Ellei tutkijalla ole käsitystä mittauksensa validiteetista ja reliabiliteetista, ei johtopäätöksillä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Ellei tutkijalla ole käsitystä mittauksensa validiteetista ja reliabiliteetista, ei johtopäätöksillä"

Transkriptio

1 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 1 Ellei tutkijalla ole käsitystä mittauksensa validiteetista ja reliabiliteetista, ei johtopäätöksillä ole pohjaa. Rakennevaliditeetin estimoiminen 1. Mitattavan käsitteen määrittely - käsitteen ulottuvuudet teorian tai aikaisempien tutkimusten perusteella. 2. Osioiden sisältö ja virheettömyys - mittaavatko osiot haluttua ominaisuutta? - paljonko osioissa on todellisen arvon ja paljonko mittausvirheen osuus?

2 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 2 3. Esimerkki Tutkitaan miten kymmenottelun lajit toimivat ihmisen fyysisen suorituskyvyn mittarina. Oletetaan, että tosiarvo on kolmiulotteinen; tekijät: Nopeus, Voima ja Kestävyys. Lajien roolit tässä mittarissa: Nopeus: 100m, 400m, Aidat Voima: Kuula, Kiekko Kestävyys: 1500m, 400m Asteikko: u = a x Mittausmalli: x = Bτ+ε; cov(x) = Σ = BΦB +Ψ Reliabiliteetti: ρ uu = 1/(1+a Ψa/a BΦB a) Ennustevaliditeetti: ρ yu

3 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 3 Factor analysis: Maximum Likelihood (ML) solution Kest Nop Voim h 2 2 s e 1500m m Kiekk Kuula m Korke Aidat <!? Pituu <!? Seiv <!? Keih <!? On mahdollista tunnistaa faktorit: Kestävyys, Nopeus ja Voima. Erityisen huonoja osioita ovat: Aidat, Pituus, Seiväs ja Keihäs. Kaikki taitolajeja? Olisiko mahdollista löytää lisäksi joku taitofaktori?

4 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 4 Viiden faktorin ratkaisu Neljän faktorin ratkaisu ei korjaa tilannetta kovinkaan paljon, mutta viiden faktorin ratkaisu tarjoaa jo pohjaa tulkinnalle. Nop Voim???? Käs.m Jal.m h 2 100m m Kiekko Kuula Keihäs Aidat m Korkeu Pituus Seiväs Nopeus, Voima, Käsien ja Jalkojen motoriikka ovat varsin selkeitä, mutta kolmas faktori on ongelma. Tässä vaiheessa kannattaa tarkastella rotaatiota.

5 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 5 Rotatoitu faktoriratkaisu, 5 faktoria Graafinen rotaatio on paras, koska silloin voidaan faktoreiden suunnat hienosäätää oikein. Nop Voim Kest Käs.m Jal.m h 2 100m m Korkeu Kuula Kiekko Seiväs m Keihäs Aidat Pituus λ j Kaikilla faktoreilla on melkoisen selkeä tulkinta. Neljäs ja viides ovat hieman heikkoja, ja niihin olisi hyvä saada lisää parempia indikaattoreita.

6 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 6 Huomatkaa!! Jos edelläolevassa esimerkissä tutkija olisi ollut varma kolmen faktorin oikeellisuudesta, olisi huonoimmat osiot todella luokiteltu heikoiksi ja kenties heitetty kokonaan syrjään. Koska niille tuntui löytyvän jotain yhteistä, niin silloin kannatti ryhtyä etsimään niille yhteistä tekijää, joka tässä tapauksessa oli joko taitoa tai motoriikkaa. Rotatoiminen ei ole aina välttämätöntä, jos alkuperäinen ratkaisu tyydyttää, mutta on syytä muistaa, että faktoriratkaisu ei ole yksikäsitteinen ja tutkijan on aina syytä huolellisesti harkita, minkälaisessa muodossa hän aineistonsa esittää.

