FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA VIIKKO. Luento. Laskuharjoituksia ja

Koko: px
Aloita esitys sivulta:

Download "FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA VIIKKO. Luento. Laskuharjoituksia ja"

Transkriptio

1 Laajuus: Luentoja: Laskuharjoituksia ja demonstraatioita: Luennoija: Laskuharjoitukset: Aika ja paikka: Oppikirja: 6 op 48 h 12 x 2 h Tapio Rantala, prof. SG219, puh Mikael Kuisma, SG222 ti SG312 (Lu) SG312 (Lu) to SG312 (Harj) P.W. Atkins and R.S. Friedman: Molecular Quantum Mechanics (4. painos); ja S.V. Gaponenko: Optical Properties of Semiconductor Nanocrystals, Cambridge Studies in Modern Optics Luentomoniste: luentomateriaali vuodelta 2010 saatavilla (http://www.tut.fi/~trantala/) Perustiedot: MNQT, sl 2013 RAKENTEIDEN KVANTTITEORIA Fysiikan tai mian perusopinnot i Joulukuu Marraskuu Lokakuu Syyskuu Elokuu VIIKKO 35 ti MNQT, sl 2013 AIKATAULU sl ti 37 ti 38 ti 39 ti 40 ti 41 ti ti 44 ti 45 ti 46 ti 47 ti 48 ti 49 ti Luento to to to to to to to to to to to to to Tentti to ti Harjoitus Huom! FYS-6300 MOLEKYYLIEN JA NANO- Tenttiviikko Tenttiviikko ii Tentit: (sekä ja )

2 iii iv SISÄLTÖ Johdantoa Mustan kappaleen säteily Kiinteiden aineiden ominaislämpö Valosähköinen ilmiö... 4 ja Compton ilmiö Atomien spektrit Aineen aaltoluonne... 6 ja Epätarkkuusperiaate Kvanttimekaniikan perusteet... 7 Kvanttimekaniikan operaattorit Lineaariset operaattorit Ominaisfunktiot ja ominaisarvot Esityksistä Kommutoivat operaattorit Operaattoreiden konstruointi Funktioiden "skalaaritulo" ja normitus Diracin bra t-merkintätapa Hermiittiset operaattorit Kvanttimekaniikan postulaatit Tila ja aaltofunktio Suureet ja operaattorit Mittaustulokset Aaltofunktion tulkinta Aaltofunktio ja sen yhtälö Schrödingerin yhtälön separoiminen Komplementaarisuus ja aikaevoluutio Komplemantaariset ja yhtäaikaiset suureet Epätarkkuusperiaate Epätarkkuusperiaatteen seurauksia Energian ja ajan välinen epätarkkuusrelaatio Aikaevoluutio ja säilymislait Matriiseista kvanttimekaniikassa Matriisielementit Hamiltonin operaattorin diagonalisointi Schrödingerin yhtälö ja etenevät aallot Valoaallon eteneminen Hiukkasten eteneminen Hiukkasten eteneminen aaltoina Suoraviivainen lii ja harmonien oskillaattori "Hyvinkäyttäytyvät" aaltofunktiot Aaltoyhtälön ominaisuuksia Aaltofunktion kaarevuus Kvalitatiiviset ratkaisut ja kvantittuminen Tunneloituminen Etenevä lii Energia ja liimäärä Etenevä lii Harmoninen oskillaattori Pyörimislii ja vetyatomi Pyörimislii ympyräradalla tai kiinteän akselin ympäri Hamiltonin operaattori ja Schrödingerin yhtälö Liimäärämomentti (impulssimomentti) Aaltofunktion muoto Klassillinen raja Pyörimislii pallon pinnalla Aaltoyhtälö ja -funktio Hiukkasen liimäärämomentti Palloharmonisten funktioiden graafinen esittäminen Jäykkä roottori Lii Coulombin sisntässä Vetyatomin Schrödingerin yhtälö Radiaali- ja rotaatioliikiden separointi Radiaalinen Schrödingerin yhtälö Todennäköisyystiheys ja radiaalinen jakautumafunktio Atomiorbitaalit Liimäärämomentti Liimäärämomenttioperaattorit Operaattorit ja niiden kommutaatiorelaatiot... 45

