti parin päivän ajan kunnes yön ja päivän lämpötilaeroista johtuvat laajenemiset ja supistumiset rikkoivat kourun saumat. Myös ponttonit vuotivat ja vaikka kouru vuorattiin lyijyllä ja ponttonit suurelta osin kuparilla, jatkuva huoltaminen ja kuparin kalleus lopulta johtivat kelluntasysteemin poistamiseen. Vanhat rautapyörät palautettiin; tällä kertaa ne liikkuivat rautakiskon päällä, ja pyöritys tapahtui sähkömoottorilla tosin alkuaikoina sähkö saatiin pyörivässä kuvussa olevalle moottorille rajallisen mittaisella johdolla, joka piti aina siirtää pistorasiasta toiseen, mikäli kupua liikuteltiin tarpeeksi paljon luvun lopulla rautapyörät ja roikkuva sähköjohto korvattiin vielä nykyisinkin käytössä olevalla pyörityskoneistolla: kupu lepää nyt 24 Clark-refraktorin kupu sisältä. Huomaa liikuteltava, kookas havaintoistuin. vuosimallin 1954 Ford Pickupin autonrenkaan päällä! Kolmea rengasta pyörittää erillinen moottori, ja 21 rengasta pyörii vapaasti. Renkaanvaihtojakin joskus tarvitaan kupu nostetaan silloin tunkilla ylös aivan kuten autotkin. Vuoden 1956 renkaita ei tietenkään enää löydy kovin helposti, joten observatorio käyttää erään teksasilaisyrityksen vanhan renkaan mallin mukaisella muotilla valamia uustuotantorenkaita. Lowell ja Marsin kanavat Lowell havainnoi Marsia 22 vuoden ajan, ja vakuuttui kanavien todellisuudesta. Hän piirsi useita, tarkkoja Marskarttoja, ja päätteli planeetanlaajuisista kanavista, että Marsissa täytyy olla globaali hallinto, ja hän jopa arveli Marsin pääkaupungin todennäköisen paikan olevan useiden suurten kanavien risteyskohdassa. Lowell oli etevä tieteen popularisoija, ja hänen kirjojansa luettiin laajalti. Marsin kanavien suosiota selitti myös se, että 1800-luvun lopulla ja 1900-luvun alussa maapallolla oli laajoja kanavaprojekteja Suezin kanava valmistui 1869 ja Panaman kanava vuonna Syystä tai toisesta Marsin kanavat eivät koskaan kuitenkaan ikuistuneet va- 7

8 lokuvalevyille, minkä Lowell selitti johtuvan seeingistä ja pitkistä valotusajoista, joten vain harjaantunut silmä pystyi näkemään kanavat hetkittäisen ilmakehän rauhoittumisen aikana. Osa Lowellin aikalaisista pystyi myös näkemään kanavat, osa taas ei ja vasta vuonna 1971 Mariner 9 luotaimen kuvat Marsin kiertoradalta osoittivat, että mitään kanavia ei oikeasti ollut olemassa. Jälkeenpäin virheellisiä havaintoja on selitetty jonkinlaisena silmän ja aivojen yhteistyön aiheuttamana illuusiona, tai yksinkertaisesti siten, että tutkijat, jotka olivat vakuuttuneet kanavien olemassaolosta, myös näkivät, mitä he halusivatkin nähdä. Vesto Slipher ja spiraalisumujen arvoitus Lowell ei ollut ainoa kuuluisa tähtitieteilijä, joka teki 24-tuumaisella Clark-refraktorilla havaintoja valitettavan usein Marsin kanavahavaintojen alle unohtuvat tieteellisesti paljon merkittävämmät putkella tehdyt havainnot kaukaisemmista kohteista. Vuonna 1901 Percival Lowell palkkasi väliaikaiseksi assistentiksi maatilan pojan Indianasta tämä apulainen oli Vesto Melvin Slipher, jonka ensimmäisiin tehtäviin kuului opetella käyttämään observatorion uutta spektrograafia. Slipherin havainnot useista spiraalisumuista näyttivät, että kohteiden spektriviivat ovat voimakkaasti siirtyneet kohti spektrin punaista päätä. Tämä puolestaan osoitti, että sumut etääntyvät meistä hämmästyttävän suurilla nopeuksilla Slipherin laskujen mukaan noin 300 kilometriä sekunnissa luvulla Edwin Hubble jatkoi Slipherin havaintoja omalla tahollaan, ja osoitti näiden kohteiden olevan kaukaisia galakseja, ja myöskin sen, että maailmankaikkeus laajeni. Slipherin havainto on luultavasti tieteellisesti kaikkein merkittävin, mitä Lowellin observatoriossa on tehty. Mielenkiintoinen yksityiskohta on, että observatorio hankki spektrograafin miltei vahingossa. Kun Lowell ja Andrew Douglass olivat palauttamassa lainassa ollutta 18-tuumaista refraktoria omistajalleen, instrumenttivalmistaja John Slipher ja hänen havaintojaan. Hänen käyttämänsä spektrograafi näkyy lasikaapin alahyllyllä vasemmalla. 8

9 Brashearille vuonna 1895, he halusivat puhdistaa putken linssin. Lähettipoika laitettiin asialle ostamaan pullo hyvää alkoholia ( good alcohol ), mutta hän ymmärsi tai kuuli väärin, ja osti puualkoholia ( wood alcohol ). Se kuivui linssin kuperalle pinnalle aivan liian nopeasti, ja syövytti pyöreän jäljen. Rahallisen kompensaation sijaan Lowell suostuteltiin tekemään kallis instrumenttitilaus, ja Brashear rakensi observatoriolle spektrograafin. Planeetta X Huolimatta Slipherin galaksihavainnoista, Lowellin observatorion tunnetuin tieteellinen löytö on nykyisin kääpiöplaneetaksi luokiteltu Pluto. Lowell itse oli kiinnostunut löytämään Neptunuksen tuolta puolen planeetta X:ksi nimetyn kohteen, jonka hän laskelmiensa pohjalta uskoi aiheuttavan pieniä häiriöitä Neptunuksen liikkeeseen radallaan. Lowell teki vuosina useita etsintöjä, kuitenkin tuloksetta. Vesto Slipheristä tuli observatorion johtaja Lowellin kuoleman jälkeen, ja vuonna 1929 Slipher palkkasi kansaslaisen 22-vuotiaan tähtiharrastajan Clyde Tombaughin apulaiseksi planeetta X:n etsintään. Tombaughin tehtäviin kuuluivat etsintäputken, 13-tuumaisen refraktorin (tai oikeammin astrograafin) käytön lisäksi observatorion lämmityksestä ja vierailijakierroksista huolehtiminen. Planeettajahdissa Tombaugh otti kaksi valokuvaa tutkimusalueesta muutaman päivän välein, ja vertaili kuvia laitteella, jossa liikkuvan peilin avulla kuvia katseltiin okulaarin läpi nopeasti vuorotellen. Muutoin samanlaisissa kuvissa taustatähtiä vasten edestakaisin liikkuva piste oli kohtuullisen helppo havaita. Vuoden 1930 tammikuun 23. ja 29. päivän iltoina otettujen valokuvalevyjen himmeässä loisteessa yksi piste teki odotettua edestakaista liikettä yhdeksäs planeetta oli löytynyt! Löytö julkistettiin virallisesti maaliskuun 13. päivänä, jolloin Lowellin syntymästä oli kulunut päivälleen 75 vuotta. Uudelle planeetalle sateli nimiehdotuksia; Lowellin leski esimerkiksi ehdotti nimeä Percival, ja myös Lowell, Minerva, Zeus, Artemis ja Atlas olivat vaihtoehtojen joukossa. Englantilaisen 11-vuotiaan koululaisen, Venetia Burneyn, isoisän luettua aamiaispöydässä löytöuutista, Venetia ehdotti nimeksi Plutoa, klassisen mytologian manalan jumalaa, josta hän oli lukenut koulussa. Hänen isoisänsä Falconer Madan oli entinen kirjastonhoitaja, ja hän tunsi useita tähtitieteilijöitä, mm. entisen kuninkaallisen tähtitieteilijän Herbert Hall Turnerin. Madan kertoi Venetian ehdotuksesta Turnerille, joka puolestaan sähkötti ehdotuksen Lowellin observatorioon. Amerikkalaiset eivät ehkä olisi Plutoa ehdottaneet 1930-luvun alussa Pluto oli suositun ulostuslääkkeen nimi! Pluto kuitenkin valittiin se sopi hyvin kuvaamaan kaukaista ja jäistä kohdetta, ja mytologian Pluto oli myös Jupiterin ja Neptunuksen veli. Lisämausteensa nimeämiselle antaa se, että Venetian isosetä Henry Madan oli aiemmin saanut kunnian nimetä Marsin kuut Phobosin ja Deimosin. Toinen näppärä sattuma oli Pluton lyhenne, päällekkäiset kirjaimet P ja L, jotka ovat myös Percival Lowellin nimikirjaimet. Planeetta Pluto puolestaan antoi nimen plutonium vuonna 1941 löydetylle uudelle alkuaineelle, jolla oli ytimessään 94 protonia. Nimi oli luonteva jatkumo vuonna 1789, kahdeksan vuotta sen jälkeen kun Herschel löysi Uranuksen, nimettiin raskain luonnossa esiintyvä alkuaine (järjestysluvulla 92) uraaniksi, ja vain vuosi ennen plutoniumin 9 Pluto-teleskooppi valmiina 35x42.5 cm valokuvauslevyä varten. Valotukset olivat tyypillisesti tunnin mittaisia.