7 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 7 Ennustevaliditeetin arvioiminen Muodostamme havaittujen muuttujien avulla mitta-asteikon, jonka avulla ennustamme urheilijan painoa. Jos tiedossa on muuttuja, joka mittaa mainittua ominaisuutta, niin silloin voimme regressioanalyysin avulla muodostaa asteikon, joka maksimoi validiteetin. Muut. Regr.k Vieressä olevia 100m regressiokertoimia Pituus käyttämällä voi- Kuula daan muodostaa Korkeu asteikko, jonka 400m validiteetti on Aidat R= Kiekko Asteikon muut Seiväs tunnusluvut: Keihäs min=72.3 max= m keskiarvo=85.6 vakio hajonta=5.31 R= R 2 = s paino =6.848

8 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 8 Mittauksen reliabiliteetti Ennen kuin mitta-asteikkojen muodostamista tarkistetaan eri dimensioiden mittauksen reliabiliteetit: Nop Voim Kest Käs.m Jal.m ρ uu Regressioennusteen reliabiliteetti on: ρ uu = Mittauksen keskivirhe ja luottamusväli Hajonnan ja reliabiliteetin avulla määrätään mittauksen keskivirhe ja luottamusväli. Mittauksen keskivirhe: σ(ε)=σ u *sqrt(1-ρ uu ) σ u = ρ uu = σ(ε)= P{ala<u<ylä}=.95 (approksimatiivisesti) alaraja=u-2*σ(ε) yläraja=u+2*σ(ε) Luottamusvälin_pituus=yläraja-alaraja Jos u=85 alaraja.=80.5 yläraja.=89.6 Luottamusvälin_pituus.=9.1

9 Lauri Tarkkonen: Validiteetti ja reliabiliteetti 9 Ennusteen keskivirhe ja luottamusväli Hajonnan ja validiteetin avulla arvioidaan ennusteen keskivirhe ja luottamusväli. Ennusteen keskivirhe: σ y x =σ y *sqrt(1-ρ yu ) s Weight => σ y =6.848 R=> ρ yu = σ y x =3.24 P{ala<u<ylä}=.95 (approksimatiivisesti) alaraja=u-2*σ y x yläraja=u+2*σ y x Luottamusvälin_pituus=yläraja-alaraja Jos u=85 alaraja.=78.5 yläraja.=91.5 Ennusteen_luottamusvälin_pituus.=13.0

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Mittaamisen maailmasta muutamia asioita. Heli Valkeinen, erikoistutkija, TtT TOIMIA-verkoston koordinaattori

Mittaamisen maailmasta muutamia asioita. Heli Valkeinen, erikoistutkija, TtT TOIMIA-verkoston koordinaattori Mittaamisen maailmasta muutamia asioita Heli Valkeinen, erikoistutkija, TtT TOIMIA-verkoston koordinaattori SISÄLTÖ 1. Mittari vs. indikaattori vs. menetelmä - mittaaminen 2. Luotettavat mittarit 3. Arvioinnin

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

Mittaamisen hyödyt. Heli Valkeinen, erikoistutkija, TtT TOIMIA-verkoston koordinaattori

Mittaamisen hyödyt. Heli Valkeinen, erikoistutkija, TtT TOIMIA-verkoston koordinaattori Mittaamisen hyödyt Heli Valkeinen, erikoistutkija, TtT TOIMIA-verkoston koordinaattori TOIMIA-verkosto ja TOIMIA-tietokanta Kansallinen TOImintakyvyn MIttaamisen ja Arvioinnin asiantuntijaverkoston tavoitteet

Lisätiedot

Koetun hyvinvoinnin mittaaminen

Koetun hyvinvoinnin mittaaminen Koetun hyvinvoinnin mittaaminen MITTARIN ULOTTUVUUDET, RELIABILITEETTI JA VALIDITEETTI 22.6.2017 REETA KANKAANPÄÄ --- ITÄ-SUOMEN YLIOPISTO 1 Tausta Onnellisuusraportti: Suomi maailman onnellisimpia maita

Lisätiedot

2. luentokrt KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA

2. luentokrt KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA 13.4.2015 1 2. luentokrt Taksonomiataulu osa 2 eli miten suunnitella opetusta ja oppilasarviointia tehtävien vaativuustasot