3 v vi 4.2. Liimäärämomentti"vektori" Tikapuuoperaattorit Sallitut tilat Tikapuuoperaattoreilla "operointi" Liimäärämomenttioperaattoreiden ominaisarvot Operaattoreiden matriisielementit Liimäärämomenttioperaattorin ominaisfunktiot Spin Liimäärämomenttien kytytyminen Kytytymätön ja kytytynyt tila Kokonaisliimäärämomentin sallitut arvot Kytytymisen vektorimalli Clebsh Gordan rtoimet Usean liimäärämomentin kytytyminen Ryhmäteoria Symmetria Symmetriaoperaatiot Molekyylien luokittelu Ryhmäteoria ja matriisit Ryhmä Ryhmän rtotaulu Matriisiesitykset Matriisiesityksen ominaisuuksia Esitysten karakteeri Karakteerit ja luokat Redusoitumattomat esitykset Ortogonaalisuusteoreemat Redusoidut esitykset Esitysten redusoiminen Symmetria-adaptoituneet kannat Orbitaalien symmetriasta Atomaaristen p-orbitaalien symmetriaominaisuudet Suora-tulokanta ja atomaariset d-orbitaalit Suora-tuloryhmä Integraalien symmetriaominaisuuksista Symmetria ja degeneraatio Rotaatioryhmät Rotaatio-operaattorit Pallon pisteryhmä Häiriöteoriaa ja variaatioteoreema Ajastariippumaton häiriöteoria Kahden tason häiriöteoria Usean tason häiriöteoria Ensimmäisen rtaluvun energiatermi Ensimmäisen rtaluvun korjaus aaltofunktioon Toisen rtaluvun energiatermi Käytännön näkökohtia Toisen rtaluvun energiatermin approksimointia Degeneroituneiden tilojen häiriöteoria Variaatioteoria Variaatioteoreema Rayleigh-Ritz variaatiomenetelmä Hellmann Feynman teoreema Ajastariippuva häiriöteoria Kahden tason ajastariippuva häiriöteoria Rabin oskillaatiot Yleinen ajasta riippuva häiriöteoria Fermin kultainen sääntö Einsteinin transitiotodennäköisyydet (A ja B) Tilojen elinajat ja spektriviivojen leveys Atomien ranne ja spektrit Vetyatomin spektri Transitiot ja transitioenergiat Valintasäännöt Elektronin rata- ja spinimpulssimomentit Spin ratakytntä Spektrin hienoranne Spektritermit Alkalimetalliatomien spektrit Heliumin ranne Heliumatomi Heliumatomin viritetyt tilat Heliumin spektri Paulin periaate Monielektroniset atomit Kesisnttä- ja orbitaaliapproksimaatio Alkuaineiden jaksollinen järjestelmä Slaterin atomiorbitaalit

4 vii viii Itseytyvät eli SCF menetelmät Monielektronisten atomein spektritermit Hundin säännöt LS- ja jj-kytntä Ulkoisen ntän vaikutus atomiin Zeeman-ilmiö Stark-ilmiö Molekyylien ranne Born Oppenheimer-approksimaatio Born Oppenheimer approksimaation perustelu Vetymolekyyli-ioni Molekyyliorbitaalimenetelmä LCAO Vetymolekyyli Konfiguraatiovuorovaikutus Kaksiatomiset molekyylit Heteronukleaariset kaksiatomiset molekyylit Moniatomiset molekyylit Symmetriaan adaptoituneet kantafunktiot Hüclin MO-menetelmä ja konjugoituneet π-elektronit Kiteiden kaistaranteen "syntyminen" "Tight binding"-approksimaatio Elektroniranteen lasminen "METHODS IN COMPUTATIONAL CHEMISTRY" Hartree Fock SCF-menetelmä Yksi-elektronikuva Hartree Fock-menetelmä "Restricted" ja "unrestricted" Hartree Fock Roothaanin yhtälöt STO- ja GTO-kantajoukot Kantajoukon koko riippuvuus ja suppeneminen Elektroni elektronikorrelaatio "Configuration state function" (CSF) Konfiguraatiovuorovaikutus (CI) CI-hitelmän katkaiseminen MCSCF ja MRCI Møller Plesset-häiriöteoria Tiheysfunktionaaliteoria (DFT) Local-density approximation (LDA) "Evolution of Quantum Theory" and other Kiteen elektronitiloista Eräitä yksinrtaisia malleja Elektroni yksidimensioisessa potentiaalikuopassa Elektroni pallosymmetrisessä potentiaalikuopassa Elektroni Coulombin potentiaalissa Elektroni jaksollisessa potentiaalissa Kolmidimensioisen kiteen elektronitilat Kvasihiukkaset Elektronit alhaisissa dimensioissa Elektronitilat ideaalisessa nanokiteessä Kiteestä klusteriin "Weak confinement" "Strong confinement" Molekyylistä klusteriin "puolijohdemolekyyli" Puolijohdeklusterin elektroniset transitiot Kokoluokat About "self-assebly of nano-scale structures" and