10 nimeämistä sai alkuaine numero 93 nimen neptunium. Planeetta Pluton ja Mikki Hiiren koiran nimen välistä yhteyttä ei ole aukottomasti todennettu, mutta on varsin todennäköistä, että vuosi Pluton löytämisen jälkeen Plutona esiintynyt koira on Walt Disneyn mielessä saanut nimivaikutusta mieluummin amerikkalaisen tähtitieteilijän löytämästä planeetasta kuin suositusta laksatiivista! Kansainvälinen tähtitieteellinen unioni määritteli Pluton kääpiöplaneetaksi vuonna 2006; kuusi vuotta aiemmin New Yorkin planetaariossa Pluto oli jo luokiteltu Neptunuksen takaisten Kuiperin vyöhykkeen jäisten pikkukappaleiden joukkoon yhdysvaltalaislasten suureksi mielipahaksi. Lowellin observatorion tähtitieteilijät puolestaan ymmärtävät Pluton uuden statuksen hyvin pienimmän planeetan statuksen sijaan Pluto on nyt Kuiperin vyöhykkeen kuningas! Lowellin observatorio - kolme kampusta Nykyisin Lowellin observatoriolla on kaukoputkia kolmessa eri paikassa Flagstaffin ympäristössä. Historiallinen, alkuperäinen observatorio Flagstaffin kupeessa toimii lähinnä yleisökeskuksena, ja suurin osa varsinaisesta tutkimustyöstä tehdään kahdella uudemmalla kampuksella muutaman kymmenen kilometrin päässä kaupungin valosaasteesta 42 ja 72-tuumaisilla optisilla kaukoputkilla. Lowellin observatorion kaukaisemmilla kampuksilla on myös Yhdysvaltojen laivaston observatorion kanssa rakennettu optinen interferometri, ja Discovery Channel-TV-kanavan tuottajayhtiön osin rahoittama 4,3 metrin The Discovery Channel Telescope (DCT). Vierailu historiallisella, Mars-kukkulaksi nimetylle vuorelle rakennetulla historiallisella observatoriokampuksella alkaa Steele-vierailijakeskuksesta. Se kantaa arizonalaisen pariskunnan Horace ja Ethel Steelen nimeä, sillä keskus on rakennettu pääosin Steelen säätiön rahoituksella. Keskuksessa oli vierailuaikaan myös Hubble-avaruuskaukoputkesta ja sen havainnoista kertova näyttely. Pääsymaksu sisältää osallistumisen yhdelle tai useammalle opastetulle kierrokselle observatorion alueella, ja vierailupäivän ensimmäinen kiertokävely keskittyi nimenomaan Lowellin Mars- Lowellin mausoleumi. 10

11 havaintoihin ja observatorion varhaiseen historiaan. Matkalla 24-tuumaisen Clark-kaukoputken kupolille ohitimme Lowellin mausoleumin, jonne observatorion perustaja haudattiin hänen kuoltuaan vuonna Valitettavasti vierailumme aikana 24-tuumainen refraktori oli huollossa, joten sen ekvatoriaalinen jalusta nökötti kuvun keskellä vailla sen tavallista kuormaa kaukoputkea, jota pidetään laajalti yhtenä maailman hienoimmista linssikaukoputkista. Putki on muutoin edelleen aktiivikäytössä, ja vierailupäivämme oli täysin pilvetön mikäli putki olisi ollut paikallaan, observatoriossa olisi ollut mahdollista omin silmin havaita Mars-planeettaa samalla instrumentilla kuin Percival Lowell. Toisaalta, tiukka aikataulumme ei olisi mahdollistanut moista kuitenkaan, eli ehkä onneksemmekin putki ei sittenkään ollut käytettävissä muutoin ainutlaatuisen tilaisuuden ohittaminen aikataulun saneleman pakon takia olisi ollut erittäin harmittavaa. Vierailupäivänä olisi toki ollut sekä aurinkohavainnointia että yötaivaan havainnointia muilla instrumenteilla (mm. 16-tuumaisella Cassegrain-putkella) Clark-refraktorin huollosta huolimatta. Lohdutuksena saimme kuitenkin ihailla myöhemmin yötaivasta lähellä Grand Canyonia automatkalla mukana olleella kuusituumaisella SCT-putkella. Muuta nähtävää Mars-kukkulalla Lowellin observatorion Mars-kierros päättyy observatorion Vesto Slipherin ja hänen veljensä Earlin mukaan nimetyn Slipher-rakennuksen pyöreään Rotunda-kirjastotilaan. Toinen opastettu kierros, Pluto-kierros, puolestaan alkaa täältä, ja vierailijat voivat omin silmin kurkistaa samaan vertailulaitteeseen, eli blink-mikroskooppiin ( blink comparator ), jota Clyde Tombaugh käytti vuonna Tosin valokuvalevyt ovat kopioita, eivät alkuperäisiä! Pienen Pluton liike on todella vallan helppo todentaa laitteen avulla. Rotundan reunoilla on myös muita historiallisia esineitä, esimerkiksi alkuperäinen spektrograafi, jonka avulla Slipher havaitsi laajenevan maailmankaikkeuden, kuukarttoja 1960-luvulta, Lowellin Mars-karttoja sekä Vesto Slipherin peräti 60 jalkaa pitkä laskutikku! Lasikaapissa on observatorion lisäksi vanha vieraskirja auki vuoden 1963 kohdalta; aukeamalla komeilee muun muassa Neil Armstrongin signeeraus. Vuosina Clark-refraktoria käytettiin tarkkojen kuukarttojen tekoon Apollo-lentoja varten, ja astronautit vierailivat itsekin tekemässä havaintoja. Rotundaa valaisee upea Saturnusaiheinen kattolamppu vuodelta Slipher-rakennus ulkoa. Rakennuksen siivet on suunnattu tasauspäivien auringonnousujen ja laskujen suuntaan (eli itälänsisuuntaisesti). Rotundan kupolia käytetään nykyisin myös planetaarioesityksiin. 11

