3.6 Todennäköisyyden laskusääntöjä Onneksi ennalta arvaamaton todennäköisyys noudattaa täsmällisiä sääntöjä. Tutustutaan niistä keskeisimpiin.

Koko: px
Aloita esitys sivulta:

Download "3.6 Todennäköisyyden laskusääntöjä Onneksi ennalta arvaamaton todennäköisyys noudattaa täsmällisiä sääntöjä. Tutustutaan niistä keskeisimpiin."

Transkriptio

1 3.6 Todeäöisyyde lasusäätöjä 3.6 Todeäöisyyde lasusäätöjä Oesi ealta arvaamato todeäöisyys oudattaa täsmällisiä säätöjä. Tutustutaa iistä eseisimpii. Kertolasusäätö Tarastellaa esi tilaetta, jossa o asi sellaista satuaista tapahtumaa, jota umpiaa eivät vaiuta siihe, miä vaihtoehto toisessa toteutuu. Ne ovat siis asi toisistaa täysi riippumatota tapahtumaa. Normaalistiha me oletamme ilma muuta, että jos Sipi ja Sippo heittävät tiaa, ii toise oistumie ei saa toista hermostumaa eiä toise epäoi rohaise toista. Tämä oletus tehdää ysiertaisuude taia. Mutta tutitaa yt tapausta, joa asi vaihetta ovat riippumattomat jo periaatetasolta lähtie. Esimeri 9 Otetaa paasta ysi ortti, atsotaa se ja palautetaa taaisi. Otetaa toie ortti. Millä todeäöisyydellä molemmat ortit ovat patoja ( )? Rataisu Kosa esimmäiseä oleva ortti palautettii meillä o lupa olettaa, että satuaisee ohtaa paassa ii toise osto tulos ei riipu esimmäise osto tulosesta. Piirretää tilateesta uva. Kosa orttipaassa o eljä maata ja joaista maata o yhtä mota paa aiiaa 5 ortista, riittää u aavioo otetaa vai maat. Eri vaihtoehtoja tulee yhteesä 4 = 6 appaletta, miä o siis aiie tapauste luumäärä. Kute oheie tauluoi osoittaa, molemmat ortit ovat patoja vai yhdessä tapausessa oo 6 vaihtoehdo jouossa. Täte suotuisie tapauste määrä o ysi ja ysytty todeäöisyys o siis 6. Toisaalta, u esimmäie ortti vedetää, todeäöisyys sille, että saadaa pata, o 4. Kosa ortti palautettii, esimmäie tulos ei vaiuta toisee, jote todeäöisyys, että myös toie ortti o pata, o sama ja = Vastaus: TN(Molemmat ortit patoja) = 6. Jos Esimeri 9 orttia ei olisi palautettu, olisi paassa ysi ortti vähemmä toista ostoa varte, miä muuttaisi tulose. Esimeri 9 säätö o voimassa aia, u tehdää asi tai useampi toisistaa riippumato oe. Sitä saotaa riippumattomie tapauste ertolasusääösi. Tiivistetää tämä säätö vielä yhtälösi. (5)

2 3.6 Todeäöisyyde lasusäätöjä Oloo tapause A todeäöisyys p(a) ja tapause B todeäöisyys p(b). Tapause A ja B todeäöisyys o erilliste tapauste A ja B tulo. Riippumattomie tapauste ertolasusäätö: P(A ja B) = P(A) P(B). Kertolasusäätöä voi usei soveltaa perääisii tapausii, vaia aiemmat tapauset vaiuttaisivati myöhempii tulosii. Seuraavaa eräs tyypillie tapaus. Esimeri 0 Otetaa orttipaasta olme orttia ysitelle ja palauttamatta. Millä todeäöisyydellä aii olme orttia ovat ruutuja? Rataisu Kysymys voidaa esittää myös muodossa Millä todeäöisyydellä esimmäie paasta vedetty ortti o ruutu JA toie paasta vedetty ortti o ruutu JA olmas paasta vedetty ortti o ruutu, u ortteja ei palauteta. Kosa esitetty ysymys o siis ja muotoa, ertolasusäätö pätee. Ku 3 esimmäie ortti vedetää, todeäöisyys, että saadaa ruutu o =. Ku toie ortti 5 4 vedetää eiä esimmäistä palautettu, jäljellä o 5 orttia. Jos esimmäie ortti oli ruutu, jäljellä o ruutua. Nyt päättelemme, jos esimmäie oli ruutu, todeäöisyys, että toiei o ruutu o ja todeäöisyys, että esimmäie ja toie ovat ruutuja o äitte 5 3 todeäöisyysie tulo: P(. ja. ortti o ruutu) =. 5 5 Kolmae orti todeäöisyys lasetaa vastaavalla tavalla. Todeäöisyys, että olmasi 3 ortti o ruutu, o. Täte todeäöisyys, että aii olme ovat ruutuja o tulo Se liiarvo 0,03. Vastaus: Todeäöisyys, että olme perääi palauttamatta otettua orttia ovat patoja, o 0,03. Esimeri Jäätelöä myydää purissa, tötterössä, tuutissa ja laatiossa. Maut ovat vailja, sulaa, masia, pääryä, appelsiii ja sametti. Oletetaa, että aii maut ja paausmuodot ovat yhtä suosittuja. Millä todeäöisyydellä satuaisesti valittu asiaas valitsee samettijäätelö purii laitettua? Rataisu Kosa puri todeäöisyys o 4 ja sameti todeäöisyys o 6, ii puri ja sameti todeäöisyys o = Vastaus: Todeäöisyys, että satuaie asiaas valitsee samettia purissa, o 0,04. (5)