5 ix KIRJALLISUUTTA P.W. Atkins, R.S. Friedman: Molecular Quantum Mechanics (Oxford University Press, Oxford, New York, 3rd ed. 1997) M. Weissbluth: Atoms and Molecules (Academic Press, New York, 1983) R.G. Parr and W. Yang: Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, New York, 1989) T.T. Rantala: Local-Density Electronic Structure Calculations on the Spectra and Reactivity of Metals Acta Univ. Ouluensis A 184 (1987) Jean Louis Calais: Quantum Chemistry Workbook (John Wiley & Sons,New York, 1994) I. Lindgren och S. Svanberg: Atomfysik (Universitetsförlaget Uppsala, LiberTryck Stockholm, 1974) A. Hinchliffe: Computational Quantum Chemistry (John Wiley & Sons,Chichester, New York, 1989) S.V. Gaponenko: Optical Properties of Semiconductor Nanocrystals Cambridge Studies in Modern Optics (Cambridge University Press, Cambridge, 1998)

FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA

FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA MNQT, kl 2010 i FYS-6300 MOLEKYYLIEN JA NANO- RAKENTEIDEN KVANTTITEORIA Laajuus: Luenja: Laskuharjoituksia ja demonstraatioita: Luennoija: Laskuharjoitukset: Aika ja paikka: Oppikirja: 6 op 48 h 12 x 2

Lisätiedot

9. Elektronirakenteen laskeminen

9. Elektronirakenteen laskeminen 9. Elektronirakenteen laskeminen MNQT, sl 2013 159 MNQT, sl 2013 160 Tarkastellaan vielä eri menetelmiä seuraavan jaottelun mukaisesti. Elektronirakenteen laskeminen tarkoittaa tavallisesti tarkasteltavan

Lisätiedot

MNQT, kl Ryhmäteoria

MNQT, kl Ryhmäteoria MNQT, kl 2010 59 5. Ryhmäteoria Ottamalla huomioon ratkaistavan systeemin symmetriaominaisuudet päästään yleensä tarkasteluissa ja ratkaisemisessa vähemmällä työllä. Erityisesti silloin, jos kvalitatiivinen

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot

Laskennalinen kemia. Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka

Laskennalinen kemia. Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka Laskennalinen kemia Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka Molekyyligeometria ja elektronirakenteet Empiiriset menetelmät (Hückel, Extended Hückel) Semi-empiiriset

Lisätiedot

Johdantoa. 0.1 Mustan kappaleen säteily. Musta kappale (black body): Kvanttimekaniikka. Wienin siirtymälaki jakautuman maksimille on

Johdantoa. 0.1 Mustan kappaleen säteily. Musta kappale (black body): Kvanttimekaniikka. Wienin siirtymälaki jakautuman maksimille on MNQT, sl 2015 1 MNQT, sl 2015 2 Johdantoa Kvanttimekaniikka tarvittiin selittämään uusia kokeellisia havaintoja korvaa Newtonin yhtälön Schrödingerin yhtälöllä, joka on tavallaan pienten hiukkasten "liikeyhtälö"

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

Luento5 8. Atomifysiikka

Luento5 8. Atomifysiikka Atomifysiikka Luento5 8 54 Kvanttimekaniikan avulla ymmärrämme atomin rakenteen ja toiminnan. Laser on yksi esimerkki atomien ja valon kvanttimekaniikasta. Luennon tavoite: Oppia ymmärtämään atomin rakenne