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

Kyselytutkimuksen mittarit ja menetelmät

Kyselytutkimuksen mittarit ja menetelmät Kimmo Vehkalahti Kyselytutkimuksen mittarit ja menetelmät Kustannusosakeyhtiö Tammi Helsinki Sisällys Alkusanat.......................... 7 Johdanto. Kyselytutkimus..................... Kirjan rakenne

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

VETERAANIYLEISURHEILUN LUOKITTELUTAULUKKO MIEHET. Pentti Nieminen

VETERAANIYLEISURHEILUN LUOKITTELUTAULUKKO MIEHET. Pentti Nieminen VETERAANIYLEISURHEILUN LUOKITTELUTAULUKKO Pentti Nieminen MIEHET M35 SM-lk M-lk A-lk B-lk C-lk 60m 7.00 7.20 7.43 7.68 7.93 100m 10.90 11.30 11.75 12.25 12.75 200m 22.00 22.90 23.90 25.00 26.10 400m 49.00

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus

Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus Tässä rajoitutaan tarkastelemaan kahden arvioitsijan tapausta, Olettakaamme, että n havaintoa on arvioitu kahden arvioitsijan

Lisätiedot

DATAFLEX. Vääntömomentin mittausakselit DATAFLEX. Jatkuvan päivityksen alaiset tiedot löytyvät online-tuoteluettelostamme, web-sivustosta www.ktr.

DATAFLEX. Vääntömomentin mittausakselit DATAFLEX. Jatkuvan päivityksen alaiset tiedot löytyvät online-tuoteluettelostamme, web-sivustosta www.ktr. 307 Sisällysluettelo 307 Yleiskatsaus 309 Tyypit 16/10, 16/30 ja 16/50 310 Lisävarusteet: servokäyttöjen lamellikytkimet RADEX -NC 310 Tyypit 22/20, 22/50, 22/100 311 Lisävarusteet: servokäyttöjen lamellikytkimet

Lisätiedot

Move! laadun varmistus arvioinnissa. Marjo Rinne, TtT, erikoistutkija UKK instituutti, Tampere

Move! laadun varmistus arvioinnissa. Marjo Rinne, TtT, erikoistutkija UKK instituutti, Tampere Move! laadun varmistus arvioinnissa Marjo Rinne, TtT, erikoistutkija UKK instituutti, Tampere Fyysisen toimintakyvyn mittaaminen Tarkoituksena tuottaa luotettavaa tietoa mm. fyysisestä suorituskyvystä

Lisätiedot

MART testi tulokset ja kuvaus. Ari Nummela Kilpa- ja huippu-urheilun tutkimuskeskus - KIHU Kuntotestauspäivät Jyväskylä 20.3.2014

MART testi tulokset ja kuvaus. Ari Nummela Kilpa- ja huippu-urheilun tutkimuskeskus - KIHU Kuntotestauspäivät Jyväskylä 20.3.2014 MART testi tulokset ja kuvaus Ari Nummela Kilpa- ja huippu-urheilun tutkimuskeskus - KIHU Kuntotestauspäivät Jyväskylä 20.3.2014 MART historiaa MART testin kehittäminen alkoi 1987, kun kestävyysvalmentajat

Lisätiedot

Tämä on PicoLog Windows ohjelman suomenkielinen pikaohje.

Tämä on PicoLog Windows ohjelman suomenkielinen pikaohje. Tämä on PicoLog Windows ohjelman suomenkielinen pikaohje. Asennus: HUOM. Tarkemmat ohjeet ADC-16 englanninkielisessä User Manual issa. Oletetaan että muuntimen kaikki johdot on kytketty anturiin, käyttöjännite

Lisätiedot

Kyselytutkimus. Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 1. Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 2

Kyselytutkimus. Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 1. Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 2 Kyselytutkimus Graduryhmä kevät 2008 Leena Hiltunen 29.4.2008 Yleistä lomakkeen laadinnasta ja kysymysten tekemisestä - 1 Kysymysten tekemisessä kannattaa olla huolellinen, sillä ne luovat perustan tutkimuksen

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Videotoisto Nexus 7 tableteilla: Android 4.4 KitKat selvästi edellistä versiota heikompi