3 3.6 Todeäöisyyde lasusäätöjä Esimeri Sateri heittää oppaa, joa o paiotettu site, että yöe tulee asi ertaa ii suurella todeäöisyydellä ui miä tahasa muista viidestä silmäluvusta, joilla puolestaa ullai o sama todeäöisyys. Millä todeäöisyydellä Sateri saa perääisistä heitoista tuloset, ja 3? Rataisu Yöse todeäöisyys o siis 7 ja ui muu silmäluvu todeäöisyys o 7. Kysytty todeäöisyys o siis p(esimmäisellä ja toisella ja olmaella 3) = = 0, Vastaus: P(esimmäisellä ja toisella ja olmaella 3) = 0,006. Esimeri 3 Kesilaatiossa o tähdemuotoisia ja pyöreitä esejä yhteesä 69 appaletta. Todeäöisyys sille, että asi perääi umpimähää valittua esiä ovat molemmat pyöreitä, o. Kuia 46 mota pyöreää esiä laatiossa o? Rataisu Meritää pyöreitte esie luumäärää x:llä, jolloi todeäöisyys, että esimmäie esi o pyöreä, o 69 x. Jos esimmäie valittu esi oli pyöreä, toiei o pyöreä todeäöisyydellä x. Kosa P(. esi o pyöreä ja. esi o pyöreä) = x, saadaa yhtälö x = Tämä yhtälö rataisu o x = 34 tai x = 33. Kosa esejä ei voi olla egatiivista määrää, aioasi rataisusi jää x = 34. Taristetaa Jos pyöreitä esejä o 34 appaletta, ii tähdemuotoisia o 35 appaletta ja P(asi pyöreää esiä perääi) = =, ute piti Vastaus: Laatiossa o 34 pyöreää esiä. Yhteelasusäätö Missä tilateissa todeäöisyysiä voi lasea yhtee ja millä tavalla liittyy rataisevasti siihe, ovato tapauset jouo-opi mielessä erilliset vai ei. Sisi haluat ehä errata MAB: jouoopi osuude viimeistää yt ee ui jatat tätä urssia. Ajatellaa ahta tapausta A ja B. Ne o määritelty joi ehdo avulla, joa rajaa iitte suotuisie tapauste jouot aiie tapauste jouosta. Meritää tapause A suotuisie tapauste jouoa {A}:lla ja vastaavasti B: suotuisie tapauste jouoa {B}:llä. Silloi saotaa, että tapauset A ja B ovat erilliset eli toisesa poissulevat, jos iitte suotuisie tapauste jouoilla ei ole yhteisiä alioita eli jos { A } { B} = φ. Tämä taroittaa sitä, että jos A tapahtuu, ii B ei tapahdu ja päivastoi. 3(5)

4 3.6 Todeäöisyyde lasusäätöjä Tapauset A ja B ovat toisesa poissulevat eli erilliset, jos { A } { B} = Φ Esimerisi opaheitossa seuraavissa ahdessa tilateessa tapauset A ja B ovat erilliset A = {saadaa parillie silmäluu}, B = {saadaa parito silmäluu} A = {saadaa tai 3}, B = {saadaa tai 4}, mutta seuraavissa ahdessa tilateessa A ja B eivät ole erilliset A = {silmäluu o jaollie olmella}, B = {saadaa parillie silmäluu}: tapaus silmäluu A B = 6 6 o molempie suotuisie tapauste jouossa eli { } { } { } A = {,4,5}, B = {saadaa parito silmäluu}: { A } { B} = { 5}. Palataa hippihyppiäiste parii tutimaa heidä heilöohtaisia omiaisuusiaa. Saamme erätysi tiedot, jota esitellää ja joita sovelletaai aiai heti Esimerissä 4. Esimeri 4 Kaiista hippihyppiäisistä 55% o vastaarvaisia ja loput 45% ovat tauarvaisia. Vastaarvaisista hippihyppiäisistä 30% o hitaita, u taas tauarvaiste hippihyppiäiste jouossa ei ole hitaita olleaa. Lisäsi vastaarvaisista hippihyppiäisistä 40% o iharaturisia, samoi tauarvaisista hippihyppiäisistä 40% o iharaturisia. Kuia suuri osa aiista hippihyppiäisistä o a) hitaita tai tauarvaisia? b) iharaturisia c) tauarvaisia tai iharaturisia? Rataisu Piirretää tilateesta aavio, joa lieee helpompi mieltää ui luettelo. Huomaa uitei, että oheise uvio eri osie aloje suhteet eivät ole mittaaavassa yllä lueteltuje omiaisuusie osuusie assa. Vastaarvaiset Kaii hippihyppiäiset Tauarvaiset Hitaat Kiharaturiset 4(5)

5 3.6 Todeäöisyyde lasusäätöjä Lasetaa vielä muutama luuarvo ee ui vastataa esitettyihi ysymysii. Vastaarvaiset 55% aiista Tauarvaiset 45% aiista Vastaarvaiset hitaat: 0,30 55% = 6,5% aiista. Vastaarvaiset iharaturiset: 0,40 55% = % aiista. Tauarvaiset iharaturiset: 0,40 45% = 8,0% aiista. Seuraavissa laselmissa prosettiosuudet samaistetaa asiaomaise jouo alioide luumäärällä. a) Kosa hitaita hippihyppiäisiä löytyy vai vastaarvaiste hippihyppiäiste jouosta, 30% aiista hippihyppiäisistä sisältää aii hitaat tai tauarvaiset hippihyppiäiset. Vastaus: Hitaita tai tauarvaisia hippihyppiäisiä 30% aiista hippihyppiäisistä. b) Kute aavioo o jo lasettu, vastaarvaisia iharaturisia hippihyppiäisiä o % aiista hippihyppiäisistä ja tauarvaisia iharaturisia hippihyppiäisiä o 8% aiista hippihyppiäisistä eivätä ämä asi jouoa leiaa, o iharaturisia hippihyppiäisiä yhteesä %-ys + 8%-ys = 40% aiista hippihyppiäisistä. Vastaus: Kiharaturisia hippihyppiäisiä o 40% aiista hippihyppiäisistä. c) Tauarvaisia hippihyppiäisiä o 45% aiista hippihyppiäisistä. Tämä luu sisältää myös tauarvaiset iharaturiset hippihyppiäiset. Kosa vastaarvaisia iharaturisia hippihyppiäisiä o % aiista hippihyppiäisistä, o iitä hippihyppiäisiä, jota ovat tauarvaisia tai iharaturisia yhteesä %-ys + 45%-ys = 67%. Toie tapa rataista tämä ohta perustuu suoraa jouo-opi tietoihi eli urssi MAB tietoihi. Jouo-opista tiedämme, että ahde jouo vaiapa jouot A ja B uioi alioitte luumäärä ei ole sama ui äitte jouoje alioitte summa. Tämä johtuu siitä, että lasemalla A: ja B: alioitte summa tulemme laseeesi iitte yhteiset aliot eli jouo A B aliot ahtee ertaa. Oiea tulose saamisesi äitte yhteiste alioitte luumäärä täytyy vähetää summasta. Meritää yt tauarvaiste hippihyppiäiste jouoa irjaimella A ja iharaturiste hippihyppiäiste jouoa irjaimella B. Silloi {x x o tauarvaie hippihyppiäie TAI x o iharaturie hippihyppiäie} = B # A B = #A + #B - # A B = A ja ( ) ( ) 5(5)