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Gaussian type orbitals (GTO) basis functions assume the radial part e αr2. Sc. cartesian GTO functions take the form

Gaussian type orbitals (GTO) basis functions assume the radial part e αr2. Sc. cartesian GTO functions take the form QTMN, 2016 173 9.4. STO and GTO basis sets For an accurate, but easy presentation of molecular orbitals a good basis set is needed. In general, a complete basis consists of an infinite numer of basis functions,

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit

Lisätiedot

Luku 11: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H

Luku 11: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H Luku 11: Molekyylien rakenne Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H + 2 ja muut kaksiatomiset molekyylit Hückel approksimaatio 1 Elektronien liike on hyvin

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

SISÄLTÖ MITÄ FYSIIKKA ON KLASSILLINEN FYSIIKKA

SISÄLTÖ MITÄ FYSIIKKA ON KLASSILLINEN FYSIIKKA 1 MODERNI FYSIIKKA Tapio Rantala Teoreettinen ja laskennallinen materiaalifysiikka Elektronirakenneteoria http://www.tut.fi/semiphys SISÄLTÖ MITÄ FYSIIKKA ON KLASSILLINEN FYSIIKKA MODERNI FYSIIKKA KVANTTIFYSIIKKA

Lisätiedot

Luku 10: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H

Luku 10: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H Luku 10: Molekyylien rakenne Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H + 2 ja muut kaksiatomiset molekyylit Hückel approksimaatio 1 Molekyylien elektronirakennetta

Lisätiedot

Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi

Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Harris luku 7 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Yleistetään viidennen luvun sidottujen tilojen

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

Kvanttimekaniikan perusteet

Kvanttimekaniikan perusteet Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys

Lisätiedot

Spin ja atomifysiikka

Spin ja atomifysiikka Spin ja atomifysiikka Harris luku 8 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Lämmittelykysymys Pohdi parin kanssa 5 min Kysymys Atomin säde on epämääräinen käsite. Miksi?

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH 5.1-5.3) Mikrotilat (kertausta Kvanttimekaniikan kurssilta) Kvanttimekaniikassa yhden hiukkasen systeemin täydellisen kuvauksen antaa tilavektori, joka on

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

Potentiaalikuoppa, työohje

Potentiaalikuoppa, työohje Potentiaalikuoppa, työohje 16. lokakuuta 013 Johdanto Kvanttimekaniikassa potentiaalikuopalla tarkoitetaan järjestelmää, jossa hiukkasen liike on rajoitettu äärelliseen alueeseen. Tästä seuraa ominaisenergian

Lisätiedot

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion

Lisätiedot

Demo: Kahden elektronin spintilojen muodostaminen

Demo: Kahden elektronin spintilojen muodostaminen Demo: Kahden elektronin spintilojen muodostaminen Tämän demonstraation tarkoituksena on havainnollistaa kvanttimekaniikan operaattoriformalismin soveltamista kahden elektronin systeemin spintilojen muodostamiseen.

Lisätiedot

Potentiaalikuoppa, työohje 12. lokakuuta 2015

Potentiaalikuoppa, työohje 12. lokakuuta 2015 Potentiaalikuoppa, työohje 12. lokakuuta 2015 12. lokakuuta 2015 Johdanto Kvanttimekaniikassa potentiaalikuopalla tarkoitetaan järjestelmää, jossa hiukkasen liike on rajoitettu äärelliseen alueeseen. Tästä

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos

Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja

Lisätiedot

TEOREETTINEN FYSIIKKA TEKNIIKAN TUKENA

TEOREETTINEN FYSIIKKA TEKNIIKAN TUKENA TEOREETTINEN FYSIIKKA 1 TEKNIIKAN TUKENA Tapio Rantala Fysiikka Tampereen teknillinen yliopisto http://www.tut.fi/semiphys SISÄLTÖ MITÄ FYSIIKKA ON Filosofiaa vai arkipäivää? Tiedettä vai tekniikkaa? MATERIAALIFYSIIKKA

Lisätiedot

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2 S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)