12 Radiantti Tampereen Ursa ry:n jäsenlehti 3/2014 Polku Slipher-rakennukselta Pluto-teleskoopin kuvulle mallintaa Aurinkokuntaa reilun sadan metrin matkalla, näyttäen planeettojen suhteelliset etäisyydet Auringosta ja toisistaan aina Plutoon asti. Yksi tuuma polulla vastaa miljoonaa mailia. Polun infotaulujen yhteydessä näkyvät Aurinko ja planeetat ovat kuitenkin 20 kertaa suurempia kuin mitä ne todellisuudessa olisivat tässä mittakaavassa. Matkaa Alfa Kentaurille kertyisi tässä skaalassa noin 628 kilometriä. Mars-kukkulan metsikköön on myös tehty Galaksipolku ja Maailmankaikkeuspolku edellinen kuvaa noin valovuoden matkaa Auringosta Linnunradan keskustaan tuuman vastatessa noin viittä valovuotta, ja jälkimmäisessä puolestaan tuumalla saa jo 2,1 miljoonaa valovuotta. Molemmat kävelyretket muistuttavat Tampereen tähtitornin portaikon maalausta erilaisia kohteita esitellään tauluilla sopivilla etäisyyksillä, mutta kohteiden suunnan suhteen on tietysti otettu vapauksia ja kaikki on sijoitettu lineaarisesti suoran polun varteen. Galaksipolun varrelta löytyvät mm. Orionin sumu, Deneb, planetaarisia sumuja, musta aukko Cygnus X-1, Rapusumu, pallomaisia tähtijoukkoja, Linnunradan keskussauva, ja keskustan supermassiivinen musta aukko. Maailmankaikkeuspolun infotauluissa puolestaan kerrotaan pimeästä aineesta, punasiirtymästä, laajene- 42-tuumainen käytöstä poistettu peilikaukoputki. vasta maailmankaikkeudesta, lähigalakseista, aktiivisista Infotauluja Galaksipolun varrella. 12

13 galaksiytimistä, gravitaatiolinsseistä, gammasädepurkauksista, maailmankaikkeuden suuren mittakaavan rakenteista sekä kosmisesta taustasäteilystä. Lähellä vierailijakeskusta on nähtävillä vuonna 1909 valmistunut, ja vuonna 1970 käytöstä poistettu 42-tuumainen peilikaukoputki. Myös sen on rakentanut Alvan Clark & Sons. Putken erikoisuutena oli neljä erilaista apupeiliä, joita vaihtamalla pystyttiin muuttamaan putken polttoväliä sopivammaksi mm. valokuvaukseen tai spektroskopiaan. Putken avulla määriteltiin myös Marsin ja Venuksen pintalämpötilat, ja sen avulla määriteltiin tarkasti Pluton kiertorata. Observatoriovierailua voi lopuksi täydentää ostoksilla erittäin monipuolisessa kaupassa, jonka tarjontaan kuuluvat mm. kirjat, t-paidat, kaukoputket ja erilaiset tähtiaiheiset koriste- ja käyttöesineet. Lähteitä ja lisätietoa Lowellin observatorion verkkosivu: Belkora, Leila 2003, Minding the heavens the story of our discovery of the Milky Way, Institute of Physics Publishing degrasse Tyson, Neil 2009, The Pluto files the rise and fall of America s favorite planet, W. W. Norton Harland, David M. 2005, Water and the search for life on Mars, Springer / Praxis Publishing Longair, Malcolm 2006, The cosmic century a history of astrophysics and cosmology, Cambridge University Press Lowell, Percival 1908, Mars as the abode of life, Elibron Classics Minard, Anne 2007, Pluto and beyond a story of discovery, adversity and ongoing exploration, Northland Publishing Nickell, Duane S. 2008, Guidebook for the Scientific traveler visiting astronomy and space exploration sites across America, Rutgers University Press Schindler, Kevin S. 1998, 100 years of good seeing the history of the 24-inch Clark Telescope, Lowell Observatory Weintraub, David A. 2007, Is Pluto a planet? A historical journey through the Solar System, Princeton University Press 13

14 Astromatkailua Arizonassa Pekka Rautajoki Osa 2 Arizona tarjoaa tähtitieteen harrastajille useita näkemisen arvoisia kohteita, joista kaksi tunnetuinta lienevät Percival Lowellin perustama observatorio Flagstaffissa ja maailman parhaiten säilynyt törmäyskraatteri, Meteor Crater, noin 50 km Flagstaffista itään. Kesälomaamme kuului automatka Yhdysvalloissa, ja Grand Canyon -vierailun yhteyteen oli luontevaa sovittaa myös nämä kaksi muuta mielenkiintoista nähtävyyttä. Artikkelin tässä osassa kerron kraatterista, joka maallikosta näyttää selkeästi meteoriittitörmäyksen aiheuttamalta, mutta jonka alkuperästä tiedeyhteisö väitteli vielä 1960-luvulle asti. Meteorikraatterin reunan kerrostumat ovat päinvastaisessa järjestyksessä normaalin nähden selkeä todiste, että jokin voima on ainekset lennättänyt kraatterista. Kuva Wikimedia Commnons. 14

15 Ensimmäiset tieteelliset tutkimukset Esimmäinen virallinen maininta Arizonan oudosta kraatterista on vuodelta 1871 eräässä tiedusteluraportissa kenraali Custerille. Paikallinen lammaspaimen puolestaan löysi rautameteoriitteja alueelta vuonna 1886, mutta hän luuli niitä hopeaksi, eikä raportoinut löydöstään viiteen vuoteen. Aikansa arvostetuin geologi, Grove Karl Gilbert, saa kunnian Meteorikraatterin ensimmäisestä tieteellisestä tutkimuksesta. Gilbert arvioi vuonna 1891 kolmea vaihtoehtoista alkuperää kraatterille. Koska paikalta ei löytynyt vulkaanista alkuperää olevaa kiviainesta, hän päätteli, että kyseessä ei ollut tulivuoren kraatteri. Toinen mahdollinen syntytapa oli höyryräjähdys maan alla syvemmällä oleva magma höyrysti vesikerroksen, ja höyry purkautui räjähdysmäisesti muodostaen kraatterin. Kolmantena Gilbert pohti myös mahdollista meteoriittitörmäystä itse asiassa tämä oli hänen mielestään todennäköisin vaihtoehto. Kraatterin ympäriltä oli löytynyt rauta- ja nikkelijäämiä, mikä tuki meteoriittitörmäyksen mahdollisuutta. Gilbert teki kuitenkin ratkaisevan virheen hän oletti, että törmännyt kappale olisi hautautuneena kraatterin pohjalla. Kompassineulat eivät kuitenkaan paljastaneet suuren rautakappaleen olemassaoloa, ja kraatterin reunan materiaalia näytti olevan vain kuopan tilavuuden verran. Hautautunut meteoriitti olisi syönyt tilavuudesta osan, ja kiviainesta olisi siten pitänyt olla reunalla enemmän kuin mitä kraatteriin näennäisesti mahtuisi. Hypoteesi meteoriittitörmäyksestä näytti siis hänestä tosiasioiden valossa virheelliseltä, ja Gilbert päätyi lopulta puoltamaan höyryräjähdystä. Ympäristön meteoriittijäänteet olivat vain sattumaa. Koska Gilbert oli aikansa suurin geologian auktoriteetti, ei hänen johtopäätöstään juuri uskallettu kiistää. Daniel Barringer vainuaa omaisuuden Vuonna 1902 menestyksekäs ja tunnettu kaivosinsinööri Daniel Moreau Barringer kuuli sattumalta tuttavaltaan Arizonan kraatterista, ja paria kuukautta myöhemmin hän myös sai selville, että myös kraatterin reunavallilta on löydetty meteoriittirautaa sekoittuneena kiviainekseen. Hänestä tämä todisti selkeästi, että meteoriitin törmäys ja kraatterin synty ovat tapahtuneet yhtä aikaa muutoin meteoriittimateriaali ja kraatterista lentänyt kiviaines olisivat olleet erillisinä kerroksina. Gilbertin tavoin Barringer uskoi, että törmääjä oli kraatterin kokoinen, ja että se olisi edelleen hautautuneena kraatterin pohjan alle. Hänestä Gilbert ei ollut huomioinut laskuissaan reunan eroosiota, eli kraatterista oli lentänyt ulos enemmän maa-ainesta kuin miltä pikaisesti saattoi näyttää. Taalankuvat silmissä hän suunnitteli kaivavansa kraatterista valtavasti rautaa ja nikkeliä. Barringer perusti kaivosyhtiön ja hankki kaivosoikeudet kraatteriin käytännössä näkemättä koko paikkaa omin silmin. Barringer ja hänen rahoittajakumppaninsa käyttivät 27 vuoden ajan nykyrahassa yli kymmenen miljoonaa dollaria yrittäessään tuloksetta kaivaa metalleja kraatterista. Vaikka hänen kaivosyhtiönsä oli taloudellinen katastrofi, se menestyi kuitenkin tieteellisesti kaivostoiminnan ohessa Barringer keräsi kraatterista niin paljon tutkimustuloksia, että tiedeyhteisö alkoi vähitellen vakuuttua törmäysalkuperästä. Tiedeyhteisön vakuuttamisessa auttoi myös geologi George Merrill, joka julkaisi 1900-luvun alussa Barringeria tukevia artikkeleita. Merrillin päätodisteena oli kvartsilasi, jota löytyi kraatterista sellaista synnytti vain äärimmäinen kuumuus. Kivikerrokset kraatterin alla olivat myös koskemattomia, osoittaen että kraatterin synnyttänyt voima tuli maan yläpuolelta, eikä sitä aiheuttanut vulkaaninen toiminta syvällä maan alla. Vastustustakin silti vielä oli tie- Kraatterin reunavalli aavikolta nähtynä. Artikkelin kuvat Pekka Rautajoki ellei toisin ole ilmoitettu. 15