6 3.6 Todeäöisyyde lasusäätöjä 45%-ys + 40%-ys 8%-ys = 67%. Kosa A B = {Tauarvaiset iharaturiset # A B = 8% aiista hippihyppiäisistä. hippihyppiäiset}, ii ( ) Vastaus: Tauarvaisia tai iharaturisia hippihyppiäisiä o 67% aiista hippihyppiäisistä. Huomaa, että äseisessä esimerissä lasettii yhtee esiäi prosettiysiöitä ja toisesi imeomaa yhteismitallisia prosettiysiöitä. Taroita tässä yhteismitallisuudella sitä, että yhteelasettavat osuudet olivat osuusia samasta jouosta, joa tällä ertaa oli aiie hippihyppiäiste jouo. Äseie esimeri motivoi yhdessä jouo-opi assa seuraavat lasusääöt. Oloot A ja B asi tapahtumaa. Tapahtumie todeäöisyysie yhteelasusäätö: P(A tai B) = P(A) + P(B) P(A ja B) eli P( A B ) = P(A) + P(B) P( A B ) Jos A ja B ovat asi erillistä tapahtumaa eli jos B = Φ 0 ja P( A B ) = P(A) + P(B) P( A B ) = P(A) + P(B). A, ii ( A B) # = 0, jote P( A B ) = Erilliste tapahtumie yhteelasusäätö: P(A tai B) = P(A) + P(B) Huomaa, että u saotaa, että tapahtuu A tai B, ii silloi tapahtuu pelästää A tai tapahtuu pelästää B tai 6(5)

7 3.6 Todeäöisyyde lasusäätöjä tapahtuu seä A että B Esimeri 5 Korttipaasta otetaa asi orttia palauttamatta. Millä todeäöisyydellä a) esimmäie ortti o puaie tai ymppi b) esimmäie tai toie ortti o ymppi? Rataisu a) Puaisia o orttipaa orteista puolet eli 6 appaletta ja ymppejä o eljä. Siis P(puaie tai ymppi) = P(puaie) + P(ymppi) P(puaie ymppi) = = Vastaus: P(puaie tai ymppi) 0,56. b) Jaetaa tilae osii. Esimmäie tai toie ortti o ymppi o sama asia ui esimmäie ortti o ymppi ja toie ortti o joi muu tai toie ortti o ymppi ja esimmäie o joi muu tai molemmat ortit ovat ymppejä, jote: P(esimmäie tai toie ortti o ymppi) = P(esimmäie ortti o ymppi ja toie ortti o joi muu tai toie ortti o ymppi ja esimmäie joi muu tai molemmat ortit ovat ymppejä). Lasetaa ui todeäöisyys erisee. Esimmäie ortti o ymppi ja toie ortti o joi muu: P(esimmäie ortti o ymppi ja toie ortti o joi muu) = P(esimmäie ortti o ymppi) P(toie ortti o joi muu) = =. 5 5 Toie ortti o ymppi ja esimmäie o joi muu: P(toie ortti o ymppi ja esimmäie o joi muu) = P(toie ortti o ymppi) P(esimmäie o joi muu) = =. 5 5 Molemmat ortit ovat ymppejä: P(esimmäie ortti o ymppi ja toie ortti o ymppi) = P(esimmäie ortti o 4 3 ymppi) P(toie ortti o ymppi) = =. 5 5 Kaii olme tapausta ovat erilliset, sillä esimerisi jouo {esimmäie ortti o ymppi ja toie ortti o joi muu} {toie ortti o ymppi ja esimmäie o joi muu} o tyhjä. Kysytty todeäöisyys saadaa silloi lasemalla eri tapauste todeäöisyydet yhtee, jote ysytty todeäöisyys o + + = 0, 5. Vastaus: P(esimmäie tai toie ortti o ymppi) 0,5. Esimeri 6 Jos satee todeäöisyys o huomea ja ylihuomea, uai päivää erisee 70%, ii millä todeäöisyydellä a) vai toisea päivää sataa b) ei sada umpaaaa päivää? Rataisu 7(5)

8 3.6 Todeäöisyyde lasusäätöjä a) Vai toisea päivää sataa o sama asia ui, että sataa joo huomea ja ylihuomea ei sada tai ylihuomea sataa ja huomea ei sada. Nämä tapahtumat ovat erilliset. Kosa P(huomea sataa ja ylihuomea ei sada) = 0,7 0,3 = 0,. P(huomea ei sada ja ylihuomea sataa) = 0,7 0,3 = 0,. ii P(vai toisea päivää sataa) = 0, + 0, = 0,4. Vastaus: P(vai toisea päivää sataa) = 0,4. b) Ei sada umpaaaa päivää tapahtuu tarallee silloi, u ei sada huomea ja ei sada ylihuomea tapahtuu. Siis P(ei sada umpaaaa päivää) = P(ei sada huomea) P(ei sada ylihuomea) = 0,3 0,3 = 0,09. Esimeri 7 Millä todeäöisyydellä satuaisesti valittu olmiumeroie luoollie luu o a) parillie b) jaollie olmella c) jaollie ahdella tai olmella? Rataisu Piei olmiumeroie luoollie luu o 00 ja suuri 999. Niitä o 900 appaletta. a) Joa toie luoollie luu o parillie, jote välillä [00;999] iitä o 450 appaletta. Kaiie tapauste jouossa o siis 900 aliota ja suotuisie tapauste jouossa 450 aliota, 450 jote ysytty todeäöisyys o eli 0, Vastaus: TN(parillie olmiumeroie luoollie luu aetulla välillä) = 0,5. b) Piei olmella jaollie, olmiumeroie luoollie luu o 0, seuraava o 05 ja ii edellee ues suuri olmella jaollie, olmiumeroie luoollie luu o 999. Niitä 300 o siis 300 appaletta, jote ysytty todeäöisyys o = Vastaus: TN(olmella jaollie olmiumeroie luoollie luu aetulla välillä) = 0,33. c) Kosa o olemassa aetut ehdot täyttäviä luuja, jota ovat jaollisia seä ahdella että olmella, ei todeäöisyysiä voi lasea suoraa yhtee, vaa summasta o väheettävä yhteiste alioitte todeäöisyys. Luu, joa o jaollie seä ahdella että olmella, o jaollie uudella. Piei ehdot täyttävä olmiumeroie luu o 0 ja suuri 996, jote iitä o 50 appaletta. Tästä 50 saadaa, että P(ahdella ja olmella jaollie) = P(uudella jaollie) = =, josta edellee P(ahdella tai olmella jaollie) = + = Vastaus: TN(jaollie ahdella tai olmella) = 0,67. Esimeri 8 8(5)