Lisätiedot

Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1

Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1 Heikot periodiset potentiaalit Useiden metallien (alkuaineryhmissä I, II, III ja IV) johde-elektronit liikkuvat heikossa kiteen ionien muodostamassa potentiaalissa, sillä näillä metalleilla on s- tai p-elektroni

Lisätiedot

KVANTTIMEKANIIKKA II A. Mikko Saarela

KVANTTIMEKANIIKKA II A. Mikko Saarela KVANTTIMEKANIIKKA II 76333A Mikko Saarela kevät 0 i Sisältö Matriisimekaniikkaa 3. Lineaariset vektoriavaruudet..................... 3.. Diracin merkinnät...................... 3.. Ortonormaalit kantajärjestelmät..............

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

Monen elektronin atomit

Monen elektronin atomit Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen järjestelmä Heliumin emissiospektri Vety

Lisätiedot

Lukion kemia 6 Kemian kokonaiskuva 1.teema

Lukion kemia 6 Kemian kokonaiskuva 1.teema Lukion kemia 6 Kemian kokonaiskuva 1.teema Kuva: The International Society for the Philosophy of Chemistry (ISPC) - Lehti: Hyle Kurssin sisältö Ylioppilaskirjoitukset Tehtävien jakautuminen Tehtävien luonne

Lisätiedot

Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos

Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen

Lisätiedot

Kvanttimekaniikkaa yhdessä ulottuvuudessa

Kvanttimekaniikkaa yhdessä ulottuvuudessa Kvanttimekaniikkaa yhdessä ulottuvuudessa Kvanttiefektit ovat tärkeitä nanoskaalassa. Tässä on ksenon-atomeilla tehtyjä kirjaimia metallipinnalla. Luennon tavoite: Ymmärtää kvanttimekaniikan perusperiaatteet

Lisätiedot

Fysiikan matemaattiset menetelmät II

Fysiikan matemaattiset menetelmät II Fysiikan matemaattiset menetelmät II Christofer Cronström Fysikaalisten tieteiden laitos, teoreettisen fysiikan osasto Helsingin yliopisto 9. tammikuuta 2006 i Esipuhe Tämä teos perustuu useana vuonna

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

Kvanttisointi Aiheet:

Kvanttisointi Aiheet: Kvanttisointi Luento 5 4 Aiheet: Valosähköilmiö Einsteinin selitys Fotonit Aineaallot ja energian kvantittuminen Bohrin kvanttimalli atomille Bohrin malli vetyatomille Vedyn spektri Mitä olet oppinut?

Lisätiedot

13 Atomien sidokset. H 2 molekyylistä.

13 Atomien sidokset. H 2 molekyylistä. 13 Atomien sidokset Tähän asti kurssilla on ainoastaan keskusteltu atomien elektronitiloista ja niiden ominaisuuksista. Kun atomit muodostavat yhdisteitä muuttuvat prosessissa elektronien ominaistilat.

Lisätiedot

S Fysiikka III (EST) (6 op) 1. välikoe

S Fysiikka III (EST) (6 op) 1. välikoe S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna

Lisätiedot

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

Aineen ja valon vuorovaikutukset

Aineen ja valon vuorovaikutukset Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka

Lisätiedot

FYS-1270 Laaja fysiikka IV: Aineen rakenne

FYS-1270 Laaja fysiikka IV: Aineen rakenne LaFy IV, 2016 i FYS-1270 Laaja fysiikka IV: Aineen rakenne Laajuus: 7 ECTS Luennot: 56 h Tapio Rantala, prof. Ti 10 12 SG312 SG219 10 12 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus

Lisätiedot

ILTA-, MONIMUOTO- JA VERKKO-OPETUS

ILTA-, MONIMUOTO- JA VERKKO-OPETUS ÄIDINKIELI äi01 opettajan oma materiaali starttilukio äi02 opettajan oma materiaali starttilukio äi03 opettajan oma materiaali starttilukio äi04 opettajan oma materiaali starttilukio äi05 opettajan oma

Lisätiedot

Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016

Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016 Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016 Luennot: Henrik Kunttu, Nanoscience Center, huone YN213; puh: 050-5996134; henrik.m.kunttu@jyu.fi Vastaanotto torstaisin klo 13-15 Laskuharjoitukset: FM