16 deyhteisön oli vaikea luopua ajatuksesta, että geologiset prosessit tapahtuvat vähitellen pitkän ajan kuluessa, eikä äkillisissä, katastrofaalisissa yksittäistapahtumissa. Lisäksi Barringer ei ollut henkilönä kovin pidetty; hän esimerkiksi hyökkäsi varsin henkilökohtaisesti geologi Gilbertiä vastaan julkaisemissaan artikkeleissa. Vuonna 1946 meteoriittiasiantuntija Harvey Ninninger analysoi tarkkaan kraatterin ympäristön maaperää, ja löysi runsaasti kappaleita, jotka olivat syntyneet tiivistymällä metallia ja kiveä sisältävästä höyrypilvestä. Lopullinen todiste meteoriittialkuperästä saatiin 1960-luvulla: kahta kraatterista löytynyttä harvinaista mineraalia, koesittia ja stishoviittia, syntyy ainoastaan kun kvartsipitoiseen kiviainekseen osuu valtava voima tai shokkiaalto. Mutta missä on rauta? Chicagon yliopiston tähtitieteilijä Forest Ray Moulton julkisti laskelmansa 1920-luvun lopulla, jonka mukaan törmääjä oli huomattavasti oletettua pienempi, ja ettei siitä ollut jäänyt juurikaan mitään jäljelle törmäyksen jälkeen. Barringer lähestyi toista tähtitieteilijää, Henry Norris Russellia, toivoen Moultonin olevan väärässä, mutta Russell vahvisti meteoriitin suurelta osin höyrystyneen törmäyksessä. Barringer uskoi alun perin, että kraatterissa olisi rautaa jopa 100 miljoonaa tonnia arvoltaan reilusti yli miljardi dollaria vuoden 1903 hinnoilla. Moultonin arvioiden mukaan törmääjän massa oli todellisuudessa vain tuhannesosa arviosta. Kraatterin pohjan alla ei siis ollutkaan omaisuutta, ja vuoden 1929 syyskuussa Barringerin kaivosyhtiön johtokunta päätti kaivostöiden lopettamisesta. Päätös oli paha isku Barringerille, ja hän kuoli sydänkohtaukseen vain muutama kuukausi myöhemmin. Holsinger-meteoriitti. 16

17 American Astronaut Wall of Fame. Meteorikraatteri tänään Barringerin suku omistaa edelleen Meteorikraatterin, ja vaikka sieltä ei metalliomaisuutta löytynytkään, se tuottaa suvulle mukavasti tuloja turistinähtävyytenä. Meteorikraatterin reuna kohoaa vaatimattoman näköisenä aavikolla noin 45 metrin korkeuteen; vierailijakeskus on rakennettu kraatterin pohjoisreunalle, ja sen sisällä on pysyvä meteoreista ja meteoriiteista kertova näyttely. Itse kraatteria voi ihastella useasta suunnasta pohjoisreunalle rakennetuilta tasanteilta. Kraatterin halkaisija on noin metriä, ja sen pohja on noin 100 metriä ympäröivää aavikkoa matalammalla. Nykykäsityksen mukaan kraatteri syntyi noin vuotta sitten kun halkaisijaltaan 50-metrinen rautameteoriitti törmäsi Arizonan aavikkoon 150 Hiroshiman atomipommin voimalla. Meteorikraatterin oma esite antaa hyvän vertailukohdan kraatterin koolle: kuvittele pohjalle kaksikymmentä yhtäaikaista jalkapallo-ottelua, ja reunalle katsomo, johon mahtuu kaksi miljoonaa kannustajaa! Kraatterista länteen noin viiden kilometrin päässä on mutkitteleva kanjoni nimeltään Canyon Diablo, sekä samanniminen kylä. Kylän ja kanjonin nimi on antanut virallisen nimen myös kraatterin synnyttäneelle kappaleelle, jonka säilyneitä pirstaleita on löytynyt yhteensä noin 30 tonnin verran lähiympäristöstä seitsemän kilometrin säteellä. Suurin yksittäinen Canyon Diablo meteoriitin osa (ns. Holsinger-meteoriitti) on esillä vierailijakeskuksessa; sen massa on 639 kg. Neljänneksi massiivisin kappale puolestaan on esillä edellisessä vierailukohteessamme, Lowellin observatoriossa. Huomattavasti enemmän massaa on pölymäisessä muodossa sekoittuneena maaperään aina kymmenen kilometrin etäisyydelle asti. Canyon Diablo on rautameteoriitti tyyppiä karkea oktahedriitti. Vierailijakeskuksessa voi lisäksi katsella lyhyitä dokumenttielokuvia, kokeilla itse kraatterin muodostamista törmäyksillä, ja kiertää opastetulla kierroksella vajaan kilometrin mittaisen matkan kraatterin reunalla. Turisteja ei kuitenkaan päästetä alas kraatterin pohjalle. Vierailijakeskuksen yhteydessä on kookas monumentti, johon on kirjattu kaikkien amerikkalaisten astronauttien nimet. Apollo-astronautit harjoittelivat geologiaa ja näytteiden keräämistä Meteorikraatterissa vuosina

18 Vasemmalla 55 g kappale Canyon Diablo meteoriittia, oikealla 17 g pala meteoriittioksidia. Kumpikin on herkkä ruostumaan. Keskuksessa on myös luonnollisesti laaja myymälä yllättäen siellä ei ole myynnissä varsinaisia Canyon Diablo meteoriitin kappaleita, vaan pelkästään törmäyksessä hapettuneita meteoriittioksidin palasia. Jälkimmäiset koostuvat pääosin raudasta ja nikkelistä, mutta niiden rakenne on törmäyksessä muuttunut alkuperäisen meteorin koostumuksesta. Arizonan kraatterin synnyttäneen iskeytyjän alkuperäisiä jäänteitä löytyy kuitenkin laajasti vaikkapa ebaysta. Ilman meteoriittiostoksiakin eroosiolta yllättävän hyvin säilynyt kraatteri on kieltämättä erittäin vaikuttava näky ja ehdottomasti vierailun arvoinen! Lähteitä ja lisätietoa Meteorikraatterin virallinen verkkosivu: Cokinos, Christopher 2009, The Fallen Sky an intimate history of shooting stars, Jeremy P. Tarcher / Penguin Hodge, Paul 2009, Meteorite craters and impact structures of the Earth, Cambridge University Press Nickell, Duane S. 2008, Guidebook for the Scientific traveler visiting astronomy and space exploration sites across America, Rutgers University Press Nininger, H. H. 1956, Arizona s Meteorite Crater, American Meteorite Laboratory Shoemaker, E. M. & Kieffer, S. W. 1974, Guidebook to the geology of Meteor Crater, Arizona, Center for Meteorite Studies 18