9 3.6 Todeäöisyyde lasusäätöjä Kasaivälise oouse osallistuu 00 heilöä eri asallisuusista. Näistä 00 heilöstä 56 aattaa alastusiitiöide pieetämistä maailmalaajuisesti. Samoista 00 oousedustajasta 6 o tullut valitusi puheejohtajisi eri valioutii ja äistä uudesta asi uuluu jouoo, joa aattaa alastuse vähetämistä. Millä todeäöisyydellä satuaisesti valittu oousedustaja aattaa alastuse vähetämistä tai o valioua puheejohtaja? Rataisu Kosa jouoissa aattaa alastuse vähetämistä ja valioua puheejohtaja o yhteisiä jäseiä maiitut asi heeä o äytettävä yleisempää tapahtumie todeäöisyysie yhteelasusäätöä. Saadaa P(aattaa pieempiä iitiöitä tai o valioua puheejohtaja) = P(aattaa pieempiä iitiöitä) + P(o valioua puheejohtaja) P (aattaa pieempiä iitiöitä ja o valioua puheejohtaja) = + = = 0, Vastaus: Satuaisesti valittu oousedustaja aattaa alastuse vähetämistä tai o valioua puheejohtaja todeäöisyydellä 0,30. Komplemeti todeäöisyys Ku oripalloilija heittää vapaaheittoa, häellä o asi mahdollisuutta: hä joo saa ori tai ei saa oria. Tilae, jossa hä seä saa ori että ei saa oria yhdellä heitolla uulostaa absurdilta; ii ei tapahdu. Kosa varma tapause todeäöisyys o, ii tapause oripalloilija saa ori tai ei saa oria vapaaheitossa todeäöisyys o. Kosa ämä asi vaihtoehtoa ovat myös erilliset, saadaa yhtälö TN(saa ori) + TN(ei saa oria) =. Sovelletaa tätä ajatusta seuraavassa esimerissä. Esimeri 9 Kolme oripalloilijaa, heilöt A, B ja C, heittävät vapaaheito ohi todeäöisyysillä vastaavasti 5%, 0% ja 5%. Heitetää ysi ierros. Millä todeäöisyydellä a) uaa ei oistu b) vai ysi oistuu c) aiai ysi oistuu? Rataisu Jos oripalloilija A todeäöisyys heittää ohi o 5%, ii todeäöisyys, että hä oistuu heitossa, o edellä oleva päättely ojalla 00% 5% = 95% = 0,95. Vastaavalla tavalla pelaajat B ja C oistuvat heitossa todeäöisyysillä 0,90 ja 0,85. a) Kuaa ei oistu tapahtuu tarallee silloi, u aii heittävät ohi eli A heittää ohi ja B heittää ohi ja C heittää ohi. P(A heittää ohi ja B heittää ohi ja C heittää ohi) = P(A heittää ohi) P(B heittää ohi) P(C heittää ohi) = 0,05 0,0 0,5 = 0, Vastaus: Todeäöisyys, että aii heittävät ohi o oi 0,00075 eli luultavasti aii eivät heitä ohi. b) Tapaus vai ysi oistuu toteutuu, u tapaus A oistuu tai B oistuu tai C oistuu toteutuu ja tämä puolestaa, u tapaus A oistuu ja B ja C eivät oistu tai B oistuu ja A ja C eivät oistu tai C oistuu ja A ja B eivät oistu toteutuu. Tapauset, jota tuossa listassa erotetaa tai - oetiivilla ovat erilliset, jote TN(A oistuu ja B ja C eivät oistu tai B oistuu ja A ja C eivät oistu tai C oistuu ja A ja B eivät oistu) = 0,95 0,0 0,5 + 0,05 0,90 0,5 + 0,05 0,0 0,85 = 0,055. Vastaus: TN(vai ysi oistuu) = 0,055 eli oi 0,03. 9(5)

10 3.6 Todeäöisyyde lasusäätöjä c) Tapaus aiai ysi oistuu toteutuu tarallee silloi, u tapaus uaa ei oistu ei toteudu. Nämä tapauset ovat erillise ja lisäsi iistä toie toteutuu joa tapausessa. Siis TN(aiai ysi oistuu) = TN(uaa ei oistu) = 0,055 = 0, Vastaus: TN(aiai ysi oistuu) = 0,97. Tapahtumat A saa ori ja A heittää ohi ovat toistesa vastatapahtumat eli toistesa egaatiot eli e ovat erilliset, mutta toie iistä tapahtuu. Jouo-opillisesti tapahtuma ja se vastatapahtuma ovat toistesa omplemetit. Meritää tapahtuma A ieltoa (tai se omplemettia tai se egaatiota ) symbolilla A. Silloi, ute edellä oieastaa jo saottii, o p( A A) = p( A ) + p( A ) p( A A) = p( A ) + p( A ) p( Φ ) = p( A ) + p( A ) 0 = p( A ) + p( A ), osa tyhjä jouo Φ todeäöisyys eli p( Φ ) o olla. Lisäsi p( A ) + p( A ) =. Tapahtuma A ja se omplemeti eli iello A välillä o yhteys p(a) + p( A ) = Yleesä tätä yhtälöä sovelletaa aava p(a) = p( A ) avulla. Esimeri 30 Heitetää olioa olme ertaa. Millä todeäöisyydellä saadaa aiai ysi ruua? Rataisu Tapause aiai ysi ruua egaatio o ei saada yhtää ruuaa, joa puolestaa tapahtuu tarallee silloi, u tapahtuu esimmäisellä laava ja toisella laava ja olmaella laava. Siis TN(aiai ysi ruua) = TN(esimmäisellä laava ja toisella laava ja olmaella laava) = 3 = 8 = 8 7. Vastaus: TN(aiai ysi ruua) = 8 7. Esimeri 3 Kolmea päivää säätilae o seuraava uai päivää: 0(5)