Lisätiedot

INFO / Matemaattinen Analyysi, k2016, L0

INFO / Matemaattinen Analyysi, k2016, L0 INFO / Matemaattinen Analyysi, k2016, L0 orms1010, Aikataulu 1 kevät 2016 ORMS1010 Matemaattinen analyysi, luennot Ke 14-16 Viikot 09-10 salissa F119 Ke 14-16 Viikot 11 salissa F140 Ke 14-16 Viikot 13-18

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

Luento 6. Mustan kappaleen säteily

Luento 6. Mustan kappaleen säteily Mustan kappaleen säteily Luento 6 Pintaa, joka absorboi kaiken siihen osuvan sähkömagneettisen säteilyn, kutsutaan mustaksi kappaleeksi. Tällainen pinta myös säteilee kaikilla aallonpituuksilla. Sen sanotaan

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016 CHEM-A1200 Kemiallinen rakenne ja sitoutuminen, syksy 2016 Vastuuopettaja Muut opettajat Yliopistonlehtori Minna Nieminen, Huone B 201d (vastaanottoajat: sovittaessa) puh. 050 343 8187, sähköposti: Minna.Nieminen@aalto.fi

Lisätiedot

Luento Atomin rakenne

Luento Atomin rakenne Luento 10 5. Atomin rakenne Vetatomi Ulkoisten kenttien aiheuttama energiatasojen hajoaminen Zeemanin ilmiö Elektronin spin Monen elektronin atomit Röntgensäteiln spektri 1 Schrödingerin htälö kolmessa

Lisätiedot

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, 10.1.2013 1/26

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, 10.1.2013 1/26 Symmetriaryhmät ja niiden esitykset Symmetriaryhmät, 10.1.2013 1/26 Osa I: Symmetriaryhmät Symmetriaryhmät, 10.1.2013 2/26 Peilisymmetria Symmetriaryhmät, 10.1.2013 3/26 Kiertosymmetria Symmetriaryhmät,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

4. Selitä sanoin ja kuvin miten n- ja p-tyypin puolijohteiden välinen liitos toimii tasasuuntaajana?

4. Selitä sanoin ja kuvin miten n- ja p-tyypin puolijohteiden välinen liitos toimii tasasuuntaajana? Tentti 4..2006. a) Selitä Braggin laki röntgensäteiden heijastukselle kiteistä. b) Tutki onko tasoissa (00), (0) ja () sammuneita heijastuksia tilakeskeisessä kuutiollisessa rakenteessa. Toista sama pintakeskeisessä

Lisätiedot

Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään:

Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään: Korkeammat erivaatat Jo kerran erivoitu funk6o voiaan erivoia uuelleen.! f(x) x " # x % & = 2 f(x) = f''(x) = f (2) (x) x 2 Yleisemmin merkitään: n f(x) = f (n) (x) x n erkki: 2- atominen molekyyli Värähtelevän

Lisätiedot

Radiotekniikan perusteet BL50A0301

Radiotekniikan perusteet BL50A0301 Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset

Lisätiedot

Kellot, taajuuslähteet. Kellot, taajuuslähteet. Mittaustekniikan perusteet / luento 6 Perusmittalaitteet 4. Kideoskillaattorit

Kellot, taajuuslähteet. Kellot, taajuuslähteet. Mittaustekniikan perusteet / luento 6 Perusmittalaitteet 4. Kideoskillaattorit Mittaustekniikan perusteet / luento 6 Perusmittalaitteet 4 Kellot, taajuuslähteet Kellon (taajuuslähteen) epävarmuus riippuu käytetystä referenssistä Taajuusreferenssejä: Kvartsikiteet Mekaaninen värähtelijä

Lisätiedot

Aatofunktiot ja epätarkkuus

Aatofunktiot ja epätarkkuus Aatofunktiot ja epätarkkuus Aaltofunktio sisältää tiedon siitä, millä todennäköisyydellä hiukkanen on missäkin avaruuden pisteessä. Tämä tunnelointimikroskoopilla grafiitista otettu kuva näyttää elektronin

Lisätiedot

Statistinen fysiikka, osa A (FYSA241)