19 Radiantti Tampereen Ursa ry:n jäsenlehti 3/2014 Aurinkoa kuvaamassa Kari A. Kuure Auringon valokuvaamisella Tampereen Ursassa on jo vuosien perinteet. Viime vuosikymmenellä hankimme ensimmäisten joukossa silloin uuden laitevalmistajan Lunt Solarsystemsin valmistaman LS60T H-alfa -kaukoputken. Se on ollut ahkerassa käytössä tähän vuoteen asti. Kokemukset kaukoputken käytöstä olivat niin hyvät, että uskalsimme hankkia tänä vuonna saman valmistajan jo paljon kehittyneemmän ja suurikokoisemman version tyyppimerkinnältään LS100T H-alfa. Ennakkoodotukset olivat suuret laitteen suorituskyvystä, mutta kukaan ei arvannut kuinka erinomainen laite on kyseessä. Aurinkokaukoputki vastaanottotarkastuksessa. Kuva Kari A. Kuure 19

20 Radiantti Tampereen Ursa ry:n jäsenlehti 3/2014 Kuva on otettu Lunt LS100T H-alfa-kaukoputkella ja siinä on näkyvissä lähes kaikki mahdolliset ilmiöt Auringon kromosfäärissä. Kuva on otettu samana päivänä kuin tämän lehden laajakaistainen kansikuva. Selvyyden vuoksi molempiin kuviin on merkitty pilkkuryhmät (aktiiviset alueet). Kuva Kari A. Kuure. Uusi kaukoputki tuli huolintafirman toimittamana pilvisenä päivänä toukokuun loppupuolella. Kuinka ollakaan, pilvisyysjakso tuntui kestävän pitkään vaikka todellisuudessa pilvistä oli vain pari kolme päivää. Ensimmäisiä maistiaisia kaukoputken kyvyistä sain pilvien rakosista tehdyistä visuaalihavainnoista ja ne olivat kaikki positiivisia. Etenkin uusi ilmanpaineeseen perustuva kaukoputken suodattimen viritys tuntui heti miten käyttökelpoisemmalta ratkaisulta kuin edellisen mallin suodattimen kallistaminen. Uuden kaukoputken myötä muutimme tähtitornin jalustan kahdelle kaukoputkelle sopivaksi, tosin vain kesäkaudeksi. Toinen kaukoputki on tämä uusi aurinkokaukoputki ja toinen, jo joitakin vuosia sitten hankittu Ikharos. Sattumalta molempien kaukoputkien optiikkat ovat samanlaiset: objektiiviin halkaisija 102 mm ja polttoväli 714 mm. Kaukoputkien massatkin ovat suurin piirtein samanlaiset; Lunt hieman massiivisempi johtuen sen sisään rakennetusta Etalon-suodattimesta ja kondensorilinsseistä. 20

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Asko Palviainen Matemaattis-luonnontieteellinen tiedekunta Ajanlasku Kuukalenteri vuodessa 12 kuu-kuukautta ei noudata vuodenaikoja nykyisistä kalentereista

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Planeetan määritelmä

Planeetan määritelmä Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan

Lisätiedot

Kesäyön kuunpimennys

Kesäyön kuunpimennys Kesäyön kuunpimennys 27-28.7.2018 by Matti Helin - Monday, July 02, 2018 https://www.ursa.fi/blogi/zeniitti/2018/07/02/kuunpimennys-27-28-7-2018/ Matti Helin: Kesäyön kuunpimennys 27-28.7.2018 -Vuosisadan

Lisätiedot

Tähdenpeitot- Aldebaranin ja Reguluksen peittymiset päättyvät

Tähdenpeitot- Aldebaranin ja Reguluksen peittymiset päättyvät Tähdenpeitot- Aldebaranin ja Reguluksen peittymiset päättyvät by Matti Helin - Thursday, February 15, 2018 https://www.ursa.fi/blogi/zeniitti/2018/02/15/tahdenpeitot-aldebaranin-ja-reguluksen-peittymisetpaattyvat/

Lisätiedot

AKAAN AURINKOKUNTAMALLI

AKAAN AURINKOKUNTAMALLI AKAAN AURINKOKUNTAMALLI Millainen on avaruus ympärillämme? Kuinka kaukana Aurinko on meistä? Minkä kokoisia planeetat ovat? Tämä Aurinkokunnan pienoismalli on rakennettu vastaamaan näihin ja moneen muuhun

Lisätiedot

Cygnus tapahtuma Vihdin Enä-Sepän leirikeskuksessa

Cygnus tapahtuma Vihdin Enä-Sepän leirikeskuksessa Cygnus 2013 -tapahtuma Vihdin Enä-Sepän leirikeskuksessa 24. 28.7.2013 Pikkuplaneetat ja tähdenpeitot -jaosto Esitys perjantaina 25.7.2013 Esityksen diat on muutettu 13.8.2013 tekstitiedostoksi. Siihen

Lisätiedot

AURINKOKUNNAN RAKENNE

AURINKOKUNNAN RAKENNE AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa

Lisätiedot

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi

Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Pimennys- yms. lisäsivut Maailmankaikkeus nyt -kurssi Asko Palviainen Matemaattis-luonnontieteellinen tiedekunta Ajanlasku Kuukalenteri vuodessa 12 kuu-kuukautta ei noudata vuodenaikoja nykyisistä kalentereista

Lisätiedot

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero

spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero Messier 51 Whirpool- eli pyörregalaksiksi kutsuttu spiraaligalaksi on yksi tähtitaivaan kauneimmista galakseista. Sen löysi Charles Messier 1773 ja siksi sitä kutsutaan Messierin kohteeksi numero 51. Pyörregalaksi

Lisätiedot

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä.

Aloitetaan kyselemällä, mitä kerholaiset tietävät aurinkokunnasta ja avaruudesta ylipäänsä. LUMATE-tiedekerhokerta, suunnitelma AIHE: AURINKOKUNTA Huom! Valmistele maitopurkit valmiiksi. Varmista, että sinulla on riittävästi soraa jupiteria varten. 1. Alkupohdintaa Aloitetaan kyselemällä, mitä

Lisätiedot

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

2/2014. Tähtitieteellinen yhdistys Tampereen Ursa ry.

2/2014. Tähtitieteellinen yhdistys Tampereen Ursa ry. Radiantti 2/2014 Tähtitieteellinen yhdistys Tampereen Ursa ry. Uusiutunut Radiantti Luet uudistunutta Radianttia. Kuten huomaat, lehdessä on säilytetty useita paperiversion piirteitä. Osa on kuitenkin

Lisätiedot

Yhteystiedot: www.ursa.fi/yhd/planeetta Sähköposti: kajaanin.planeetta@gmail.com

Yhteystiedot: www.ursa.fi/yhd/planeetta Sähköposti: kajaanin.planeetta@gmail.com Julkaisija: Kajaanin Planeetta ry Päätoimittaja: Jari Heikkinen Teksti ja kuvat: Jari Heikkinen, jos ei muuta mainita Ilmestyminen: Kolme numeroa vuodessa (huhtikuu, elokuu, joulukuu) Yhteystiedot: www.ursa.fi/yhd/planeetta

Lisätiedot

Kosmologia ja alkuaineiden synty. Tapio Hansson

Kosmologia ja alkuaineiden synty. Tapio Hansson Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian

Lisätiedot

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä

7. AURINKOKUNTA. Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä 7. AURINKOKUNTA Miltä Aurinkokunta näyttää kaukaa ulkoapäin katsottuna? (esim. lähin tähti n. 300 000 AU päässä Jupiter n. 4"päässä) = Keskustähti + jäännöksiä tähden syntyprosessista (debris) = jättiläisplaneetat,

Lisätiedot

Ensimmäinen matkani aurinkokuntaan

Ensimmäinen matkani aurinkokuntaan EDITORIAL WEEBLE Ensimmäinen matkani aurinkokuntaan FERNANDO G. RODRIGUEZ http://editorialweeble.com/suomi/ Ensimmäinen matkani aurinkokuntaan 2014 Editorial Weeble Kirjoittaja: Fernando G. Rodríguez info@editorialweeble.com

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän

Lisätiedot

Planetologia: Tietoa Aurinkokunnasta

Planetologia: Tietoa Aurinkokunnasta Planetologia: Tietoa Aurinkokunnasta Kuva space.com Tieteen popularisointi Ilari Heikkinen 4.5.2016 Aurinkokunnan synty ja rakenne Aurinkokunta syntyi 4,5 miljardia vuotta sitten valtavan tähtienvälisen

Lisätiedot

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML

Aurinkokunta. Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Jyri Näränen Jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Paikkatietokeskus, MML Aurinkokunta Mikä se on, miten se on muodostunut ja mitä siellä on? Miten sitä tutkitaan? Planeetat

Lisätiedot

Mustien aukkojen astrofysiikka

Mustien aukkojen astrofysiikka Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Supernova. Joona ja Camilla

Supernova. Joona ja Camilla Supernova Joona ja Camilla Supernova Raskaan tähden kehityksen päättäviä valtavia räjähdyksiä Linnunradan kokoisissa galakseissa supernovia esiintyy noin 50 vuoden välein Supernovan kirkkaus muuttuu muutamassa

Lisätiedot

HÄRKÄMÄEN HAVAINTOKATSAUS

HÄRKÄMÄEN HAVAINTOKATSAUS HÄRKÄMÄEN HAVAINTOKATSAUS 2008 Kierregalaksi M 51 ja sen seuralainen epäsää äännöllinen galaksi NGC 5195. Etäisyys on 34 miljoonaa valovuotta. M 51 löytyy l taivaalta Otavan viimeisen tähden t Alkaidin

Lisätiedot

IHMEEL- LINEN KUU TEKSTI // KRISTOFFER ENGBO

IHMEEL- LINEN KUU TEKSTI // KRISTOFFER ENGBO IHMEEL- LINEN KUU TEKSTI // KRISTOFFER ENGBO Ennemmin tai myöhemmin moni kuvaaja innostuu yötaivaan valopilkusta. Keräsimme vinkkejä, joiden avulla onnistut kuukuvauksessa. Mukana on myös tärkeitä päivämääriä.

Lisätiedot

Etäisyyden yksiköt tähtitieteessä:

Etäisyyden yksiköt tähtitieteessä: Tähtitiedettä Etäisyyden yksiköt tähtitieteessä: Astronominen yksikkö AU = 149 597 870 kilometriä. Tämä vastaa sellaisen Aurinkoa kiertävän kuvitellun kappaleen etäisyyttä, jonka kiertoaika on sama kuin

Lisätiedot

Jupiterin kuut (1/2)

Jupiterin kuut (1/2) Jupiterin kuut (1/2) Jupiterin kuut (2/2) Jupiterin kuut: rakenne (1/2) Kuu, R=1738km Io, R = 1821 km Europa, R = 1565 km Ganymedes, R = 2634 km Callisto, R = 2403 km Jupiterin kuut: rakenne (2/2) sisäinen

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

5. Kaukoputket ja observatoriot

5. Kaukoputket ja observatoriot 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys 4. Fokus 5. Kuvan laatuun vaikuttavia tekijöitä 6. Observatorion sijoituspaikka 5.1 Teleskooppia kuvaavat

Lisätiedot

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ 56 VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ Hyvällä havaitsijalla keskimääräinen virhe tähdenlennon kirkkauden arvioimisessa on noin 0.4 magnitudia silloin, kun meteori näkyy havaitsijan näkökentän keskellä.

Lisätiedot

Tapahtumia Maassa ja taivaalla

Tapahtumia Maassa ja taivaalla Tapahtumia Maassa ja taivaalla Tapahtumia Maassa ESOP XXXVI Tapahtumia taivaalla Tähden peittyminen pikkuplaneetan taakse Kirkkaita pikkuplaneettoja Huomattavia tähdenpeittoja Sivuavia tähdenpeittoja Tähdenpeittojulkaisuja

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

Kysymykset ovat sanallisia ja kuvallisia. Joukossa on myös kompia, pysy tarkkana!

Kysymykset ovat sanallisia ja kuvallisia. Joukossa on myös kompia, pysy tarkkana! Tietokilpailun finaali Kysymykset ovat sanallisia ja kuvallisia. Joukossa on myös kompia, pysy tarkkana! Mikä on kolmas kosminen nopeus? Pakonopeus luotaimelle, joka lähetetään Maan pinnalta ulos aurinkokunnasta.

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

TAIVAANMERKIT KESÄLLÄ 2014

TAIVAANMERKIT KESÄLLÄ 2014 TAIVAANMERKIT KESÄLLÄ 2014 Kesä alkoi uudella kuulla 28.5. Kaksosissa 7 21 Neptunus-neliön värittämänä ja päättyy 25.8. uuteen kuuhun Neitsyessä 2 18 oppositiossa perääntyvään Neptunukseen. Herkkiä emootioita

Lisätiedot

5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Kaukoputket ja observatoriot. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Kaukoputket ja observatoriot Havaitsevan tähtitieteen peruskurssi I, luento 14.2.2008 Thomas Hackman 1 5. Kaukoputket ja observatoriot 1. Perussuureet 2. Klassiset optiset ratkaisut 3. Teleskoopin pystytys

Lisätiedot

Siitepölykehät siitepölyjen valoilmiöt

Siitepölykehät siitepölyjen valoilmiöt Siitepölykehät siitepölyjen valoilmiöt Juha Ojanperä, FM, Linda Laakso, biol.yo., Ursa ry, ilmakehän optiset valoilmiöt -jaosto, siitepölytiedotuksen 40v juhlaseminaari, TY 3.2.2016 Mitä siitepölykehät

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät 2007

Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Havaitsevan tähtitieteen peruskurssi I, kevät 2007 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: M. Lindborg Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva

Lisätiedot

Pienkappaleita läheltä ja kaukaa

Pienkappaleita läheltä ja kaukaa Pienkappaleita läheltä ja kaukaa Karri Muinonen 1,2 1 Fysiikan laitos, Helsingin yliopisto 2 Geodeettinen laitos Planetaarinen geofysiikka, luento 7. 2. 2011 Johdantoa Tänään 7. 2. 2011 tunnetaan 7675

Lisätiedot

Tähtitaivaan alkeet Juha Ojanperä Harjavalta

Tähtitaivaan alkeet Juha Ojanperä Harjavalta Tähtitaivaan alkeet Juha Ojanperä Harjavalta 14.1.-10.3.2016 Kurssin sisältö 1. Kerta Taivaanpallo ja tähtitaivaan liike opitaan lukemaan ja ymmärtämään tähtikarttoja 2. kerta Tärkeimmät tähdet ja tähdistöt

Lisätiedot

Kaukoputkikurssin 2005 diat

Kaukoputkikurssin 2005 diat Kaukoputkikurssin 2005 diat Järjestäjänä: Warkauden Kassiopeia ry. Kurssin vetäjät: Harri Haukka Jari Juutilainen Kurssin sisältö Kaukoputkien esittelyä mikä on kaukoputki ja mitä sillä näkee? kasaamme

Lisätiedot

Toni Veikkolainen Cygnus 2012 Naarila, Salo

Toni Veikkolainen Cygnus 2012 Naarila, Salo Toni Veikkolainen Cygnus 2012 Naarila, Salo 28.7.2012 Ursan Syvä taivas jaosto on ollut toiminnassa vuodesta 1985 lähtien. Alkuvuonna 2012 jaosto sai uudeksi vetäjäkseen Toni Veikkolaisen Järvenpäästä.

Lisätiedot

Taurus Hill Observatory Venus Transit 2012 Nordkapp Expedition. Maailman äärilaidalla

Taurus Hill Observatory Venus Transit 2012 Nordkapp Expedition. Maailman äärilaidalla Taurus Hill Observatory Venus Transit 2012 Nordkapp Expedition Maailman äärilaidalla Miksi mennä Pohjois-Norjaan havaitsemaan Venuksen ylikulkua? Lähimmillään Venuksen ylikulkua saattoi kokonaisuudessaan

Lisätiedot

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen

Lisätiedot

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi

Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring aurinkokunnan ja sen jälkeen vuonna Suomi Exploring the Solar System and Beyond in Finnish Kehittämä Nam Nguyen Hubble Ultra Deep Field ampui 2014 Exploring aurinkokunnan ja sen jälkeen tavoitteena

Lisätiedot

TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen:

TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen: A sivu 1(3) TOIMINTAOHJE 18.10.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit

Lisätiedot

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen

Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Gravitaatioaallot - uusi ikkuna maailmankaikkeuteen Helsingin Yliopisto 14.9.2015 kello 12:50:45 Suomen aikaa: pulssi gravitaatioaaltoja läpäisi maan. LIGO: Ensimmäinen havainto gravitaatioaalloista. Syntyi

Lisätiedot

Kevään 2017 komeetat odotuksia ja toteutumia. Veikko Mäkelä Cygnus

Kevään 2017 komeetat odotuksia ja toteutumia. Veikko Mäkelä Cygnus Kevään 2017 komeetat odotuksia ja toteutumia Veikko Mäkelä Cygnus 2017 28.7.2017 Kolme komeettaa Keväällä 2017 piti olla näkyvissä kolme kiikaritason komeettaa 41P/Tuttle-Giacobini-Kresak 5,5 mag 45P/Honda-Mrkos-Pajdusakova

Lisätiedot

Tähtitieteen historiaa

Tähtitieteen historiaa Tähtitiede Sisältö: Tähtitieteen historia Kokeellisen tiedonhankinnan menetelmät Perusteoriat Alkuräjähdysteoria Gravitaatiolaki Suhteellisuusteoria Alkuaineiden syntymekanismit Tähtitieteen käsitteitä

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Jupiter-järjestelmä ja Galileo-luotain II

Jupiter-järjestelmä ja Galileo-luotain II Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen

Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu. Luento , V-M Pelkonen Havaitsevan tähtitieteen peruskurssi I, Havaintoaikahakemuksen valmistelu Luento 9.4.2015, V-M Pelkonen 1 1. Luennon tarkoitus Havaintoaikahakemuksen (teknisen osion) valmistelu Mitä kaikkea pitää ottaa

Lisätiedot

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.

YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11. YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1

Lisätiedot

PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveys- asteen mukaiseksi.

PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveys- asteen mukaiseksi. Käyttöohje PIKAOPAS 1. Kellotaulun kulma säädetään sijainnin leveysasteen mukaiseksi. Kellossa olevat kaupungit auttavat alkuun, tarkempi leveysasteluku löytyy sijaintisi koordinaateista. 2. Kello asetetaan

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 4. Teleskoopit ja observatoriot Lauri Jetsu Fysiikan laitos Helsingin yliopisto (kuva: @garyseronik.com) Tavoite: Kuvata, kuinka teleskooppi rakennetaan aiemmin kuvatuista optisista elementeistä Teleskoopin

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka)

Kenguru 2013 Ecolier sivu 1 / 8 (4. ja 5. luokka) Kenguru 2013 Ecolier sivu 1 / 8 3 pistettä 1. Missä kuviossa mustia kenguruita on enemmän kuin valkoisia kenguruita? Kuvassa D on 5 mustaa kengurua ja 4 valkoista. 2. Nelli haluaa rakentaa samanlaisen

Lisätiedot

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti

Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Planetaariset sumut Ransun kuvaus- ja oppimisprojekti Sisältö Miksi juuri planetaariset sumut Planetaarisen sumun syntymä Planetaariset kuvauskohteena Kalusto Suotimet Valotusajat Kartat HASH planetary

Lisätiedot

Ajan osasia, päivien palasia

Ajan osasia, päivien palasia Ajan osasia, päivien palasia Ajan mittaamiseen tarvitaan liikettä. Elleivät taivaankappaleet olisi määrätyssä liikkeessä keskenään, ajan mittausta ei välttämättä olisi syntynyt. Säännöllinen, yhtäjaksoinen

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät 2012

Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Havaitsevan tähtitieteen peruskurssi I, kevät 2012 Luennoitsijat: FT Thomas Hackman & FT Veli-Matti Pelkonen Luentoajat: To 14-16, periodit 3-4 Kotisivu: http://www.helsinki.fi/astro/opetus/kurssit/havaitseva

Lisätiedot

Kemiönsaaren Nordanån merikotkatarkkailu kesällä 2017

Kemiönsaaren Nordanån merikotkatarkkailu kesällä 2017 Kemiönsaaren Nordanån merikotkatarkkailu kesällä 2017 Tmi Vespertilio 11.8.2017 Tiivistelmä Kemiönsaaren Nordanå-Lövbölen alueelle suunnitellaan tuulivoimapuistoa. Varsinais-Suomen ELYkeskus on vuonna

Lisätiedot

aurinkokunnan kohteet (planeetat, kääpiöplaneetat, kuut, asteroidit, komeetat, meteoroidit)

aurinkokunnan kohteet (planeetat, kääpiöplaneetat, kuut, asteroidit, komeetat, meteoroidit) Tähtitaivaan kohteet Mitä kaikkea taivaalla on: tähdet Aurinko, tavallinen tähti tähtien ryhmät (kaksoistähdet, avoimet joukot, pallomaiset joukot) tähtienvälinen aine Linnunrata muut galaksit galaksiryhmät

Lisätiedot

Kenguru 2014 Benjamin (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste

Kenguru 2014 Benjamin (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste (6. ja 7. luokka) sivu 1 / 7 ja Pakilan ala-aste NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät 2008

Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luennoitsijat: FM J. Näränen ja FT T. Hackman Laskuharjoitusassistentti: J. Lehtinen Luentoajat: To 12-14, periodit 3-4 Kotisivu: http://www.astro.helsinki.fi/opetus/kurssit/havaitseva

Lisätiedot

Työ 2324B 4h. VALON KULKU AINEESSA

Työ 2324B 4h. VALON KULKU AINEESSA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 2324B 4h. VALON KULKU AINEESSA TYÖN TAVOITE Työssä perehdytään optisiin ilmiöihin tutkimalla valon kulkua linssisysteemeissä ja prismassa. Tavoitteena on saada

Lisätiedot

Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006)

Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006) Kääpiöplaneettojen eteeriset laadut ja niiden määrittäminen (2006) Jaana Koverola Aurinkokuntamme reuna-alueilta on 2000-luvulla löydetty uusia taivaankappaleita, 1000-2000 km halkaisijaltaan olevia kääpiöplaneettoja,

Lisätiedot

S-114.2720 Havaitseminen ja toiminta

S-114.2720 Havaitseminen ja toiminta S-114.2720 Havaitseminen ja toiminta Heikki Hyyti 60451P Harjoitustyö 2 visuaalinen prosessointi Treismanin FIT Kuva 1. Kuvassa on Treismanin kokeen ensimmäinen osio, jossa piti etsiä vihreätä T kirjainta.

Lisätiedot

Aurinkokunta, kohteet

Aurinkokunta, kohteet Aurinkokunta, kohteet Merkurius Maasta katsoen Merkurius näkyy aina lähellä Aurinkoa; se voi etääntyä Auringosta vain noin 28 päähän. Siksi Merkurius näkyy vain vaalealla ilta- tai aamutaivaalla. Kirkkaimmillaan

Lisätiedot

AURINKOVIIKKO. näkyvissä, vain kirkas piirteetön

AURINKOVIIKKO. näkyvissä, vain kirkas piirteetön AURINKOVIIKKO Kesäkuun ensimmäisellä viikolla vietettiin Aurinkoviikkoa. Planeetta osallistui tapahtumiin järjestämällä kaksi havaintoiltaa, jolloin kaikilla oli mahdollisuus tarkkailla ja tutkia aurinkoa.

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I Johdanto

Havaitsevan tähtitieteen peruskurssi I Johdanto Havaitsevan tähtitieteen peruskurssi I Johdanto Helsingin yliopisto, Fysiikan laitos kevät 2013 Havaitsevan tähtitieteen peruskurssi I Luennoitsijat:, Veli-Matti Pelkonen Luentoajat: To 14 16 Laskuharjoitusassistentti:

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2013 Ecolier sivu 1 / 6 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kaukoputket ja observatoriot

Kaukoputket ja observatoriot Kaukoputket ja observatoriot Helsingin yliopisto, Fysiikan laitos kevät 2013 7. Kaukoputket ja observatoriot Perussuureet Klassiset optiset ratkaisut Teleskoopin pystytys Fokus Kuvan laatuun vaikuttavia

Lisätiedot

YHTEYSTIEDOT SISÄLLYSLUETTELO ETU- JA TAKAKANSI LEHDEN TOIMITUS

YHTEYSTIEDOT SISÄLLYSLUETTELO ETU- JA TAKAKANSI LEHDEN TOIMITUS YHTEYSTIEDOT Warkauden Kassiopeia ry. c/o Veli-Pekka Hentunen Varkauden lukio Osmajoentie 30 78210 Varkaus warkauden.kassiopeia@ursa.fi Yhdistyksen kotisivut: www.ursa.fi/yhd/kassiopeia Taurus Hill Observatory:

Lisätiedot

Yleistä kurssiasiaa. myös ensi tiistaina vaikka silloin ei ole luentoa. (opiskelijanumerolla identifioituna) ! Ekskursio 11.4.

Yleistä kurssiasiaa. myös ensi tiistaina vaikka silloin ei ole luentoa. (opiskelijanumerolla identifioituna) ! Ekskursio 11.4. Yleistä kurssiasiaa! Ekskursio 11.4.! Tentti 12.5. klo 10-14! Laskarit alkavat tulevaisuudessa 15.45, myös ensi tiistaina vaikka silloin ei ole luentoa! Laskaripisteet tulevat verkkoon (opiskelijanumerolla

Lisätiedot

A. Desimaalilukuja kymmenjärjestelmän avulla

A. Desimaalilukuja kymmenjärjestelmän avulla 1(8) Kymmenjärjestelmä desimaalilukujen ja mittayksiköiden muunnosten pohjana A. Miten saadaan desimaalilukuihin ymmärrystä 10-järjestelmän avulla? B. Miten saadaan mittayksiköiden muunnoksiin ymmärrystä

Lisätiedot

3. kappale (kolmas kappale) AI KA

3. kappale (kolmas kappale) AI KA 3. kappale (kolmas kappale) AI KA 3.1. Kellonajat: Mitä kello on? Kello on yksi. Kello on tasan yksi. Kello on kaksikymmentä minuuttia vaille kaksi. Kello on kymmenen minuuttia yli yksi. Kello on kymmenen

Lisätiedot

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/

Planeetat. Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Planeetat Jyri Näränen Geodeettinen laitos http://personal.inet.fi/tiede/naranen/ Aiheet l Aurinkokuntamme planeetat, painopiste maankaltaisilla l Planeettojen olemus l Planeettojen sisäinen rakenne ja

Lisätiedot

METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ

METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ 23 METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ Tässä metodissa on kyse perinteisestä. luettelomaisesta listaustyylistä, jossa meteorit kirjataan ylös. Tietoina meteorista riittää, kuuluuko

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia.

Merkintöjä planeettojen liikkeistä jo muinaisissa nuolenpääkirjoituksissa. Geometriset mallit vielä alkeellisia. Johdanto Historiaa Antiikin aikaan Auringon ja Kuun lisäksi tunnettiin viisi kappaletta, jotka liikkuivat tähtitaivaan suhteen: Merkurius, Venus, Mars, Jupiter ja Saturnus. Näitä kutsuttiin planeetoiksi

Lisätiedot

Miina ja Ville etiikkaa etsimässä

Miina ja Ville etiikkaa etsimässä Miina ja Ville etiikkaa etsimässä Elämänkatsomustieto Satu Honkala, Antti Tukonen ja Ritva Tuominen Sisällys Opettajalle...4 Oppilaalle...5 Työtavoista...6 Elämänkatsomustieto oppiaineena...6 1. HYVÄ ELÄMÄ...8

Lisätiedot

Kajaanin Planeetan jäsenlehti Nro 2/201 0

Kajaanin Planeetan jäsenlehti Nro 2/201 0 Kaanin Planeetan jäsenlehti Nro 2/201 0 Tähtitieteellinen yhdistys Kaanin Planeetta ry Julkaisi: Kaanin Planeetta ry Päätoimitta: Jari J.S. Heikkinen Ilmestyminen: Kolme numeroa vuodessa (huhtikuu, elokuu,

Lisätiedot

Lennä, kotka, lennä. Afrikkalainen kertomus. Mukaillut Christopher Gregorowski. Lennä, kotka, lennä

Lennä, kotka, lennä. Afrikkalainen kertomus. Mukaillut Christopher Gregorowski. Lennä, kotka, lennä Lennä, kotka, lennä Afrikkalainen kertomus Mukaillut Christopher Gregorowski Lennä, kotka, lennä 5 Muuan maanviljelijä lähti eräänä päivänä etsimään kadonnutta vasikkaa. Karjapaimenet olivat palanneet

Lisätiedot

Kaija Jokinen - Kaupantäti

Kaija Jokinen - Kaupantäti Kaija maitokaapissa täyttämässä hyllyjä. Kaija Jokinen - Kaupantäti Kun menet kauppaan, ajatteletko sitä mitä piti ostaa ja mahdollisesti sitä mitä unohdit kirjoittaa kauppalistaan? Tuskin kellekään tulee

Lisätiedot

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla Tähtitieteellinen merenkulkuoppi on oppi, jolla määrätään aluksen sijainti taivaankappaleiden perusteella. Paikanmääritysmenetelmänäon ristisuuntiman

Lisätiedot

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi)

Kenguru 2012 Junior sivu 1 / 8 (lukion 1. vuosi) Kenguru 2012 Junior sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Luontoreittien esteettömyyskartoitus

Luontoreittien esteettömyyskartoitus Luontoreittien esteettömyyskartoitus Evo, Hämeenlinna Evon alue on yksi Etelä-Suomen suurimmista metsäalueista. Evon retkeilyalueella kulkijan käytössä on yhteensä noin 8500 hehtaarin suuruinen alue, jossa

Lisätiedot

Kenguru 2016 Cadet (8. ja 9. luokka)

Kenguru 2016 Cadet (8. ja 9. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Numero 34. Turun Ursa r.y.

Numero 34. Turun Ursa r.y. Ceres Numero 34 Turun Ursa r.y. Ceres 34-2/01 Julkaisija: Turun Ursa r.y. Päätoimittaja: Juhana Ahlamo Ilmestyminen: 2-4 kertaa vuodessa Painos: 2 8 kpl Postiosoite: Turun Ursa r.y. Iso-Heikkilän tähtitorni

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen

Lisätiedot