11 3.6 Todeäöisyyde lasusäätöjä Sataa todeäöisyydellä 0,5 O tihusadetta todeäöisyydellä 0,4 O poutaa todeäöisyydellä 0, Millä todeäöisyydellä joa päivä sataa tai o tihusadetta? Rataisu Tapahtuma sataa tai o tihua omplemetti o o poutaa. Siis TN(sataa tai o tihua) = 0, 3 = 0,. TN(o poutaa) = 0,, jote TN(päivä sataa tai o tihua) = ( ) 79 Vastaus: TN(sataa tai o tihua) = 0,73. Esimeri 3 Laatiossa o 6 palloa. Niistä puolet o puaisia ja puolet siisiä. Otetaa olme satuaista palloa. Millä todeäöisyydellä a) ysiää puaie pallo ei tule valitusi b) valitusi tulee aiai ysi puaie pallo? Rataisu Tämä rataisu voidaa rataista raa alla työllä eli laatimalla tauluo. Lase harjoitustehtävää tehtävä tauluo avulla ja vertaa tulosiasi äihi miu tulosiii, jota saa toisella tavalla. a) p(esimmäie ei ole puaie ja toie ei ole puaie ja olmas ei ole puaie) = 3 p(esimmäie o siie ja toie o siie ja olmas o siie) = = b) Tapause valitusi tulee aiai ysi puaie omplemetti o valitusi ei tule ysiää puaie pallo. Viimesi maiittu tapahtuu, jos aii valitut pallot ovat siiset. Siis TN(aiai ysi puaie) = TN(aii valitut pallot ovat siiset) = TN(. o 9 siie) TN(. o siie) TN(3. o siie) = =. 0 0 Esimeri 33 Tuotatoerästä valitaa satuaisesti asi tuotetta. Todeäöisyys, että iistä vähitää toie o viallie, o %. Kuia mota prosettia tuotatoerästä o viallisia? Rataisu Tapause vähitää toie o viallie omplemetti o umpiaa ei ole viallie. Meritää irjaimella x todeäöisyyttä, jolla ysittäise tuote o virheetö. Silloi p(molemmat ovat virheettömät) = x ja p(vähitää toie o virheellie) = x, jote saadaa yhtälö x = % = 0,0. Se rataisut ovat x = 0, 995 tai x = 0, 995. Kosa todeäöisyys o aia vähitää olla, egatiivie rataisu hylätää. Saatii siis tulos, että ysittäie tuote o virheetö todeäöisyydellä 0,995, josta edellee todeäöisyys sille, että ysittäie tuote o virheellie, o 0,995 = 0,005 = 0,5%. Tuloperiaate ja ombiaatiot Olemme jo äsitelleet esimerejä, joissa o ollut ysymys perääiste valitoje teemisestä. Vaihtoehtoje ooaismäärä saatii iissä aiissa ertomalla ysittäiste, perääi tehtävie (5)

12 3.6 Todeäöisyyde lasusäätöjä valitoje vaihtoehdot eseää. Tätä periaatetta saotaa tuloperiaatteesi. Aiai Esimerissä 9 tätä periaatetta sovellettii. Esimerie 9 ja 0 välissä määriteltii ertoma futio. Sitä sovellettii Esimereissä 0. Otetaa vielä ysi ertoma äyttöö liittyvä esimeri. Esimeri 34 Toilla o uusi mappia, eljä siistä ja asi puaista. Kiireissää hä heittää mapit hyllyy satuaisee järjestysee. Millä todeäöisyydellä molemmat puaiset tulevat hyllyy perääi? Rataisu Kosa erilaisia mappie järjestysiä o olemassa 6 appaletta, ii aiie tapauste jouossa o 6 aliota. Siiset mapit voidaa järjestää rivii 4 eri tavalla ja molemmat puaiset riaai viitee eri paiaa siiste mappie välii tai rivi jompaaumpaa päähä. Kosa puaisilla mapeilla o eri esiäistä järjestystä, suotuisie tapauste luumäärä o 4 5. Täte 5 4 ysytty todeäöisyys o = = 0, Vastaus: Puaiset ovat perääi todeäöisyydellä 0,33. Saastoa Ku jouosta valitaa osajouoja, ute Esimerissä 3, missä äsiteltii ahde alio osajouoje valitsemista eljä alio jouosta ja missä järjestysellä o väliä, vaihtoehtoja saotaa edellee Esimeri3 tilatee muaisesti ahde alio permutaatioisi. Kahde alio permutaatioita huomattii appaletta. Silloi, u alioide järjestysestä ei välitetä, vaihtoehtoja saotaa ombiaatioisi ja Esimerissä 3 siis ahde alio ombiaatioisi. Esimerissä 3 ahde alio ombiaatioita löydettii uusi appaletta. Valtauallisessa lottoarvoassa o ysymys seitsemä alio siis seitsemä pallo ombiaatiosta. Lotossaha arvotaa 7 palloa 39 pallosta. Näitte äsitteitte eglaiieliste imie arvaamie ei ole vaieaa: permutatio ja combiatio. Matematiia alaa, joa tutii vaihtoehtoje määriä, saotaa ombiatoriiasi. Käsitteellä ombiaatio taroitetaa osajouo valitsemista site, että alioitte valitsemise järjestysee ei iiitetä huomiota. Esimerisi, u valitaa 0 aliosta 3 eiä järjestysellä ole väliä, valitaa 0 alio 3 alio ombiaatio. Yleisesti : alio jouo : alio ombiaatio ottamie taroittaa sitä, että jouosta, jossa o aliota, valitaa : alio osajouo. Lasuaava johtamista varte palataa iha hetesi äseistä tilaetta edeltävä tilateesee, eli tilateesee, jossa järjestysellä vielä o väliä. Oloo meillä siis jouo N, jossa o aliota eli #N =. Otetaa tästä jouosta ysi alio. Vaihtoehtoja o appaletta. Valitaa sitte toie alio, jolloi vaihtoehtoja o appaletta. Jatetaa äi ues aii maiitut aliota o valittu. Vaihtoehtoja o aiiaa tähä meessä siis ( ) ( ) ( + ). Jatetaa tätä tuloa eli laveetaa se luvulla ( ): (5)