Videotoisto Nexus 7 tableteilla: Android 4.4 KitKat selvästi edellistä versiota heikompi Videotoisto Nexus 7 tableteilla: Android 4.4 KitKat selvästi edellistä versiota heikompi - Android 4.3 Jelly Bean ja 4.4 Kitkat käyttöjärjestelmien videotoiston suorituskyvyn vertailu Nexus 7 tabletilla

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Mittaustekniikka (3 op)

Mittaustekniikka (3 op) 530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI Mikko Kylliäinen Insinööritoimisto Heikki Helimäki Oy Dagmarinkatu 8 B 18, 00100 Helsinki kylliainen@kotiposti.net 1 JOHDANTO Suomen rakentamismääräyskokoelman

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

Lauri Tarkkonen: Erottelu analyysi

Lauri Tarkkonen: Erottelu analyysi Lauri Tarkkonen: Erottelu analyysi Erotteluanalyysin ongelma on kaksijakoinen:. Mikä havaittujen muuttujien (x i ) lineaarinen yhdistely erottaa mahdollisimman hyvin toisistaan tunnetut ryhmät? Siis selitettävä

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

TUNNUSLUKUJEN SEURANNASTA ARVIOINTIIN Mitä tunnuslukuja? Seurannan ja arvioinnin ero? Miten arvioidaan? Anu Räisänen 2014

TUNNUSLUKUJEN SEURANNASTA ARVIOINTIIN Mitä tunnuslukuja? Seurannan ja arvioinnin ero? Miten arvioidaan? Anu Räisänen 2014 TUNNUSLUKUJEN SEURANNASTA ARVIOINTIIN Mitä tunnuslukuja? Seurannan ja arvioinnin ero? Miten arvioidaan? Anu Räisänen 2014 LAATUYMPYRÄ JA Päämäärä ja suunnitelma MENETELMÄT Suunnittelu LAATUYMPYRÄ Prosessit,

Lisätiedot

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A)

PHYS-A1110 Laboratoriotyöosuus. Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) PHYS-A1110 Laboratoriotyöosuus Vastaava opettaja Jani Sainio puh: 050-5756914 jani.sainio@aalto.fi huone 138 (OK 4A) Kurssin järjestelyt Miksi? Fysiikka on havaintoja ja niiden selittämistä / ennustamista

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Littoisten Työväen Urheilijat ry. Valmennuksen linjaukset

Littoisten Työväen Urheilijat ry. Valmennuksen linjaukset Littoisten Työväen Urheilijat ry. Valmennuksen linjaukset Ikä Lajiharjoittelun ja fyysisen harjoittelun suhteen kehittyminen 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-> Laji% 10 10 20 30 40 50 60 70 Fysiikka%

Lisätiedot

PYÖRÖ- JA MUOTOKUPARI- LANKOJEN TEKNISET TIEDOT

PYÖRÖ- JA MUOTOKUPARI- LANKOJEN TEKNISET TIEDOT PYÖRÖ- JA MUOTOKUPARI- LANKOJEN TEKNISET TIEDOT KORKEAN TEKNOLOGIAN YRITYS Dahréntråd on Euroopan suurimpia ja moderneimpia kupari- ja alumiinilankojen valmistajia. Yritys valmistaa vuosittain yli 30 000

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

TULOSSEURANTA 2011 2012 TAPANILAN ERÄ / Yleisurheilu

TULOSSEURANTA 2011 2012 TAPANILAN ERÄ / Yleisurheilu 400 m 1 000 m 1 500 m 3 000 m 5 000 m 10 000 m 1/2 maraton maraton aj. aj. 110 m aj. 1 500 m ej. 3 000 m ej. aj. 400 m aj. 3 000m käv. 5 000 m käv. Kuula Kiekko Keihäs Moukari Ottelut Cooper Tulosseuranta

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

Hyvinvointimittaukset Oulun kutsunnoissa v.2009-2013. Jaakko Tornberg LitM, Tutkimuskoordinaattori ODL Liikuntaklinikka