Statistinen fysiikka, osa A (FYSA241) Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 1 Ajat, paikat 0. Käytännön asioita Ajan tasalla olevat tiedot kurssin kotisivulta

Lisätiedot

ILTA-, MONIMUOTO- JA VERKKO-OPETUS

ILTA-, MONIMUOTO- JA VERKKO-OPETUS ÄIDINKIELI äi01 opettajan oma materiaali starttilukio ja LUVA äi02 opettajan oma materiaali starttilukio ja LUVA äi03 opettajan oma materiaali starttilukio ja LUVA äi04 opettajan oma materiaali starttilukio

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =!  0 E loc (12.4) 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

Työssä mitataan välillisesti elektronien taipumiskulmat ja lasketaan niiden sekä elektronin energian avulla grafiitin hilavakioita.

Työssä mitataan välillisesti elektronien taipumiskulmat ja lasketaan niiden sekä elektronin energian avulla grafiitin hilavakioita. FYSA230/1 ELEKTRONIEN DIFFRAKTIO 1 Johdanto Elektronien diffraktio on interferenssi-ilmiö, joka osoittaa hiukkasilla olevan aaltoluonteen. Hiukkasten aaltoluonne on hyvin fundamentaalisesti fysiikan maailmankuvaan

Lisätiedot

Oppikirja (kertauksen vuoksi)

Oppikirja (kertauksen vuoksi) Oppikirja (kertauksen vuoksi) Luento seuraa suoraan oppikirjaa: Malcolm H. Levitt: Spin Dynamics Basics of Nuclear Magnetic Resonance Wiley 2008 Oppikirja on välttämätön sillä verkkoluento sisältää vain

Lisätiedot

ILTA-, MONIMUOTO- JA VERKKO-OPETUS

ILTA-, MONIMUOTO- JA VERKKO-OPETUS ÄIDINKIELI ÄI 1 SÄRMÄ - Suomen kieli ja kirjallisuus Otava 978-951-1-23436-4 ÄI 2 SÄRMÄ - Suomen kieli ja kirjallisuus Otava 978-951-1-23436-4 ÄI 3 SÄRMÄ - Suomen kieli ja kirjallisuus Otava 978-951-1-23436-4

Lisätiedot

FysA230/3 Potentiaalikuoppa Suppea raportti

FysA230/3 Potentiaalikuoppa Suppea raportti Tiia Monto Työ tehty: 8.5.9 tiia.monto@jyu. 475856 FysA3/3 Potentiaalikuoppa Suppea raportti Assistentti: Joni Pasanen Hyväksytty/hylätty: Työ jätetty: Abstract I studied how the Matlab program can calculate

Lisätiedot

Varikko Ruokala Elokuu 2014

Varikko Ruokala Elokuu 2014 Varikko Ruokala Elokuu 2014 Viikko: 31 Kello ma 28.7. ti 29.7. ke 30.7. to 31.7. pe 1.8. la 2.8. 9-10 10-11 Eläkeläiset Ikonikerho 11-12 Eläkeläiset Ikonikerho 12-13 Eläkeläiset Ikonikerho 13-14 Eläkeläiset

Lisätiedot

CHEM-A1250 KEMIAN PERUSTEET kevät 2016

CHEM-A1250 KEMIAN PERUSTEET kevät 2016 CHEM-A1250 KEMIAN PERUSTEET kevät 2016 Luennoitsijat Tuula Leskelä (huone B 201c, p. 0503439120) sähköposti: tuula.leskela@aalto.fi Gunilla Fabricius (huone C219, p. 0504095801) sähköposti: gunilla.fabricius@aalto.fi

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Kvanttimekaniikan perusteet

Kvanttimekaniikan perusteet Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aaltofunktio ja todennäköisyystiheys

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

6. Vapaaelektronikaasu

6. Vapaaelektronikaasu 6. Vapaaelektronikaasu KOF, sl 2012 1 Vapaaelektronikaasu on yksinkertaisin malli metallien elektronirakenteelle (engl. electronic structure). Se selittää kuitenkin jo monia metallien ominaisuuksia. Kaaviokuva:

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Fysiikka. Opetuksen tavoitteet

Fysiikka. Opetuksen tavoitteet Fysiikka Fysiikan opetus tukee opiskelijoiden luonnontieteellisen ajattelun sekä maailmankuvan kehittymistä osana monipuolista yleissivistystä. Opetus ohjaa opiskelijaa ymmärtämään fysiikan merkitystä

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli

KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli Aineen rakenteen teoria alkoi hahmottua, kun 1800-luvun alkupuolella John Dalton kehitteli teoriaa atomeista jakamattomina aineen perusosasina. Toki

Lisätiedot

1. Materiaalien rakenne

1. Materiaalien rakenne 1. Materiaalien rakenne 1.1 Johdanto 1. Luento 2.11.2010 1.1 Johdanto Materiaalit voidaan luokitella useilla eri tavoilla Kemiallisen sidoksen mukaan: metallit, keraamit, polymeerit Käytön mukaan: komposiitit,

Lisätiedot

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa

Synkrotronisäteily ja elektronispektroskopia. Tutkimus Oulun yliopistossa Synkrotronisäteily ja elektronispektroskopia Tutkimus Oulun yliopistossa Ryhmätyö Keskustelkaa n. 4 hengen ryhmissä, mitä on synkrotronisäteily ja miten sitä tuotetaan. Kirjoittakaa ylös ajatuksianne.

Lisätiedot

53714 Klassinen mekaniikka syyslukukausi 2010

53714 Klassinen mekaniikka syyslukukausi 2010 53714 Klassinen mekaniikka syyslukukausi 2010 Luennot: Luennoitsija: Kurssin kotisivu: ma & to 10-12 (E204) Rami Vainio, Rami.Vainio@helsinki.fi http://theory.physics.helsinki.fi/~klmek/ Harjoitukset:

Lisätiedot

MUUTOKSET ELEKTRONI- RAKENTEESSA

MUUTOKSET ELEKTRONI- RAKENTEESSA MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.

Lisätiedot

Todennäköisyys ja epämääräisyysperiaate

Todennäköisyys ja epämääräisyysperiaate Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

KOULUMATKATUKI TAMMIKUUSSA 2003

KOULUMATKATUKI TAMMIKUUSSA 2003 Tiedustelut Timo Partio, puh. 020 434 1382 s-posti timo.partio@kela.fi KOULUMATKATUKI TAMMIKUUSSA 2003 Kaikki Tuki maksun vastaanottajan mukaan, 1 000 euroa 2003 Tammikuu 23 555 2 008 1 156 35 374 23 419

Lisätiedot

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................

Lisätiedot

JATKO-OPINTOSUUNNITELMA

JATKO-OPINTOSUUNNITELMA OULUN YLIOPISTO TEKNILLINEN TIEDEKUNTA JATKO-OPINTOSUUNNITELMA Pyydän hyväksymistä seuraaville tutkintovaatimuksilleni: Nimi: DI Iiro Insinööri Osoite: Iironkatu 10, 90100 Oulu Jatko-opinto-oikeus myönnetty:

Lisätiedot

Englannin kielen ja viestinnän ja ammattiaineiden integrointiyhteistyö insinöörikoulutuksessa

Englannin kielen ja viestinnän ja ammattiaineiden integrointiyhteistyö insinöörikoulutuksessa Englannin kielen ja viestinnän ja ammattiaineiden integrointiyhteistyö insinöörikoulutuksessa Ammattikorkeakoulujen kielten ja viestinnän opettajien neuvottelupäivät Lapin ammattikorkeakoulussa 13.-14.11.2014

Lisätiedot

Kvanttimekaniikka. Tapio Hansson

Kvanttimekaniikka. Tapio Hansson Kvanttimekaniikka Tapio Hansson Kummallinen teoria Kvanttimekaniikka on teoria, jota ei ehkä edes kannata yrittää "käsittää". Arkijärjellä ei tee kvanttimaailmassa juuri mitään. Luonto toimii kuten toimii,

Lisätiedot

Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista

Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista Fysiikan Nobel 2008: Uusia tosiasioita aineen perimmäisistä rakenneosasista K. Kajantie keijo.kajantie@helsinki.fi Tampere, 14.12.2008 Fysiikan (teoreettisen) professori, Helsingin yliopisto, 1970-2008

Lisätiedot