13 3.6 Todeäöisyyde lasusäätöjä 3(5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) laveetaa = = = + + = Huomaa tässä, luu + = ( ) o yhtä suurempi ui luu, joa puolestaa o yhtä suurempi ui luu. Kaii olme ovat siis perääisiä luuja, ute pitäisii, jotta ertoma futio määritelmä ehdot täyttyisivät. Tämä aava johtamie aloitettii toteamalla, että järjestysellä o väliä. Hylätää yt tämä ja palataa äi lopultai tilateesee, joho alu peri piti: alioitte järjestysellä ei ole väliä. Tämä tapahtuu site, että poistetaa alioitte järjestysestä johtuvat ylimääräiset vaihtoehdot jaamalla oitte ylimääräiste järjestyste määrällä, joa o, osa aliota voidaa järjestää eri järjestysee. Tulos o ( ). Tämä luu ilmoittaa siis luumäärä, uia moella tavalla : alio jouosta voidaa ottaa : alio osajouo. Sille o olemassa iha oma meritäsäi: ( ) =. Meritä luetaa yli :. Luu o myös biomierroi eli ( ) = = + i i i b a i b a 0. Huomaa, että meriässä ei ole tavuviivaa : ja : välissä. Saatii siis tulos: Jouosta, jossa o aliota, voidaa ottaa : alio osajouo ( ) = eri tavalla.

14 3.6 Todeäöisyyde lasusäätöjä Huomaa, että moet lasimet atavat suoraa futio yli :. Sitä meritää lasimissa usei Cr:llä. Jos siu lasimessasi o tämä toimito, et joudu turvautumaa määritelmää ja siiä esiityvää ertoma futioo. Seuraavassa esimerissä jouue Pea, Matti, Jua, Juhai ja Hau o luoollisesti sama ui jouue Hau, Matti, Jua, Juhai ja Pea. Jouo-opista muistat, että myösää ja imeomaa jouo alioide järjestysellä ei ole väliä. Esimeri 35 Luoassa o 8 oppilasta. Heistä valitaa viide hege jääieojouue oulujevälisee turausee. Kuia moella eri tavalla jouue voidaa valita, jos aii ovat ehdoaia? Rataisu Kysymys o siis viide hege osajouo valitsemisesta 8 oppilaa jouosta. Se voidaa tehdä 8 yli viidellä eri tavalla eli 8 8 = = 5 5 ( 8 5 ) = 8568 eri tavalla. Vastaus: Jouue voidaa valita 8568 eri tavalla. Esimeri 36 Lotossa arvotaa 39 umeroidusta pallosta seitsemä palloa ja lisäsi ylimääräiset olme palloa. Näitä ylimääräisiä palloja utsutaa lisäumeroisi. Lottoaja yrittää arvata seitsemä varsiaista umeroa. Lisäumerot arvotaa tässä mielessä irjaimellisesti ylimääräisiä. Millä todeäöisyydellä lottoaja saa a) 7 oiei b) uusi ja yhde lisäumero? Rataisu 39 a) Kosa 7 palloa voidaa valita 39 pallosta eri tavalla, ii 7 oiei todeäöisyys o 7 8 = = 6,5 0 eli oi 6,5 sadasmiljooasosaa Vastaus: 7 oiei todeäöisyys o 6, b) Kaiie tapauste jouossa o aliota. Kosa uusi umeroa voidaa valita seitsemästä umerosta ja osa arvottavat olme lisäumeroa - ertaistavat eli 6 olmiertaistavat voito mahdollisuude ja samalla pieetävät voittosummaa ii 7 suotuisia tapausia o 3 appaletta. Todeäöisyys saada uusi ja lisäumero o siis 6 4(5)

15 3.6 Todeäöisyyde lasusäätöjä = = = 0, Vastaus: TN(uusi ja lisäumero) = 0, (5)

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Laskennallisen kombinatoriikan perusongelmia

Laskennallisen kombinatoriikan perusongelmia Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

Kiinteätuottoiset arvopaperit

Kiinteätuottoiset arvopaperit Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

3.6. Geometrisen summan sovelluksia

3.6. Geometrisen summan sovelluksia Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

3.9. Mallintaminen lukujonojen avulla harjoituksia

3.9. Mallintaminen lukujonojen avulla harjoituksia 3.9 Mallitamie lukujooje avulla harjoituksia 3.9. Mallitamie lukujooje avulla harjoituksia Lukujoo määritelmä harjoituksia 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää Todeäköisyyslasketa sivuaieopiskelijoille Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 5 1.3 Aksiomaattie todeäköisyys 7 1.4 Ehdollie todeäköisyys 12

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus

KERTAUSHARJOITUKSIA. Tilastojen esittäminen. 212. a) 15-19 vuotiaita tyttöjä 156 377 Koko väestö 5 219 732 156 277 Näiden tyttöjen osuus KERTAUSHARJOITUKSIA Tilastoje esittämie. a) -9 vuotiaita tyttöjä 377 Koko väestö 9 73 77 Näide tyttöje osuus 3, 0 % 9 73 b) Pojat ja tytöt: 3 377 + 77 = 39 4 39 4 Osuus koko väestöstä, % 9 73 c) Ikäluokka

Lisätiedot

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa

Lisätiedot

7303045 Laaja matematiikka 2 Kevät 2005 Risto Silvennoinen

7303045 Laaja matematiikka 2 Kevät 2005 Risto Silvennoinen 7303045 Lj mtemtii 2 Kevät 2005 Risto Silveoie. Luusrjt Kos srjt ovt summie jooj, ertmme esi jooje teori. Joot Joo o mtemtii iei perustvimpi äsitteitä j se vull ohdt äärettömyys esimmäistä ert. Luulueit

Lisätiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

Todennäköisyyslaskenta I. Heikki Ruskeepää Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus

Lisätiedot

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut: Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

KIIKUNJOEN KALATALOUDELLINEN TARKKAILU VUONNA 2009

KIIKUNJOEN KALATALOUDELLINEN TARKKAILU VUONNA 2009 KIIKUNJOEN KALATALOUDELLINEN TARKKAILU VUONNA 2009 Kymijoe vesi ja ympäristö ry: julaisu o 199/2010 Jussi Mätye ISSN 1458-8064 TIIVISTELMÄ Tässä raportissa äsitellää Kiiu-, Savero- ja Silmujoe sähöoealastus-

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Bernoullijakauma. Binomijakauma

Bernoullijakauma. Binomijakauma Beroulljaauma Beroull oe o ahde mahdollse ulostulo oe, jossa taahtumsta äytetää mtysä ostume ja eäostume. Esmerejä: rahahetto (ruua ta laava), lase sytymä (tyttö ta oa), helö verryhmä ( ta c ), oselja

Lisätiedot

Kaupunkisuunnittelu 17.8.2015

Kaupunkisuunnittelu 17.8.2015 VANTAAN KAUPUNKI MIEIPITEIDEN KOONTI Kaupunisuunnittelu..0 MR :N MUKAISEEN KUUEMISKIRJEESEEN..0 VASTAUKSENA SAADUT MIEIPITEET JA KANNANOTOT ASEMAKAAVAN MUUTOKSESTA NRO 009, MARTINAAKSO YHTEENSÄ KANNANOTTOJA

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2 TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutitolautauta S tudetexamesämde MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 5.9. HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastauste piirteide ja sisältöje luoehdita ei sido ylioppilastutitolautaua arvostelua.

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802 Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

Esimerkki 2 (Kaupparatsuongelma eli TSP)

Esimerkki 2 (Kaupparatsuongelma eli TSP) 10 Esimerkki 2 (Kaupparatsuogelma eli TSP) Kauppamatkustaja o kierrettävä kaupukia site, että hä lähtee kaupugista 1 ja palaa sie sekä käy jokaisessa muussa kaupugissa täsmällee kerra. Matka kaupugista

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

MB5 YHTEENVETO. Todennäköisyyslaskenta

MB5 YHTEENVETO. Todennäköisyyslaskenta MB5 YHTEENVETO Todennäköisyyslaskenta Klassinen todennäköisyys Suotuisten tapahtumien lukumäärä Kaikkien mahdollisten tulosten lukumäärä k n Todennäköisyys = P (A) = suotuisat kaikki k n Todennäköisyys

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Laudatur 6 Todennäköisyys ja tilastot Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava

Laudatur 6 Todennäköisyys ja tilastot Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava Laudatur 6 Todeäköisyys ja tilastot Tarmo Hautajärvi Jukka Otteli Leea Walli-Jaakkola Opettaja aieisto Helsigissä Kustausosakeyhtiö Otava SISÄLLYS Toimiallisia tehtäviä...3 Ratkaisut kirja tehtävii...4

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

Nuo mainiot binomikertoimet

Nuo mainiot binomikertoimet Nuo maiiot biomiertoimet Osasto A umeroista osa a aii osasto B umerot o varustettu tähdellä Tällaisissa umeroissa esitety väittee todistus tai tehtävä rataisu esitetää osastossa C A Kertoimet a biomiaava

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

AMBIGUITEETTIONGELMA KANTOAALLONVAIHEMITTAUKSESSA. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut.

AMBIGUITEETTIONGELMA KANTOAALLONVAIHEMITTAUKSESSA. JUKKA TOLONEN Teknillinen korkeakoulu Maanmittaustieteiden laitos jotolone@cc.hut. MIGUITEETTIONGELM KNTOLLONVIHEMITTUKSESS JUKK TOLONEN Tenillinen oreaoulu Maanmittaustieteiden laitos otolone@cc.hut.fi . Johdanto Satelliittipaiannus perustuu vastaanottimen a satelliittien välisen etäisyyden

Lisätiedot

Tilapäinen vanhempainraha lapsen hoidon yhteydessä [Tillfällig föräldrapenning vid vård av barn]

Tilapäinen vanhempainraha lapsen hoidon yhteydessä [Tillfällig föräldrapenning vid vård av barn] Tilapäie vahempairaha lapse hoido yhteydessä [Tillfällig föräldrapeig vid vård av bar] Klicka här, skriv ev. Udertitel Lapset sairastuvat usei. Tämä vuoksi voit saada tilapäistä vahempairahaa, jos joudut

Lisätiedot

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja.

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja. POHDIN rojekti Jatkuva korko ja e Eksoettifuktioille voidaa johtaa omiaisuus f ( x) f (0) f( x). Riittää ku oletetaa, että f (0) o olemassa. Nyt eksoettifuktioide f( x) 2 x ja gx ( ) 3 x välistä yritää

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys. Luonnos 11.5.2012 aupan palveluveroselvitys Luonnos 11.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 1 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

Aikaisemmat selvitykset. Hammaslääkäriliitto on selvittänyt terveyskeskusten. terveyskeskusten hammaslääkäritilannetta

Aikaisemmat selvitykset. Hammaslääkäriliitto on selvittänyt terveyskeskusten. terveyskeskusten hammaslääkäritilannetta S E L V I T Y S Terveyskeskuste hammaslääkäritilae lokakuussa 2005 ANJA EEROLA, TAUNO SINISALO Hammaslääkäriliitto selvitti julkise ja yksityise sektori hammaslääkärie työvoimatilatee lokakuussa 2005 kahdella

Lisätiedot

Kombinatoriikka. Iiro Honkala 2015

Kombinatoriikka. Iiro Honkala 2015 Kombiatoriikka Iiro Hokala 2015 Sisällysluettelo 1. Haoi torit 1 2. Lokeroperiaate 3 3. Tuloperiaate 3 4. Permutaatioista ja kombiaatioista 4 5. Toistokombiaatioista 5 6. Biomikertoimista 5 7. Multiomikertoimista

Lisätiedot

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S 3.3. Aritmeettie summ 3.3. Aritmeettie summ Mikä olisi helpoi tp lske 0 esimmäistä luoollist luku yhtee? Olisiko r voim käyttö 0 + + + 3 + + 00 hyvä jtus? Tekiik vull se iki toimii. Fiksumpiki tp kuiteki

Lisätiedot

1.1 Luvut ja lukujoukot

1.1 Luvut ja lukujoukot Vahimmat tuetut todisteet lukuje käytöstä ovat vähitää 30 000 vuotta vahoja [Joh D Barrow: Lukuje taivas, Art House 1999]. Lukuja o tarvittu aiaki ilmaisemaa karjalauma koko. Siksi luvut ovat mahdollisesti

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

VITRA. Käyttöohje. Johdoton DECT-numeronäyttöpuhelin. 05/03wh

VITRA. Käyttöohje. Johdoton DECT-numeronäyttöpuhelin. 05/03wh VITA Käyttöohje Johdoto DCT-umeroäyttöpuheli 05/03wh Käsiosa Näyttö A Ateisymboli B Puhelimuistio N Akku täyä Z Akku tyhjä M Numeroäyttöluettelo T Puhelu L adsfree Sisäpuhelut/poisto Sisäpuhelut Asetuste

Lisätiedot

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012

Nurmijärven kunnan kaupan palveluverkkoselvitys 28.5.2012 aupan palveluveroselvitys 28.5.2012 aupan palveluveroselvitys 1 Sisällysluettelo 1 JOHDANTO 2 2 KAUPAN NYKYTILAN KARTOITUS JA KUVAUS 3 2.1 Vähittäisaupan toimipaiat ja myynti 3 2.2 Ostovoima ja ostovoiman

Lisätiedot

- menetelmän pitää perustua johonkin standardissa ISO 140-5 esitetyistä menetelmistä

- menetelmän pitää perustua johonkin standardissa ISO 140-5 esitetyistä menetelmistä RAKENNUKSEN ULKOVAIPAN ÄÄNENERISTYSTÄ KOSKEVAN ASEMAKAAVAMÄÄRÄYKSEN TOTEUTUMISEN VALVONTA MITTAUKSIN Mikko Kylliäie, Valtteri Hogisto 2 Isiööritoimisto Heikki Helimäki Oy Piikatu 58 A, 3300 Tampere mikko.kylliaie@helimaki.fi

Lisätiedot

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV Suomen Atuaariyhdistysen vuosioousesitelmä 27.2.2006 2 Sisällysluettelo: sivu 1. Tasoitusvastuujärjestelmän uvaus

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu

811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu 8111A Tietoraketeet ja algoritmit, 15-16, Harjoitus, Ratkaisu Harjoituksessa käsitellää asymptoottista merkitätapaa ja algoritmie aikakompleksisuutta. Tehtävä.1 a Oko f ( O( tai f (, ku 1 f ( f, 4 ( 5

Lisätiedot

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face S-114.240 Hahmontunnistus ihmisläheisissä äyttöliittymissä Kasvojen tunnistus ja identiteetin taristus: ZN-Face Kalle Korhonen sorhon@cc.hut.fi 13.4.2000 Tiivistelmä: Raportissa tutustutaan aupalliseen

Lisätiedot

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14). Auiteettiperiaate Huom 4 Jaksolliste suorituste periaate soveltuu luoollisesti laia- ja luottolaskelmii. Lähtökohtaisea yhtälöä o yhtälö (14). Auiteetti Nimellisarvoltaa K 0 suuruise laia maksuerä k, joka

Lisätiedot

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/

Lisätiedot

Määräys. sähköverkkotoiminnan tunnuslukujen julkaisemisesta. Annettu Helsingissä 2 päivänä joulukuuta 2005

Määräys. sähköverkkotoiminnan tunnuslukujen julkaisemisesta. Annettu Helsingissä 2 päivänä joulukuuta 2005 Dro 1345/01/2005 Määräys sähköverkkotoimia tuuslukuje julkaisemisesta Aettu Helsigissä 2 päivää joulukuuta 2005 Eergiamarkkiavirasto o määräyt 17 päivää maaliskuuta 1995 aetu sähkömarkkialai (386/1995)

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) 2012/MAT814 ISSN 1797-3457 (vekkojulkaisu) ISBN (PDF) 978-951-25-2408-2 TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Vaiheistettu heijastipita valemaalia Joha Ste, Päivi Koivisto, Ato Hujae, Tommi Dufva, VTT,

Lisätiedot

tilavuudessa dr dk hetkellä t olevien elektronien

tilavuudessa dr dk hetkellä t olevien elektronien Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors LAPPEENRANNAN TEKNILLINEN YLIOPISTO Tenillinen tiedeunta Ympäristöteniian oulutusohelma BH10A0300 Ympäristöteniian andidaatintyö a seminaari SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy

Lisätiedot

Kaurialan kaavarunko SITO OY, 31.1.2013

Kaurialan kaavarunko SITO OY, 31.1.2013 Kaurialan aavuno, 31.1.2013 Sisältö lusanat lusanat Kaupuniraenneanalyysi Suunnittelualueen nyytilanne Voimassa oleva asemaaava Nyyiset tontit Suunnitelma Rataisuvaihtoehdoista Suunnitelman havainneuva

Lisätiedot

Klassisen ja geometrisen todennäköisyyden harjoituksia

Klassisen ja geometrisen todennäköisyyden harjoituksia MAB5: Todennäköisyyden lähtökohdat Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c) saat parittoman pisteluvun?

Lisätiedot

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista Elementtimenetelmän peusteet. KEHÄRAKENTEET. leistä ehäaenteista Kehäaenteen osina oleat palit oiat ottaa astaan aiia annattimen asitusia, jota oat nomaali- ja leiausoima seä taiutus- ja ääntömomentti.

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

MATKUSTAJAKONE AIRBUS A380:N OHJAINPINNAN PAINON MINIMOINTI. Olli Norja Rakenteiden Mekaniikka, Vol. 37 Markus Aho No. 2, 2004, s.

MATKUSTAJAKONE AIRBUS A380:N OHJAINPINNAN PAINON MINIMOINTI. Olli Norja Rakenteiden Mekaniikka, Vol. 37 Markus Aho No. 2, 2004, s. MKUSJKOE IRBUS 38: OHJIPI PIO MIIMOII Olli orja Ratid Maiia, Vol. 37 Marus ho o., 4, s. 5-3 IIVISELMÄ ässä työssä o äsitlty omposiittis lamiaattirat paio miimoitia. Sovllusohta o matustajao irbus 38: ohjaipita

Lisätiedot

RuuviliitoSTEN. Sisällysluettelo

RuuviliitoSTEN. Sisällysluettelo RuuviliitoSTEN MITOITUS Sisällysluettelo 1 Yleistä... 1.1 Kansiruuvit... 1. Itseporautuvat ruuvit... Esiporaus... 3 Materiaalit... 3 4 Kuormitustapa... 4 5 Leiausrasitettu ruuvi... 4 5.1 Itseporautuvat

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 202 2 TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN ERITYISPERUSTEET Voimaantulosäännöset Perusteen 20.2.2006 oimaantulosäännös

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan?

8.2. Permutaatiot. Esim. 1 Kirjaimet K, L ja M asetetaan jonoon. Kuinka monta erilaista järjes-tettyä jonoa näin saadaan? 8.2. Permutaatiot Esim. 1 irjaimet, ja asetetaan jonoon. uinka monta erilaista järjes-tettyä jonoa näin saadaan? Voidaan kuvitella vaikka niin, että hyllyllä on vierekkäin kolme laatikkoa (tai raiteilla

Lisätiedot