Hyvinvointimittaukset Oulun kutsunnoissa v.2009-2013. Jaakko Tornberg LitM, Tutkimuskoordinaattori ODL Liikuntaklinikka Hyvinvointimittaukset Oulun kutsunnoissa v.2009-2013 Jaakko Tornberg LitM, Tutkimuskoordinaattori ODL Liikuntaklinikka Taustaa - MOPO hankkeen tavoitteena on edistää nuorten miesten hyvinvointia ja terveyttä

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

OHJE 1 (5) 16.12.2011 VALMERI-KYSELYN KÄYTTÖOHJEET. Kyselyn sisältö ja tarkoitus

OHJE 1 (5) 16.12.2011 VALMERI-KYSELYN KÄYTTÖOHJEET. Kyselyn sisältö ja tarkoitus OHJE 1 (5) VALMERI-KYSELYN KÄYTTÖOHJEET Kyselyn sisältö ja tarkoitus Valmeri-kysely on työntekijöille suunnattu tiivis työolosuhdekysely, jolla saadaan yleiskuva henkilöstön käsityksistä työoloistaan kyselyn

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 Sisällysluettelo ALKUSANAT 4 ALKUSANAT E-KIRJA VERSIOON 5 SISÄLLYSLUETTELO 6 1 PERUSASIOITA JA AINEISTON SYÖTTÖ 8 11 PERUSNÄKYMÄ 8 12 AINEISTON SYÖTTÖ VERSIOSSA 9 8 Muuttujan määrittely versiossa 9 11

Lisätiedot

Pohjoismaisen geenipankin informaatiojärjestelmä on nimeltään SESTO (=Seed store) ja se sisältää tietoja lähes kaikista geenipankin omista

Pohjoismaisen geenipankin informaatiojärjestelmä on nimeltään SESTO (=Seed store) ja se sisältää tietoja lähes kaikista geenipankin omista Pohjoismaisen geenipankin informaatiojärjestelmä on nimeltään SESTO (=Seed store) ja se sisältää tietoja lähes kaikista geenipankin omista siemennäytteistä ja jossain tapauksissa myös suvullisesti lisättävien

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Jousen jousivoiman riippuvuus venymästä

Jousen jousivoiman riippuvuus venymästä 1 Jousen jousivoiman riippuvuus venymästä Mikko Vestola Koulun nimi Fysiikka luonnontieteenä FY3-Projektityö 12..2002 Arvosana: K+ (10) 2 1. Tutkittava ilmiö Tehtävänä oli tehdä oppikirjan tutkimustehtävä

Lisätiedot

Sisällys. Alkusanat... 7. 1 Johdanto 11 1.1 Kyselytutkimus... 11 1.2 Kirjan rakenne ja sisältö... 14

Sisällys. Alkusanat... 7. 1 Johdanto 11 1.1 Kyselytutkimus... 11 1.2 Kirjan rakenne ja sisältö... 14 Sisällys Alkusanat.......................... 7 1 Johdanto 11 1.1 Kyselytutkimus.................... 11 1.2 Kirjan rakenne ja sisältö............... 14 2 Mittaus ja tiedonkeruu 17 2.1 Johdatteleva esimerkki................

Lisätiedot

Kylien välinen yleisurheilukilpailu

Kylien välinen yleisurheilukilpailu Miehet Kylien välinen yleisurheilukilpailu Keihäs s p Kiekko s p Kuula s p Saapas s p Pituus s p 60 m s p X-laji s p Yht. Sij. 1 Jarmo Antikainen A 28,78 0 1 29,26 4 3 9,30 5 2 18,32 0 1 3,81 3 4 9,2 3

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Arviointi ja mittaaminen

Arviointi ja mittaaminen Arviointi ja mittaaminen Laatuvastaavien koulutus 5.6.2007 pirjo.halonen@adm.jyu.fi 014 260 1180 050 428 5315 Arviointi itsearviointia sisäisiä auditointeja ulkoisia auditointeja johdon katselmusta vertaisarviointeja

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Kiipulan kuntoutuskeskuksen 40-vuotisjuhlaseminaari:

Kiipulan kuntoutuskeskuksen 40-vuotisjuhlaseminaari: Kuntoutuksen vaikuttavuus, näytön paikka Mika Pekkonen johtava ylilääkäri Kuntoutus Peurunka Tämä esitys perustuu tarkastettuun väitöstutkimukseeni Kiipulankuntoutuskeskuksen 40-vuotisjuhlaseminaari: 40-vuotisjuhlaseminaari:

Lisätiedot

testo 610 Käyttöohje

testo 610 Käyttöohje testo 610 Käyttöohje FIN 2 Pikaohje testo 610 Pikaohje testo 610 1 Suojakansi: käyttöasento 2 Kosteus- ja lämpötilasensori 3 Näyttö 4 Toimintonäppäimet 5 Paristokotelo (laitteen takana) Perusasetukset

Lisätiedot

LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS

LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS Helsinki 26..200 4 2 5 Seminaari 26..200 Mikko Hakola Laskentatoimen osaaminen Testatut tahot Selvittäjiä Yrittäjiä KLT-kirjanpitäjiä Virallisen

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

FCG Planeko Oy Puutarhakatu 45 B 20100 Turku. Kyrön kylä, Pöytyä Tärinäselvitys 26.10.2009. Selvitysalue. Geomatti Oy työ 365

FCG Planeko Oy Puutarhakatu 45 B 20100 Turku. Kyrön kylä, Pöytyä Tärinäselvitys 26.10.2009. Selvitysalue. Geomatti Oy työ 365 FCG Planeko Oy Puutarhakatu 45 B 20100 Turku Kyrön kylä, Pöytyä Tärinäselvitys 26.10.2009 Geomatti Oy työ 365 Mittauspisteet A1, A2 ja A3 (Promethor Oy) Värähtelyluokan C ja D raja yksikerroksiselle rakennukselle

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

FIRSTBEAT SPORTS EXAMPLE FITNESS TEST REPORTS

FIRSTBEAT SPORTS EXAMPLE FITNESS TEST REPORTS FIRSTBEAT SPORTS EXAMPLE FITNESS TEST REPORTS Kuntotestiraportti (Conconi) Sukupuoli 4 7 Mies 7.. Aloitustaso n nosto n pituus Palautumisen kesto km/h, km/h m : ja hengitystiheys : :3 : :7 : : : : :7 :

Lisätiedot

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä

7 Osa 7: Pidempiä esimerkkejä R:n käytöstä 7 Osa 7: Pidempiä esimerkkejä R:n käytöstä R:n pääasiallinen käyttö monelle on tilastollisten menetelmien suorittaminen. Käydään nyt läpi joitain esimerkkitilanteita, alkaen aineiston luvusta ja päättyen

Lisätiedot

VALMENNUS PONNISTAA TUTKIMUKSESTA. Juha Isolehto

VALMENNUS PONNISTAA TUTKIMUKSESTA. Juha Isolehto VALMENNUS PONNISTAA TUTKIMUKSESTA Juha Isolehto Jyväskylä, 22.03.2014 VALMENNUS PONNISTAA TUTKIMUKSESTA Esityksen sisältö: 1. HARJOITTELU PERUSTUU LAJIANALYYSIIN LIIKEANALYYSI, KILPAILU ANALYYSI, SUORITUSKYKYANALYYSI,

Lisätiedot

Hämeenlinna 6.9.2012. Jari Lindblad Jukka Antikainen. Jukka.antikainen@metla.fi 040 801 5051

Hämeenlinna 6.9.2012. Jari Lindblad Jukka Antikainen. Jukka.antikainen@metla.fi 040 801 5051 Puutavaran mittaus Hämeenlinna 6.9.2012 Jari Lindblad Jukka Antikainen Metsäntutkimuslaitos, Itä Suomen alueyksikkö, Joensuu Jukka.antikainen@metla.fi 040 801 5051 SISÄLTÖ 1. Puutavaran mittaustarkkuus

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Luuntiheysmittaus. Harri Sievänen, TkT, dos Tutkimusjohtaja, UKK-instituutti Puheenjohtaja, Luustoliitto ry. S-posti: harri.sievanen@uta.

Luuntiheysmittaus. Harri Sievänen, TkT, dos Tutkimusjohtaja, UKK-instituutti Puheenjohtaja, Luustoliitto ry. S-posti: harri.sievanen@uta. Osteoporoosifoorumi, Helsinki 22.05.2014 Luuntiheysmittaus Harri Sievänen, TkT, dos Tutkimusjohtaja, UKK-instituutti Puheenjohtaja, Luustoliitto ry S-posti: harri.sievanen@uta.fi 1 Johdannoksi Evidence-based

Lisätiedot

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = =

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = = 2 Lasuarjoitus 2 21 Kytentäimpedanssin asenta Mitä taroittaa ytentäimpedanssi? 5 ma:n suuruinen äiriövirta oasiaaiaapein vaipassa (uojoto) aieuttaa 1 mv:n suuruisen äiriöjännitteen 1 m:n mataa Miä on ytentäimpedanssin

Lisätiedot

Mittausprojekti 2017

Mittausprojekti 2017 Mittausprojekti 2017 Hajonta et al Tulos vs. mittaus? Tilastolliset tunnusluvut pitää laskea (keskiarvot ja hajonnat). Tuloksia esitetään, ei sitä kuinka paljon ryhmä teki töitä mitatessaan. Yksittäisiä

Lisätiedot

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen! 8069 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2013 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOLLA 9! Ilmoittaudu Weboodissa 4.3.2013 klo

Lisätiedot

Mies ilman parisuhdetta

Mies ilman parisuhdetta Mies ilman parisuhdetta Suomalaisten yksinäisyys hanke Yksinäisyys elämänkulussa -työpaja Seinäjoella 18.2.2016 Anu Kinnunen Yksin eläminen vaikuttaa terveyteen Eliniän odotteen laskeminen Parisuhteettomat

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä

Lisätiedot

KISALIITE KESÄN 2011 JUNNUKISAT

KISALIITE KESÄN 2011 JUNNUKISAT KISALIITE KESÄN 2011 JUNNUKISAT Liitteeseen on koottu tärkeimpiä 9-15-vuotiaiden kilpailuja Helsingin seudulla. Seura maksaa osallistumisen valtaosaan allaolevista kisoista (poislukien Peugeot Junior GP

Lisätiedot

Suomen Urheiluliitto Kilpailuvaliokunta. Kalevan kisat. SM-kisojen tulosrajat ulkoratakaudella 2015. Vahvistettu SUL:n kilpailuvaliokunnassa 25.2.

Suomen Urheiluliitto Kilpailuvaliokunta. Kalevan kisat. SM-kisojen tulosrajat ulkoratakaudella 2015. Vahvistettu SUL:n kilpailuvaliokunnassa 25.2. Suomen Urheiluliitto Kilpailuvaliokunta SM-kisojen tulosrajat ulkoratakaudella 2015 Vahvistettu SUL:n kilpailuvaliokunnassa 25.2.2015 Tulosrajakauden alku on 1.5.2014 Kalevan kisat SUL Kalevan kisojen

Lisätiedot

Heinäveden Yleisurheilijat 2015 päättäjäiset

Heinäveden Yleisurheilijat 2015 päättäjäiset Kauden 2015 palkitut Vuoden urheiluteko 2015 Heinäveden yu/ Heinävesi/ Kaikkien aikojen ensimmäinen Kuvansin halkijuoksun yleisen sarjan voitto! Vuoden Urheilija 2015 Matias Ahtinen (7 lajissa Pohjois-Savon

Lisätiedot

Kuituoptinen tehomittari ja kuituoptinen valonlähde

Kuituoptinen tehomittari ja kuituoptinen valonlähde FOM, FOS-850, FOS-1300, FOS-850/1300 Kuituoptinen tehomittari ja kuituoptinen valonlähde Ohjevihko Johdanto Kuituoptinen tehomittari (Fiber Optic Power Meter, FOM) mittaa optista tehoa kuituoptisissa johtimissa.

Lisätiedot

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 MERKINTÖJÄ... 6 SISÄLLYSLUETTELO JOHDANTO JA TESTITEORIAN HISTORIAA... 10

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 MERKINTÖJÄ... 6 SISÄLLYSLUETTELO JOHDANTO JA TESTITEORIAN HISTORIAA... 10 Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 MERKINTÖJÄ... 6 SISÄLLYSLUETTELO... 8 1. JOHDANTO JA TESTITEORIAN HISTORIAA... 10 2. MITTARIN RAKENTAMINEN... 13 2.1 KYSYMYS JOHON HALUTAAN

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Päätöksenteko ja analyyttinen hierarkiaprosessi, AHP

Päätöksenteko ja analyyttinen hierarkiaprosessi, AHP Päätöksenteko ja analyyttinen hierarkiaprosessi, AHP 1. AHP ja päätöksenteko Kykymme mallintaa kompleksista ongelma- tai ilmiökokonaisuutta ovat rajalliset. Tämä näkyy selvästi, kun mitataan taloudellisia

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

Hallikauden toimintakalenteri 2015-2016. www.tampereenpyrinto.fi/yleisurheilu

Hallikauden toimintakalenteri 2015-2016. www.tampereenpyrinto.fi/yleisurheilu Hallikauden toimintakalenteri 2015-2016 www.tampereenpyrinto.fi/yleisurheilu Tampere Juni 5.-6.3.2016 Indoor Games r Lauantaina 5.3. klo 10 alkaen P15: 60 m, 800 m, 300 m aj, korkeus, 3-loikka, kuula,

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 18.04.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

TESTIPALAUTE Miltä tilanne näyttää nyt, mitä tulokset ennustavat ja miten niihin voit vaikuttaa.

TESTIPALAUTE Miltä tilanne näyttää nyt, mitä tulokset ennustavat ja miten niihin voit vaikuttaa. Suomalaisten miesten aktivoimiseksi. TESTIPALAUTE Miltä tilanne näyttää nyt, mitä tulokset ennustavat ja miten niihin voit vaikuttaa. Testitulosten yhteenveto Miten tulkitsen kuntoluokkia? Kuntoluokitus

Lisätiedot

Tilanjako-oven mittausohjeet

Tilanjako-oven mittausohjeet Tilanjako-oven mittausohjeet Tilanjako-oven oikea mitoitus näitä mittausohjeita noudattaen. Alla kolme yleisintä asennus- / mittausvaihtoehtoa. Mittausmalli Seinäkiinnitys oviaukon päälle Esimerkin oviaukon

Lisätiedot

TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA

TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA Säteilyturvallisuus ja laatu röntgendiagnostiikassa 19.-21.5.2014 Riina Alén STUK - Säteilyturvakeskus RADIATION AND NUCLEAR SAFETY AUTHORITY Lainsäädäntö EU-lainsäädäntö

Lisätiedot

Vuoden 2005 eläkeuudistuksen

Vuoden 2005 eläkeuudistuksen Vuoden 2005 eläkeuudistuksen vaikutus eläkkeelle siirtymiseen Roope Uusitalo HECER, Helsingin yliopisto Aktuaariyhdistys 23.10. 2013 Tutkimuksen tavoite Arvioidaan vuoden 2005 uudistusten kokonaisvaikutus

Lisätiedot

KAASUJOUSET. Puh. +45 86720099 Faksi +45 86299786 www.jouset.com

KAASUJOUSET. Puh. +45 86720099 Faksi +45 86299786 www.jouset.com KAASUJOUSET vakio ja Varilift + päiden sovittimet Puh. +45 86720099 Faksi +45 86299786 www.jouset.com Sisällysluettelo Vakio Kaasujouset sivu 3 Männän 6mm Kierre M6 sivu 4 Männän 8mm Kierre M6 sivu 5 Männän

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Metsien kestävä käyttö Suomessa laskennan vai äänestyksen tulos?

Metsien kestävä käyttö Suomessa laskennan vai äänestyksen tulos? Metsien kestävä käyttö Suomessa laskennan vai äänestyksen tulos? Riittävätkö tiedot metsien kestävän käytön määrittämiseen? Metsätieteen päivä 2015, Taksaattoriklubi Tuula Packalen, Luonnonvarakeskus 1

Lisätiedot

2. Aineiston kuvailua

2. Aineiston kuvailua 2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot