SEKAELEMENTIT ABSOLUUTTISTEN SOLMUKOORDINAATTIEN MENETELMÄSSÄ

Koko: px
Aloita esitys sivulta:

Download "SEKAELEMENTIT ABSOLUUTTISTEN SOLMUKOORDINAATTIEN MENETELMÄSSÄ"

Transkriptio

1 LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknllnen tedekunta / LUT School of Energy Systems LUT Kone Koneensuunnttelu Elas Altarrba SEKAELEMENTIT ABSOLUUTTISTEN SOLMUKOORDINAATTIEN MENETELMÄSSÄ Työn tarkastajat: Jar Mäknen (TUT) Tmo Nykänen (LUT) Työn ohjaajat: Prof. Ak Mkkola (LUT) TkT Marko Matkanen (LUT)

2 TIIVISTELMÄ Lappeenrannan teknllnen ylopsto Teknllnen tedekunta Koneensuunnttelu Elas Altarrba Sekaelementt absoluuttsten solmukoordnaatten menetelmässä Lsensaatntyö svua, 8 kuvaa ja 8 taulukkoa Tarkastajat: Hakusanat: Keywords: Jar Mäknen, apulasprofessor, Tampereen teknllnen ylopsto Tmo Nykänen, TkT, Lappeenrannan teknllnen ylopsto Sekaelementt, soldelementt, absoluuttsten solmukoordnaatten menetelmä, elementtmenetelmä, ANCF, FEM Mxed fnte elements, sold elements, absolute nodal coordnate formulaton, fnte element method, ANCF, FEM Tässä lsensaatntyössä kästellään sekaelementten sovellusmahdollsuuksa absoluuttsten solmukoordnaatten menetelmässä. Absoluuttsten solmukoordnaatten menetelmä on uudentyyppnen lähestymstapa elementtmenetelmän elementten koordnaatten määrttämseks ja sen yhtenä tavotteena on tehostaa suura srtymä ta kertymä ssältäven elementten laskentatehokkuutta. Tässä työssä absoluuttsten solmukoordnaatten menetelmä estellään pääprtettän sekä annetaan esmerkkejä muutamsta tyypllsmmstä elementestä lausuttuna edellä manttujen koordnaatten perusteella. Sekaelementeks kutsutaan elementttyyppejä, mssä tuntemattomen muuttujen joukkoja on ana enemmän kun yks. Sekaelementt erottavat redusotumattomsta elementestä srtymäkentän ssältymnen muuttujaryhmään ja hybrdelementestä muuttujen denttset ulottuvuudet. Sekaelementtejä käytetään esmerkks kokoonpurstumattomen materaalen rakenneanalyysessä, alentamaan elementltä vaadttava jatkuvuusehtoja ta mallntamaan lmötä, mssä fyskaalset omnasuudet ovat jostan syystä vomakkaast tosstaan rppuvasa. Tämän lsensaatntyön krjottamseks on tehty tutkmusta sekaelementten mahdollsuukssta toma absoluuttsten solmukoordnaatten menetelmässä. Tutkmuksen tuloksena on saatu akaan kaks tässä työssä esteltävää, varsn rajatun tomntakyvyn omaavaa sekaelementttyyppä, joden srtymäkentät on määrtelty globaalen koordnaatten suhteen ssältäen myös orentaatotermt. Tutkmusahe vaat kutenkn velä paljon lsätyötä, ennen kun sekaelementttyyppejä vodaan kauttaaltaan soveltaa absoluuttsten solmukoordnaatten menetelmällä toteutetussa rakenneanalyysessä.

3 ABSTRACT Lappeenranta Unversty of Technology Faculty of Technology Machne Desgn Elas Altarrba Mxed Sold Elements Based on the Absolute Nodal Coordnate Formulaton Thess of Lcentate of Scence (Technology) pages, 8 pctures, 8 tables Examners: Keywords: Jar Mäknen, Assocate Professor, Tampere Unversty of Technology Tmo Nykänen, Dr. Sc. (Tech.), Lappeenranta Unversty of Technology Mxed fnte elements, sold elements, absolute nodal coordnate formulaton, fnte element method, ANCF, FEM Ths thess nvestgates a mxed fnte element formulaton based on the absolute nodal coordnate formulaton, a relatvely new approach that adds orentaton terms makng t possble to orent the coordnate system of a fnte element wth respect to the global frame of reference. The most mportant beneft s that t results n relable fnte elements that are capable of accommodatng large rotatons or deformatons. The thess gves a general presentaton of the absolute nodal coordnate formulaton and offers some examples of the fnte elements. Mxed fnte elements belong to a specal group of elements havng more than one unknown varable. They dffer from rreducble fnte elements n that the dsplacement feld s always ncluded n mxed fnte elements. They dffer from hybrd elements n that the dmensons of ther varables are always equal n level. Mxed fnte element formulatons can be used when ncompressble materals are nvestgated, contnuous requrements of the element are reduced, or there s a dffcult nterconnecton of physcal phenomena. The work descrbed here begns wth an nvestgaton nto how mxed fnte elements can best be attached based on the absolute nodal coordnate formulaton. It contnues wth two types of mxed fnte elements beng attached to the absolute nodal coordnate formulaton and beng tested wth a number of example numercal analyses. The examples reveal that more research work and nvestgaton wll be needed before mxed fnte elements can be appled n a straghtforward and drect manner n the absolute nodal coordnate formulaton.

4 SISÄLLYSLUETTELO. Johdanto.... Elementtteorat Absoluuttsten solmukoordnaatten menetelmä Elementn lausumnen globaaln koordnaatston suhteen Elementn lkeyhtälöt Ulkoset vomat ja momentt.... Esmerkkejä palkk- ja laattaelementestä Palkkelementt (Euler-Bernoull) Palkkelementt (Tmoshenko) Laattaelementt (Krchhoff) Laattaelementt (Ressner-Mndln) Sekaelementtmenetelmä Sekaelementt elementtmenetelmässä Sekaelementten sovellusmahdollsuudet Sekaelementten numeernen stablus Esmerkkejä sekaelementestä Veubeke-Hu-Washzu-sekaelementt Kokoonpurstumattomuutta analysovat elementt Sekaelementt ja absoluuttsten solmukoordnaatten menetelmä Srtymä-jänntyselementt Srtymä-jänntys-sekaelementtkonstrukto Srtymä-jänntys-sekaelementn suortuskyky Srtymä-pane-elementt Srtymä-pane-sekaelementtkonstrukto Srtymä-pane-sekaelementn suortuskyky Päätelmät Tutkmuskysymys Tasapanoehdot Muotofunktot ja lkeyhtälöt Tulevasuuden kehtysmahdollsuudet Yhteenveto Lähdeluettelo... 77

5 KÄYTETYT MERKINNÄT Latnalaset aakkoset A pnta-ala E kmmokerron H korkeus I jäyhyysmomentt k käyryyskerron L ptuus M momentt n vapausasteden lukumäärä T kneettnen energa U elastnen energa v Possonn suppeumaluku V tlavuus δw vrtuaalnen työ W paksuus Krekkalaset aakkoset Г lukuavaruus Δ suureen muutos λ Lamé n parametr μ Lamé n parametr Π funktonaal τ lekkausjänntys ρ theys σ normaaljänntys Ω lukuavaruus

6 Matrst B E I J K L M S V Z knemaattnen matrs kmmomatrs ykskkömatrs Jacobn matrs jäykkyysmatrs dfferentaaloperaattor massamatrs muotofunktomatrs jänntyskentän nterpolontfunktomatrs venymäkentän nterpolontfunktomatrs Vektort e k fel fext fp fs r u ε σ solmusrtymävektor (ANCF) käyryysvektor elaststen vomen vektor ulkosten vomen vektor ulkosten pntavomen vektor ulkosten tlavuusvomen vektor asema- ja orentaatovektor solmusrtymävektor (FEM) venymävektor jänntysvektor Ylä- ja alandekst el elastnen voma EN Venymä paremmn approksmova Vebeuke-Hu-Washzu-funktonaal ext ulkonen voma GL Green-Lagrangen venymätensor HR Hellnger-Ressner-funktonaal valttu elementt p pnta-alaan vttaava alandeks s tlavuuteen vttaava alandeks VHW Vebeuke-Hu-Washzu-funktonaal

7 ALKUSANAT Haluan kttää tämän työn valmstumsta edesauttaneta tahoja. Hetä ovat muun muassa Lappeenrannan teknllsen ylopston koneensuunnttelun professor Ak Mkkola ja tutkjatohtor Marko Matkanen. Lsäks tohtor Oleg Dmtrochenko on antanut arvokkata neuvoja, joden avulla monet tässä työssä estetyt tutkmusongelmat on saatu ratkastua. Professor Josep M. Font-Llagunes Barcelonan UPC-ylopstosta tom säntänän vuoden kestäneen tutkjaveralun akana. Tämä lsensaatntyö on valtaosaltaan krjotettu Barcelonassa, mstä ktos hänelle. Päärahottaja, Suomen Akatema, ansatsee myös ktokset (projekt #3354). Lsäks tätä tutkmusta ovat rahottaneet myös Lappeenrannan teknllnen ylopsto sekä loppuvaheessa myös VdRoM-tutkmuskonsorto. Säätöden osalta tomntaa ovat olleet tukemassa myös Lappeenrannan teknllsen ylopston tuksäätö, Eml Aaltosen säätö ja KAUTE-säätö. Helle kaklle lämmn ktos, tukenne on ollut tärkeää ja merktyksellstä. Tämän lsäks myös monet muut henklöt ja tahot ansatsevat ktoksensa. Hedän panoksensa usen hukkuu verhohn ollen slt kutenkn tärkeää lopputuloksen saavuttamsen kannalta. Tällasesta lstasta van tuls aka ptkä. Ertysest haluan kutenkn mustaa opntotomston väkeä, Sar Damsténa ja Eeva Häyrstä. Teltä on ana saanut vastauksen shen, mtä kysytään; sllon, kun kysytään. Tovon, että jatkatte arvokasta työtänne ylopstomme jatko-opskeljoden parssa velä ptkään. Kakk hyvn etenevä e välttämättä ole hyvn suunnteltua, ekä kakk hyvn suunnteltu välttämättä etene hyvn. Sellasta elämä on. Lappeenrannassa Elas Altarrba

8 . Johdanto Insnöörtetessä sovelletaan paljon ertyyppsä rakenneanalyysejä (Gere ym., 990; Crag ym., 006; García de Jalón ym., 994) tarkotuksena smuloda suunnteltuja ta jo olemassa oleva systeemejä. Tetoteknkan kehttymsen myötä tästä vrtuaalsuunntteluks kutsutusta teteenhaarasta on tullut jatkuvast keskesemp menetelmäkokonasuus, mnkä avulla tehostetaan monssa tapauksssa merkttävällä tavalla esmerkks kokonasta tuotekehtysprosessa. Tämän kehtyskulun seurauksena suunnttelutyö toteutetaan usen lähes kokonasuudessaan tetokoneavustesest ssältäen myös lukusat suunnteltavalle kohteelle tehtävät rakenne- ta muun tyyppset analyyst. Suunnttelumalleja käytetään myös CNC-koneden ohjaukseen, jollon vrtuaalsuunnttelusta on sellasenaan hyötyä myös valmstusprosessssa. Rakenneanalyysejä tehtäessä on usen tarkotuksena tarkastella tutkmuksen kohteena olevan systeemn käyttäytymstä haluttujen omnasuuksen, vomen ja muden fyskaalsten lmöden vakutuksen alla, tarkotuksena tehdä johtopäätöksä systeemn soveltuvuudesta kysesn olosuhtesn. Tämänkaltasella soveltuvuustarkastelulla vodaan tarkottaa joko täysn uuden, velä suunnttelupöydällä olevan systeemn omnasuuksen tarkastelua ta vahtoehtosest jo olemassa olevan systeemn ssältämen osen ta omnasuuksen tomntaa nn normaalst valltsevssa olosuhtessa kun erkostlantessakn. Rakenteden analysont vodaan toteuttaa tutkmusongelmasta rppuen monlla er lähestymstavolla. Esmerkks koneenrakennusteknkassa aemmn, konerakenteden ollessa huomattavast nykystä yksnkertasempa, laskettn komponentten omnasuuksa yleensä komponenttkohtasest, usen soveltaen klasssen lujuusopn analyyttsä ja dfferentaalsa yhtälötä (Gere ym., 990; Crag ym. 006). Nämä laskentamallt kehttyvät 700- ja 800-lukujen akana perustuen Newtonn klassseen mekankkaan sekä muun muassa Cauchyn ja Possonn työhön materaalomnasuuksen matemaattsen mallnnuksen parssa. Tätä aemmn suunnttelutyö perustu hyvn ptkälle kokemusperäseen tetoon rakenteden ja materaalen kuormtuskäyttäytymsestä erlasssa olosuhtessa. Ertysest koneenrakennusteknkassa yhtenä merkttävänä edstysaskeleena olvat Wöhlern tutkmukset rautatekaluston akseleden väsymsestä, mnkä seurauksena rakenteden analysonnssa alettn huomoda myös kuormtushstora, jollon monet aemmn selttämättömät vaurot votn ehkästä jo suunnttelupöydällä.

9 Klasssen lujuusopn soveltamsen selkeänä haasteena ovat kutenkn muodoltaan ta multa omnasuuksltaan monmutkaset rakenteet (Gere ym., 990; Hakala, 986). Alun pern tämäntyyppsä ongelma tul vastaan muun muassa moottorteknkassa, sekä ertysest lma-alusten kehtystyössä, mssä yhtenä tärkeänä tarkastelukokonasuutena on lma-aluksen runkorakenteen aerodynamkka ja kestävyys. Nähn haastesn vastatakseen Hrennkoff (94) ja Courant (943) esttelvät uudenlasen lähestymstavan, mssä tarkasteltavana olevan systeemn omnasuuksa määrttävän jatkuvan funkton arvojoukkoa dskretsodaan, el palotellaan äärellsn tarkasteluvälehn käyttäen valttua jakovälä, el verkkoa. Hrennkoffn ja Courantn esttelemä dea on nmetty sttemmn äärellsten elementten menetelmäks (Hakala, 986; Bathe, 996; Cook ym., 00; Zenkewcz ym., 000a). Tämä rakenneanalyyttnen lähestymstapa perustuu osttan Raylegh-Rtzn teoraan (Bremer, 008), mssä systeemä mallntaven kantafunktoden joukosta valttu tuntemattomen muuttujen suhteen dskretotu lneaarkombnaato sjotetaan ratkastavaa ongelmaa parhaten mallntavaan funktonaaln. Sjotuksen jälkeen funktonaaln äärarvoja approksmodaan tuntemattomen dskreetten muuttujen suhteen. Tonen merkttävä elementtmenetelmään vakuttanut teora on Galerknn (Zenkewcz ym. 000a) esttelemä, samankantasn panofunktohn perustuva lähestymstapa osttasdfferentaalyhtälöden tehokkaaks ratkasemseks. 900-luvun jälkpuolskolla nopeast kehttyneen tetoteknkan mahdollstaessa merkttäväst tehokkaammat numeerset analyyst, kehtty elementtmenetelmästä kaupallseen käyttöön kelpaava sovelluksa 970-lukuun mennessä. Elementtmenetelmällä on mahdollsta smuloda myös mallnnettaven monkappalesysteemen dynamkkaa (Géraldn ym., 00; Shabana, 00), mutta tähän tarkotukseen se e kutenkaan ana ole tehokkan mahdollnen lähestymstapa (Schehlen, 997; Shabana, 997b). Asa korostuu ertysest smulotaessa erttän jäykken kappaleden dynaamsa systeemejä, mssä elementtmenetelmä vo aheuttaa tuloksn lkaa numeersta epätarkkuutta ja on usen myös laskennallsest tarpeettoman raskas. Myös reunaehtojen asettamnen jäykken kappaleden dynaamsa, usen ertyyppsä nvelä ssältävä systeemejä ajatellen vo olla tapauksesta rppuen monmutkasta ja hankalast toteutettavaa (Shabana, 00). Näden haasteden ratkasemseks on dynamkan mallntamseen omaksuttu yleensä tonen, monkappaledynamkaks (Schehlen, 997; Shabana, 997b; Shabana, 00) kutsuttu lähestymstapa.

10 3 Monkappaledynamkka on laaja teorakokonasuus, mkä on alun pern kehtetty jäykken kappaleden fyskan smulontn, mutta sttemmn kysestä teorajoukkoa on laajennettu mahdollstamaan myös muun muassa joustavuuden mallntamnen (García de Jalón ym., 994; Géraldn ym., 00; Bremer, 008; Shabana, 00). Monkappaledynamkan teoreettsen perustan ovat alun pern luoneet Newtonn klassnen fyskka ja Eulern menetelmät systeemn rajotteden ja nvelen määrttelemseks. Myöhemmn d Alembert (743) esttel monkappaledynamkassa keskesen vrtuaalsen työn teoran ja Lagrange (788) edelleen käytössä olevan ratkasumalln rajotetun systeemn dynamkan laskemseks. Tämän jälkeen monkappaledynamkan teorakokonasuutta on kehtetty ja täydennetty useaan otteeseen ssällyttämällä shen muun muassa omnasuuksltaan erlasa rajotteden määrttelymenetelmä (Shabana, 00), kontaktmallnnustyökaluja (García de Jalón ym., 994), joustavuuden mallnnusta, erlasa ntegrontmenetelmä (Géraldn ym., 00; García de Jalón ym., 994), sekä lukusa koordnaattsysteemejä (García de Jalón ym., 994). 980-luvulle tultaessa monkappaledynamkasta on tullut keskenen dynamkan analysontmenetelmä myös kaupallsssa ohjelmstossa. Ajateltaessa sekä elementtmenetelmän että monkappaledynamkan teorakokonasuukslle sovelluskohteden asettama vaatmuksa, votasn lstaa helpost kasvattaa loputtomn. Myös keskesmmstä vaatmukssta vodaan kstellä (Géraldn ym., 00; García de Jalón ym., 994; Wrggers, 008), mutta muutamat tärkeät omnasuudet votaneen lstata täten: Elementtmenetelmä Lukkutumattomuus Tavutustarkkuus Verkosta rppumaton laskentatarkkuus Elementtyhtälöden yksnkertasuus Laskentatehokkuus Monkappaledynamkka Rajotteet ja reunaehdot Nvelet ja ltokset Joustavuus ja muodonmuutokset Kertymen dynamkka Dynamkkayhtälöden yksnkertasuus Laskentatehokkuus Osn nämä vaatmukset ovat yhtenevä, kuten on lata esmerkks laskentatehokkuuden ja yhtälöden numeersen ratkastavuuden suhteen. Verkosta rppuvat tekjät ja lukkutumslmö ovat elementtmenetelmän ongelma snä mssä kertymen ja ertyyppsten nvelrajotteden määrttämnen panottuu enemmän monkappaledynamkkaan.

11 4 Puhuttaessa monkappaledynamkasta ja elementtmenetelmästä on kutenkn syytä huomata, että osa teteentekjöstä katsoo elementtmenetelmän olevan nykyään osa monkappaledynamkan teorakokonasuutta (Shabana, 00; Géraldn ym., 00; Wrggers, 008). Tämä näkemys e kutenkaan ole kauttaaltaan hyväksytty johtuen osttan molempen menetelmen nopeasta kehttymsestä vme vuoskymmennä sekä molempen teoroden kehtyshstoran erlasuudesta. Lsäks näden teoroden käyttötarkotuksessa ja sovellettavuudessa on myös merkttävä eroavuuksa. Tämän vuoks elementtmenetelmää usen tarkastellaan edelleen myös omana teorakokonasuutena (Cook ym., 00; Castersen ym. 009; Zenkewcz ym., 000a, Zenkewcz ym., 000b). Kappaleen joustavuuden menestyksekäs mallntamnen (Crag ym., 006; Géraldn ym., 00;) on teollsuuden ja teteen tarpeta ajatellen usen vähntään yhtä tärkeä asa, kun systeemn dynamkan mallnnus tarkotuksenmukasella tarkkuudella (García de Jalón ym., 994). Tämä vaatmus on myös yhtenänen nn elementtmenetelmälle kun monkappaledynamkallekn rppumatta stä, halutaanko ne katsoa kuuluvaks samaan teorakokonasuuteen va e. Esmerkks kokoonpanorobotten kehtystyössä tämä vaatmus tulee usen eslle, kun suunnteltavan robotn nvelvarsen dynamkkaan vakuttavat yhtä lalla käyttölatteden tuottamat tovotut lkkeet ja nstä aheutuva dynaamnen kohna, sekä yhtä lalla myös robotn komponentten joustot ja nstä usen seuraavat värähtelyt (Hoekstra, 986). Joustavuuden mallntamseen on olemassa lukusa er lähestymstapoja, jota ovat esmerkks kelluvan koordnaatston menetelmä, keskttyneden massojen teora (Shabana, 00) ja Crag-Bampton-muotohn perustuva lähestymstapa (Crag ym., 006). Joustavuuden mallntamnen kelluvan koordnaatston menetelmällä perustuu kahden ertyyppsen koordnaattjoukon soveltamseen (Shabana, 00). Tonen koordnaattjoukko määrttää kappaleen sjannn ja orentaaton kappaleen oman referensskoordnaatston suhteen, ja vastaavast tonen koordnaattjoukosta taas nässä valtussa pstessä tapahtuneen pokkeaman, el ss käytännössä kappaleessa tapahtuneen muodonmuutoksen. Näden koordnaattjoukkojen summavektort lausutaan globaaln sjantnsa suhteen määrttämällä kappaleen lokaaln koordnaatston orgon sjant, ja orentaatonsa suhteen käyttäen esmerkks Eulern kulmn, parametrehn ta Rodrquesn yhtälöön perustuvaa kertomatrsa (Géraldn ym., 00; Shabana, 00).

12 5 Kelluvan koordnaatston menetelmä e kutenkaan ole tehokas, mkäl tarkotuksena on mallntaa suura muodonmuutoksa ssältävä systeemejä (Shabana, 00). Tähän ongelmaan on vmesten 5 vuoden akana etstty ratkasua absoluuttsten solmukoordnaatten menetelmästä, joka on kehtetty alun pern Shabanan (996, 997a) tutkmuksen tuloksena smulomaan ertysest systeemejä, mssä elementtkohtaset muodonmuutokset ja kertymät vovat olla pokkeuksellsen suura. Absoluuttsten solmukoordnaatten menetelmä perustuu osttan muun muassa teoraan suurten kertymen mallntamsesta asemavektoren (Shabana, 00), mssä absoluuttsten solmukoordnaatten tapaan elementn solmukoordnaatt lausutaan globaaln koordnaatston orgon suhteen. Tässä lähestymstavassa solmujen orentaato määrtetään penten, vrtuaalsten kertymen avulla, mnkä seurauksena sngulaarsuusongelmat ovat tavallsa (Géraldn ym. 00; García de Jalón ym., 994; Shabana, 00). Nämä ongelmat lmenevät usen ertysest palkkelementten tapauksessa lekkausmuodonmuutosten ollessa lausuttuna Serret-Frenetkoordnaatston (Serret, 85; Frenet, 85) avulla. Tosaalta on kutenkn myös havattu, että myös Euler-Bernoulln elementt vo usen olla tapuvanen sngulaarsuuteen (Shabana, 00). Sngulaarsuusongelmat ovat yks keskenen syy shen, mnkä vuoks mantun lähestymstavan soveltamnen on harvnasta. Absoluuttsten solmukoordnaatten menetelmässä sekä elementn solmujen sjant että nden orentaato lausutaan globaaln orgon suhteen sten, että solmukohtanen orentaato määrtellään kysesen solmun asemavektorn komponentten osttasdervaaton globaalen koordnaattakseleden suhteen (Shabana, 996). Tosn sanoen, tässä ss lasketaan muotofunktoden kulmakertoma globaaln koordnaatston suhteen akselkohtasest. Tämän lähestymstavan ansosta e solmujen orentaatoden määrttelemseks tarvta vrtuaalsa kertymä (Géraldn ym. 00; García de Jalón ym., 994), jollon nhn lttynestä sngulaarsuusongelmsta päästään eroon (Shabana, 996; Shabana, 997a). Absoluuttsten solmukoordnaatten menetelmässä jokanen solmu saa ss asemakoordnaattensa lsäks lukusa orentaatokoordnaatteja, joden määrään vakuttavat valttu koordnaatsto ulottuvuuksneen sekä haluttu tarkkuus orentaaton suhteen. Täysn parametrsotu elementt ssältää orentaatot kakken koordnaattakseleden suhteen, tosn sovelluskohteesta rppuen tätä lausuntatapaa e kutenkaan ana käytetä. Esmerkks laatat ja palkt ssältävät usen pokkeuksa.

13 6 Absoluuttsten solmukoordnaatten menetelmän esttelyn jälkeen tätä lähestymstapaa on täydennetty muun muassa lausumalla lukusa er elementttyyppejä absoluuttsten solmukoordnaatten menetelmällä, tutkttu vomen ja momentten laskentaa ja mallnnusta kysesessä koordnaatstossa sekä perehdytty menetelmän yleseen sovelluskelposuuteen (Shabana, 997a; Schehlen, 997; Schehlen, 006). Tostaseks absoluuttsten solmukoordnaatten menetelmällä on estelty muun muassa ertyyppsä palkkelementtejä perustuen Euler-Bernoulln ja Tmoshenkon palkkteorohn (Omar ym., 00; Dmtrochenko ym., 003; Iwa ym., 003; Dufva ym., 004; Dufva ym., 005). Myös Krchoffn ja Ressner-Mndlnn laattatyypt (Dufva ym., 005; Mkkola ym., 003; Mkkola ym., 006), sekä kuor- ja vvaelementtejä on tutkttu (Mkkola ym., 004; Kerkkänen ym., 006). Vomen ja momentten mallnnuksesta ovat tehneet tutkmusta muun muassa Escalona ym. (998), Berzer ym. (000), sekä Mkkola ym. (003). Absoluuttsten solmukoordnaatten menetelmää on pyrtty soveltamaan myös muun tyyppstenkn ongelmen ratkasemseks, kuten petsosähkösten lmöden smulontn (Nada ym., 0). Lsäks menetelmää on sovellettu jänntysten analysontn (Gerstmayr ym., 006) ja plastsen muodonmuutoksen smulontn (Gerstmayr ym., 004). Laskentatehokkuuden parantamseks nn elementn omnasuuksa (Gerstmayr ym., 008; Gerstmayr ym., 008), kun nlle soveltuva ntegrontmenetelmäkn on kehtetty (Sanborn ym., 009). Tostaseks tätä menetelmää e kaupallsssa sovelluksssa velä kutenkaan käytetä. Absoluuttsten solmukoordnaatten menetelmässä monentyyppset elementt kykenevät kästtelemään huomattavan suura muodonmuutoksa (Shabana, 996; Shabana, 997a; Shabana, 008; Shabana, 00). Esmerkks vvaelementn vo fyskaalssta omnasuukssta rppuen vääntää lähestulkoon solmuun tsensä ympär (Berzer ym., 000), yhden anoan laattaelementn avulla vodaan teorassa smuloda vakkapa vapaast rppuvaa lakanaa (Dmtrochenko ym., 003; Mkkola ym., 003) ja muun muassa hhnan käyttäytymnen hhnapyören suhteen vodaan toteuttaa pernteseen elementtmenetelmään nähden huomattavan penellä elementtmäärällä (Kerkkänen ym., 006). Suurten muodonmuutosten teoreettnen mahdollstamnen e kutenkaan tee menetelmästä velä automaattsest tarkkaa (Gerstmayr ym., 008) mallnnettaessa suura muodonmuutoksa ssältävä systeemejä. Lsäks kokemus on osottanut, että usen tämä lähestymstapa vaat elementten penestä määrästä huolmatta elementtkohtasta laskentatehoa paljon enemmän, kun mhn on totuttu tavanomasen elementtmenetelmän sovelluksssa.

14 7 Absoluuttsten solmukoordnaatten menetelmän tarjoamat mahdollsuudet ovat ptäneet huolen stä, että tutkmustyö kysesen teorakokonasuuden parssa on katsottu tarpeellseks (Schehlen, 997; Schehlen, 006; Shabana, 008). Sekaelementten (Castersen ym., 009; Boff ym., 008) kykyä toma absoluuttsten solmukoordnaatten menetelmässä on kutenkn tähän mennessä tutkttu varsn vähäsest ja tulokset ovat olleet tostaseks lahoja (Altarrba ym., 0). On kutenkn syytä otaksua, että sekaelementten avulla vodaan absoluuttsten solmukoordnaatten menetelmällä mallntaa useta sellasa fyskaalsa omnasuuksa, joden mallntamnen lman sekaelementtejä on haastavaa ta jossan tapauksssa ehkä jopa mahdotonta (Castersen ym., 009; Zenkewcz ym., 000a). Nätä lmötä vovat olla muun muassa kokoon purstumattomen materaalen mallntamnen (Zenkewcz ym., 000a) ta monssa tapauksssa ylesest ottaen kahdesta (ta useammasta) muuttuja-avaruudesta koostuvan systeemn smulont. Jälkmmäsestä tlanteesta esmerkknä vos olla vakkapa jonkn lämpöuunn kuorrakenteen käyttäytymnen lämpötlan ta paneen vakutuksen alla. Tämän työn tarkotuksena on tutka mahdollsuuksa soveltaa sekaelementtejä absoluuttsten solmukoordnaatten menetelmään. Tavotteena on lausua kaks tunnettua sekaelementttyyppä, srtymä-jänntys-, ja srtymä-pane-sekaelementt absoluuttsten solmukoordnaatten menetelmällä (Zenkewcz ym., 000a; Castersen ym., 009). Nämä sekaelementttyypt on valttu tutkmuskohteeks nden suhteellsen yksnkertasen konstrukton vuoks. Kehtettyjä elementtejä testataan numeersn testen ja tuloksa verrataan olemassa olevn, tavanomaseen elementtmenetelmään perustuvn rakenteeltaan samantyyppsn sekaelementtehn. Valttujen sekaelementten dynaamsa ja knemaattsa omnasuuksa anoastaan svutaan johtuen kysesen tutkmusongelman olevan mahdollsest nn laaja, ette sen ssällyttämnen tähän työhön ole rajauksesta johtuvsta systä tarkotuksenmukasta tse aheen tärkeydestä huolmatta. Pdemmän akaväln tavotteena vodaan ptää absoluuttsten solmukoordnaatten menetelmän laajentamsta soveltumaan yhä uusen ja ertyyppsten ongelmen ratkasemseks. Sovelluksa tovotaan muun muassa bomekaansten systeemen smulontmahdollsuuksen parantamseks (Cown ym., 007), mkä on ollut yks keskenen taustatekjä ylesest puhuttaessa absoluuttsten solmukoordnaatten menetelmän kehtystyöstä. Kutenkn myös perntesten nsnöörteteden, kuten koneensuunnttelun työkalujen kehttämseks vodaan tästä projektsta nähdä olevan hyötyä, ertysest puhuttaessa smulotaven systeemen ertystapaukssta.

15 8 Kuvassa havannollstetaan ylesellä tasolla menetelmen kehtyshstoraa ja tässä työssä kästeltyyn tutkmusongelmaan johtanutta tetä. Kuva : Tutkmusongelmaan johtanut kehtyshstora. Elementtteorat Tässä luvussa kästellään absoluuttsten solmukoordnaatten menetelmä pääprtettän, kästellen ylesä omnasuuksa sekä antamalla esmerkkejä absoluuttsten solmukoordnaatten menetelmällä lausutusta elementestä. Myös sekaelementtmenetelmää kästellään ahekokonasuutena selvttäen myös tämän elementtryhmän tyypllsä ertysprtetä. Sekaelementtkonstruktosta annetaan myös esmerkkejä, jotka ssältävät myös kolmannessa luvussa absoluuttsten solmukoordnaatten menetelmällä lausuttavat sekaelementttyypt.. Absoluuttsten solmukoordnaatten menetelmä.. Elementn lausumnen globaaln koordnaatston suhteen Absoluuttsten solmukoordnaatten menetelmä on yks tapa määrttää elementn koordnaatsto. Tässä menetelmässä elementten solmukoordnaatt ssältävät asema- ja orentaatotermt, ja ne lausutaan käyttäen systeemn globaala koordnaatstoa (Shabana, 996; Shabana, 997a; Shabana, 998). Tämä lähestymstapa on kehtetty edesauttamaan ratkasun löytymstä sellaslle elementtmenetelmällä analysotavlle ongelmlle, mssä tyypllsä lmötä ovat suuret kertymät ta muodonmuutokset (Shabana, 008).

16 9 Tosn kun tavanomanen elementtmenetelmä, absoluuttsten solmukoordnaatten menetelmä e lähtökohtasest aseta rajoja elementten tavutukselle ta kerrolle (Shabana, 998). Absoluuttsten solmukoordnaatten menetelmässä elementn jokanen solmu lausutaan globaalen asemavektoren elementn muotofunktoden avulla sten, että ( x, y z ) e r S, =, (.) mssä r on elementn satunnasest valtun psteen sjannn määrttävä vektor, S on elementn muotofunktomatrs ja e elementn solmukoordnaatten asemavektor. Absoluuttsten solmukoordnaatten menetelmässä asemavektor ssältää nformaaton valtun solmun asemasta globaaln koordnaatston suhteen, mutta tämän lsäks myös psteen orentaatotermt, el tosn sanoen kysesen solmun muotofunktoden akselkohtaset kulmakertomet suhteessa globaaln koordnaatstoon. Tämä lähestymstapa ankkuro ss muotofunktot elementn Serret-Frenet-tyyppseen (Serret, 85; Frenet, 85) lokaaln koordnaatstoon. Tämänkaltasessa koordnaatstossa orentaato seuraa valttua käyrää sten, että sen akselt ovat akseltyypstä rppuen ana joko tangentaals- ta normaalorentaatossa suhteessa käyrään, elementn muotofunktoden määrttäessä tässä tapauksessa nämä käyrät. Elementn solmukoordnaatten asemavektor vodaan krjottaa ss tarkemmn; T T T T é k k k k k T æ r ö æ r ö æ r ö ù e = ( r ) ç ç ç, (.) ë ç è x ø ç è y ø ç è z ø û mssä elementn solmun k sjant määrtellään asemavektorlla r k ja sjannn Serret- Frenet-orentaato tämän vektorn dervaaton, el ss määrttelemällä muotofunktoden kulmakertomet er koordnaattakselen dervaaton valtussa psteessä. Dmensoltaan ulottuvuuksen suhteen määräytyvä muotofunktomatrs määrtetään seuraavast; S [ s I s I s I s I K s ] =, (.3) ni 3 mssä tässä tapauksessa kolmulottesen elementn muotofunktot s, s,, sn kerrotaan 3 x 3-tyyppsellä ykskkömatrslla I3.

17 0 Tätä peraatetta elementn kakken solmujen määrttelemsestä globaaln koordnaatston suhteen havannollstetaan kuvalla, mssä yksnkertanen kakssolmunen vvaelementt on lausuttu absoluuttsten asemakoordnaatten suhteen. Solmussa on nähtävssä myös orentaatota määrttävät lokaalt Serret-Frenet-koordnaatstot. Mkä tahansa pste vvaelementssä vodaan määrttää käyttämällä globaaleja asemavektoreta. Kuva : Palkkelementt absoluuttsten solmukoordnaatten menetelmällä Muotofunktoden muodostamseen e absoluuttsten solmukoordnaatten menetelmä suoraan tarjoa mtään erllstä metodkkaa dfferentotujen funktoden vaatmusta lukuun ottamatta (Shabana, 996; Shabana, 997a), vaan nden on perustuttava sovellettavan elementn matemaattseen malln, kuten on lata tavanomasen elementtmenetelmänkn suhteen (Hakala, 986). Sovellettava approksmaato vo olla esmerkks tavanomanen polynomapproksmaato (Hakala, 986; Shabana, 008) ta Hermten polynomehn perustuva (Sanborn, 0). Jotta kulmakertomn perustuvan Serret-Frenet-orentaaton laskenta kutenkn onnstus, ptää muotofunktomatrsn ssältää myös dervotujen polynomapproksmaatoden perusteella muodostetut muotofunktot.

18 .. Elementn lkeyhtälöt Yksttäsen elementn (ta vahtoehtosest koko elementtsysteemn) dynamkka vodaan absoluuttsten solmukoordnaatten menetelmällä määrtellä (Shabana, 008; Shabana, 00) Lagrangen (788) dynamkkaa mukallen lman elementn vamennusvakutuksen huomomsta seuraavast; & f, (.4) M e + K e = ext mssä M on elementn massamatrs, K jäykkyysmatrs ja fext ulkosten vomen vektor. Tämä yksnkertanen lähestymstapa on mahdollnen, koska absoluuttsten solmukoordnaatten menetelmä e edellytä vrtuaalsten, el penten srtymen ta kertymen määrttelyä solmujen asemavektoressa (Shabana; 00). Elementn massamatrs M muodostetaan muotofunktomatrsen avulla, jollon se saa ana vakoarvoja, mnkä seurauksena esmerkks kelluvan koordnaatston menetelmässä käytetyn elementn keskpakovoma suhteessa lokaaln koordnaatstoon määrttävää nelöllstä nopeusvektora e tarvta (Shabana, 00). Massamatrs lasketaan seuraavast; ò M = ρ S S dv, (.5) V T mssä ρ on elementn smuloman materaaln theys. Massamatrsn muodostamnen perustuu elementn kneettsen energan määrtelmään (Escalona ym., 998; Shabana, 998; Shabana, 008), mkä absoluuttsten solmukoordnaatten menetelmällä määrtetään yhtälöllä; T = æ ç è T T ç T T ò r r& r& dv = e& ò r S S dv e& Þ ò r S S dv = V V ö ø V M. (.6) Massamatrsn vakont e kutenkaan merktse myös jäykkyysmatrsn vakonta, vaan jäykkyysmatrs on yleensä jopa erttän epälneaarnen (Escalona ym., 998; Shabana, 008). Jäykkyysmatrsn määrttämnen rppuu yleensä elementttyypstä, usessa tapauksssa se kutenkn muodostetaan elementn venymäenergaan perustuvlla lähestymstavolla. Tätä asaa kästellään tarkemmn esmerkken yhteydessä.

19 ..3 Ulkoset vomat ja momentt Absoluuttsten solmukoordnaatten menetelmässä elementtn kohdstuvat ulkoset vomat määrtellään käyttäen kahta tosstaan pokkeavaa lähestymstapaa (Mkkola ym., 003; Shabana, 008). Vomen määrttely vo tapahtua käyttämällä apuna elementn lokaala koordnaattsysteemä (Escalona ym., 998) ta stten vahtoehtosest soveltaen kontnuummekankkaan perustuvaa lähestymstapaa (Shabana, 997a; Shabana, 00). Elementn lokaala koordnaatstoa apuna käyttävä lähestymstapa soveltuu muun muassa Krchhoffn ta Ressner-Mndlnn laattateorohn perustuven laattaelementten mallntamseen ja se on lähestymstavaltaan varsn yksnkertanen ja suoravvanen. Menetelmä perustuu vrtuaalsen työn teoraan (Shabana, 00) ja snä erotellaan erkseen valttuhn pstesn vakuttaven vomen ja momentten vakutus. Vomat ja momentt lokaaln koordnaatston menetelmällä Elementn lokaaln koordnaatstoon perustuvassa lähestymstavassa ulkoset vomat ja nden vakutus elementssä vakuttavn elastsn vomn määrtellään yhtälöllä.7 (Shabana, 997a; Shabana, 998; Escalona ym., 998); f T ext d r = T T = f exts de f gende, (.7) mssä vektor fext on elementn ulkosten vomen vektor, δr on valttujen solmujen absoluuttsen aseman ja orentaaton määrttävä, voman vakutuksesta aheutuvan vrtuaalsen srtymän määrttävä vektor, S on elementn muotofunktomatrs ja δe elementn solmujen vrtuaalsen srtymän määrttävä asema- ja orentaatovektor. Kuten yhtälöstä.7 nähdään, elastset vomat vodaan määrttää ylestetyssä muodossa ulkosten vomen vektorn ja muotofunktoden tulolla (Escalona ym., 998). Tästä ss seuraa, että ulkonen voma vodaan määrtellä joko solmukohtasest ta vahtoehtosest ntegromalla voma vakuttamaan elementn yl, jollon esmerkks panovoman vakutuksen mallntamnen mahdollstuu.

20 3 Momentten määrttämnen (Escalona ym., 998; Shabana, 00) valtussa solmussa toteutetaan kertomatrsen avulla. Tässä yksnkertastetussa esmerkssä kerto tapahtuu Eulern kulmen teoran perusteella kahdessa ulottuvuudessa. Kertomatrsn lausuman kertymän α ja valtun solmun orentaaton vällle määrtetään yhteys yhtälöllä.8; û ù ë é - = û ù ë é - x r x r x r x r d cos sn sn cos a a a a, (.8) mssä term d on muotoa ø ö ç ç è æ + ø ö ç ç è æ = x r x r d. (.9) Yhtälöden.8 ja.9 avulla vodaan ratkasta vrtuaalnen kertymä δα (Escalona ym., 998); d x r x r x r x r - = d d da, (.0) jollon momentten ja vrtuaalsen kertymän tulo määrttää momentn tuottaman vrtuaalsen työn; d Mda W =. (.) Vomen lausunta kontnuummekankan lähestymstavalla Tonen lähestymstapa vomen määrttämseks on käyttää kontnuummekankan menetelmää (Shabana, 997a; Shabana, 008), jollon elementn omaa lokaala koordnaatstoa e tarvta ulkosten vomen määrttämseks. Tämä lähestymstapa perustuu venymäenergaperaatteeseen (Gere ym., 990), mssä elementn venymät määrtellään ANCF-sovelluksssa yleensä Green-Lagrangen venymätensorlla.

21 4 Venymäenerga määrtellään ylesellä tasolla tarkasteltuna yhtälöllä. (Shabana, 008), mutta on syytä huomoda, että energayhtälöä e vo sellasenaan tässä muodossa soveltaa er kaklle elementttyypelle; ò = V T dv U ε E ε, (.) mssä ε on Green-Lagrangen symmetrsestä venymätensorsta muodostettu venymävektor ja E elementn kmmomatrs. Venymätensor on muotoa (Shabana, 008); ( ) 3 I J J ε - = T GL, (.3) mssä venymstä johtuvat srtymägradentt määrtetään muodostamalla asemavektorn Jacobnmatrs elementn muotofunktoden ja globaalen koordnaattakseleden suhteen; n n n z S y S x S z S y S x S z S y S x S e J û ù ë é = M M M, (.4) ja mssä vektor e on elementn solmujen absoluuttnen asema- ja orentaatovektor. Elementn venymäenergan avulla määrtetään elaststen vomen vektor muodostamalla vastaavast Jacobnmatrs energan ja vektorn e suhteen; T el U ø ö ç ç è æ = e f. (.5)

22 5. Esmerkkejä palkk- ja laattaelementestä Tässä luvussa estellään neljä esmerkkä palkk- ja laattaelementestä lausuttuna absoluuttsten solmukoordnaatten menetelmällä. Molemmat palkkelementt lausutaan tasotapauksessa (Shabana, 997a; Shabana, 998), tonen palkesta noudattaa Euler- Bernoulln palkkteoraa ja tonen lekkausmuodonmuutokset huomovaa Tmoshenkon teoraa (Gere ym., 990). Palkkelementt ovat mahdollsa lausua tasotapauksen lsäks myös kolmulottesessa tlassa, vakka elementn lokaal koordnaatsto e kolmatta ulottuvuutta ssältäskään. Tämä metodkka mahdollstuu muun muassa Yakoubn ym. (00) ja Dufvan ym. (006) julkasemen tutkmustulosten osottamalla tavalla. Tässä luvussa esteltävät laattaelementt perustuvat Krchhoffn ja Ressner-Mndlnn laattateorohn, josta Ressner-Mndlnn teoraan perustuva laattaelementt kykenee mallntamaan myös lekkausmuodonmuutoksa. Nämä elementttyypt lausutaan kolmulottesessa avaruudessa ja ne vovat muokkautua snä elementn omnasuuksen tarjoamen mahdollsuuksen puttessa, vakka laattaelementn lokaal koordnaatsto onkn van kaksulottenen. Nämä elementttyypt ovat alun pern lausuttu absoluuttsten solmukoordnaatten menetelmällä Dmtrochenkon ym. (003), Mkkolan ym. (004) ja Dufvan ym. (005) tekemän tutkmuksen tuloksena. Muta absoluuttsten solmukoordnaatten menetelmällä lausuttuja elementttyyppejä ovat muun muassa lneaarpalkk (Kerkkänen ym., 005), kolmoelementt (Dmtrochenko ym., 008) ja korkeamman asteen laatat (Mkkola ym., 003). Absoluuttsten solmukoordnaatten menetelmään soveltuven elementten tutkmustyö on vmesen vuoskymmenen akana ollut vlkasta ja jatkunee vlkkaana edelleen, mstä osotuksena ovat muun muassa lähteet (García-Vallejo ym., 007; Dmtrochenko ym., 008; Dmtrochenko ym., 009; Matkanen ym., 009; Sanborn ym., 009; Sanborn ym., 0; Nada ym., 0).

23 6.. Palkkelementt (Euler-Bernoull) Euler-Bernoulln palkkteoraa noudattavan palkkelementn solmujen globaal asemont määrtellään absoluuttsten solmukoordnaatten menetelmälle omnasella tavalla asemavektorlla r; r = S e, (.6) mssä e on solmujen asemat ja orentaatot määrttävä vektor (Berzer ym., 000); [ e e e ] T e = e 3 K 8, (.7) ja S muotofunktomatrs; S [ S I S I S I S ] =, (.8) 3 4I mssä I on x -tyyppnen ykskkömatrs ja palkn muotofunktot (Shabana, 008) ovat 3 3 æ 3x ö æ x ö 4x x S = - ç + ç, S x - + ø è L ø è L =, L L (.9) 3 3x x S3 = - ja 3 L L S 3 x x =. L L 4 - Euler-Bernoulln palkkelementn venymäenerga (Berzer ym., 000; Shabana, 008) vodaan määrttää kahdella tosstaan heman pokkeavalla lähestymstavalla. Mkäl palkkelementtä sovelletaan absoluuttsten solmukoordnaatten menetelmälle omnasn suurten kertymen smulonttehtävn, on suosteltavaa käyttää elementn kaartumsomnasuuksa tarkast määrttävää käyryystermä (Berzer ym., 000). Sovellettaessa käyryystermä e elementlle tarvtse tehdä lneaarsuusoletuksa, jollon tapumaomnasuudet ovat kauttaaltaan epälneaarsa. Usen käyryystermn ntegront vaat kutenkn numeersten ntegrontmenetelmen, kuten Gaussn kvadratuuren soveltamsta, johtuen sen hankalasta konstruktosta ratkastavaks Remannn analyyttsellä ntegronnlla.

24 7 Käyryysterm vodaan määrtellä monn er tavon rppuen stä, mten tarkast sen halutaan kuvaavan suura kertymä (Dmtrochenko ym., 003; Gerstmayr ym., 006). Yks mahdollnen käyryystermn määrtelmä on k = r x r x r x -3, (.0) mssä asemavektora r osttasdervodaan elementn ptuusakseln suhteen. Vrtuaalsen työn peraatetta noudattaen lausutaan elementn muodonmuutokset nyt yhtälöllä. (Berzer ym., 000; Shabana, 008); ò ò d W = E A e de dl + E I k dk dl, (.) L x x L mkä johdetaan venymäenergayhtälöks (Berzer ym., 000; Shabana, 008); U = ò L E A ( x ) dl + ò E I ( k ) e dl, (.) L mssä E on materaaln kmmokerron, A elementn pokkpnta-ala, εx ptuussuuntanen venymä, I jäyhyysmomentt ja L elementn ptuus. Venymäenergan perusteella määrtetään elementn elastset vomat ja nden yhtäläsyys jäykkyysmatrsn K (Berzer ym., 000; Shabana, 008); T æ U ö = ç K e. (.3) f el ç = e è ø Aemmn manttu, käyryystermn soveltamseks vahtoehtonen venymen lneaarsontn perustuva lähestymstapa lähtee ajatuksesta, että venymät jaetaan svuttas- ja ptkttässuuntasn venymn. Tämä lähestymstapa on estelty alun pern Escalonan ym. (998) krjottamassa julkasussa. Lneaarsonnssa perusajatuksena on, että tarkastellaan elementn muodonmuutoksa valtun referensspsteen suhteen sten, että toteutuneet muodonmuutokset määrtetään yhtälöllä.4;

25 8 ( ) ( ) y x e S S S S d d d û ù ë é - - = û ù ë é = 0 0, (.4) mssä solmun ja slle valtun referensspsteen välnen muodonmuutosvektor d ssältää x- ja y-koordnaattakseleden suhteen lausutut komponentt ollen täten yhtenevä myös absoluuttsten solmukoordnaatten menetelmässä käytettyyn tapaan lmasta sjant muotofunktoden suhteen. Nän saadaan kaks ykskkövektora a ja b elementn lokaaln koordnaatston suhteen määrttämään lneaarsa muodonmuutoksa: y x r r r r a a a - - = û ù ë é = ja y x a c b b b = û ù ë é =, (.5) mssä c on ykskön mttanen xy-tason suhteen muodostettu normaalvektor asemavektoreden alandeksen ja määrtellessä esmerkks palkn ensmmästä ja tosta päätysolmua ta vahtoehtosest jotan muuta valttua referensspstettä. Täten muodonmuutokset jaetaan vastaavast ptkttäs- ja svuttassuuntasn, jollon muodonmuutosta kuvaavaks vektorks saadaan û ù ë é - = û ù ë é = T T svuttas ptuus m x d d b d a d d, (.6) mnkä perusteella määrtellään venymäenerga nyt sten, että; T L svuttas ptuus dx x d I E x d A E U e K e = ø ö ç ç è æ + ø ö ç ç è æ = ò. (.7)

26 9.. Palkkelementt (Tmoshenko) Tmoshenkon lekkausmuodonmuutokset sallvaa palkkteoraa osttan noudattava palkkelementt on julkastu absoluuttsten solmukoordnaatten menetelmällä lausuttuna Omarn ja Shabanan (00) työn tuloksena. Pokkeus lekkausmuodonmuutosten suhteen Tmoshenkon teoraan (Gere ym., 990) verrattuna lmenee lähnnä snä, että tässä tapauksessa gradenttvektoren määrteltyyn lekkauspntaan vo tulla myös käyrstymä (Omar ym., 00). Absoluuttsten solmukoordnaatten menetelmän tapaan globaal asemavektor r määrttää elementn solmujen aseman; r = S e, (.8) mssä vektor e on solmujen asema- ja orentaatovektor (Omar ym., 00); [ e e e ] T e = e 3 K, (.9) ja S muotofunktomatrs; S [ S I S I K S ] =, (.30) 6I ssältäen tasotapauksessa x -ykskkömatrsn I ja muotofunktot (Shabana, 008) 3 3 S = - 3x + x, = L( x - x + x ) 3 3 S 4 = 3x - x, 5 = L( -x + x ) S, = L( h - xh ) S 3, S ja S = Lxh 6, (.3) mssä ξ = x/l, η = y/l, termn L määrtellessä palkkelementn ptuutta. Elementn venymäenergan määrttelemnen pokkeaa lekkausmuodonmuutosten taka merkttäväst Euler-Bernoulln teoraan perustuvasta palkkelementstä. Lneaarsontn perustuva lähestymstapaa e käytännössä ole mahdollsta toteuttaa ja käyryystermn soveltamnen on sellasenaan hankalaa, sllä sen tuls huomoda myös elementn lekkausmuodonmuutokset (Omar ym., 00). Ratkasu löytyy kutenkn kontnuummekankasta, mssä Green- Lagrangen venymätensor määrtellään yhtälöllä.3;

27 0 T ( J J I ) ε GL = -, (.3) mssä I on x -ykskkömatrs ja J aemmn yhtälössä.4 määrtelty Jacobnmatrs. Kahdessa ulottuvuudessa lausuttuna tämä tensor määrttelee muodonmuutokset sekä x- ja y- akseleden suhteen, sekä myös lekkausmuodonmuutoksen xy-tasossa. Venymäenerga määrtellään yhtälöllä.33, joka tässä tapauksessa vastaa yhtälössä. esteltyä venymäenergayhtälöä; U = T T ò σ ε dv = ò ε E ε V V dv, (.33) mssä E on kmmomatrs ja ε Green-Lagrangen symmetrsestä tensorsta muodostettu venymävektor. Integront on tehtävä palkn tlavuuden yl, sllä tosn kun Euler- Bernoulln palkkelementn tapauksessa, tässä energayhtälössä e ole erllsä, palkn eptuusulottuvuuksa huomova kerrontermejä (Omar ym., 00). Elementn elastset vomat ja jäykkyysmatrs noudattavat seuraavaa peraatetta; T æ U ö = ç K e. (.34) f el ç = e è ø..3 Laattaelementt (Krchhoff) Krchhoffn laattateora e mallnna lankaan laatassa tapahtuva lekkausmuodonmuutoksa. Elementt lausutaan kolmessa ulottuvuudessa, mutta sen oletetaan olevan hyvn ohut, jollon elementn paksuuden vakutusta sen käyttäytymseen pdetään nn vähäsenä, että elementt oletetaan monessa suhteessa elastslta omnasuuksltaan kaksulotteseks. Krchhoffn laattaelementt on lausuttu absoluuttsten solmukoordnaatten menetelmällä Dufvan ym. (005) tutkmuksen tuloksena ja tälle menetelmälle omnaseen tapaan elementn solmujen globaalt asemat ja orentaatot lausutaan seuraavast; r = S e, (.35)

28 mssä 36-vapausastesen elementn (Dmtrochenko ym., 003; Dufva ym., 005; Shabana, 008) solmut määrtellään yhtälöllä; [ e e e ] T e = e 3 K 36, (.36) ssältäen asemavektort jokaselle solmulle x-, y- ja z-, sekä orentaatovektort globaalen x- ja y-akseleden suhteen. Muotofunktomatrs S määrtellään yhtälöllä; S [ S I S I K S ] =, (.37) 3 3 I 3 mssä I3 on 3 x 3-tyyppnen ykskkövektor ja gradenttensa suhteen elementten yl jatkuvat muotofunktot (Dufva ym., 005) ovat S = -( x -)( h -)( h -h + x - x ), = -xh ( - 3x - 3h + h + x ) - S, 7 ( ) S = -Lx x - ( h ), = Lx h( x ) - S, 8 - ( ) S = -Hh h - ( x ), = Hxh ( h ) 3 - ( h -h - 3x + x )( ) 4 = x h - S, 9 - S, = h ( x -)( x - x - 3h + h ) S, 0 S = -Lx ( x -)( h ), = Lxh ( x ) 5 - S, - S = Hxh( h - ), = -Hh ( x -) ( h ) 6 S, - (.38) mssä ξ = x/l ja η = y/h, kun L määrttää laatan ptuutta ja H leveyttä. Green-Lagrangen yhtälöön perustuvaa kontnuummekankan lähestymstapaa venymä määrteltäessä muodostetaan kolmulottenen venymätensor (Dufva ym., 005; Shabana, 008); T ( J J I ) ε - GL = 3, (.39) mssä I3 on 3 x 3-tyyppnen ykskkömatrs ja Jacobnmatrs J on määrtelty aemmn yhtälössä.4.

29 Muodostettaessa symmetrsestä venymätensorsta venymävektor, vodaan tulos lausua yhtälöllä; [ ε ε ] T ε = GL ε, (.40) (,) GL(,) GL(,) mssä alandekst vttaavat Green-Lagrangen venymätensorn alkohn. Krchhoffn laatan käyrstymstä kuvaava venymävektor k määrtellään yhtälöllä; z T -3 T -3 T -3 [ r ] T ' xxn n r' yyn n r' xyn k = n, (.4) mssä asemavektora r on dervotu alandeksen osottamen muuttujen suhteen ja vektor n määrtellään rsttulona n = r x r y (Dufva ym., 005). Elementn venymäenerga saa ss muodon; U = T ε dv0 ò k E k (.4) T ò E ε dv0 + V0 V0 mssä E on elementn kmmomatrs. Mkäl laattaelementt on käyrstynyt jo smulaaton valtussa alkutlanteessa, lausutaan elementn tlavuus seuraavast; x V0 = V, (.43) ξ mssä V on elementn tlavuus käyrstymättömänä. Elaststen vomen ja jäykkyysmatrsn suhteet määrtetään yhtälöllä.44 saaden nän saman muodon, kun useassa aemmnkn estellyssä tapauksessa; T æ U ö el = ç K e. (.44) f ç = e è ø

30 3..4 Laattaelementt (Ressner-Mndln) Verrattaessa Ressner-Mndlnn ja Krchhoffn laattateoraa, merkttävn eroavuus on Ressner-Mndlnn teoran kyky salla elementn muodonmuutokset myös paksuussuunnassa. Tämän vuoks Ressner-Mndlnn teora soveltuu selkeäst Krchhoffn laattaa paksummlle laatolle. Nässä tapauksssa vo laattaelementn paksuus olla esmerkks 0 % nelöelementn ptuudesta ta leveydestä (Mkkola ym., 003). Tämän nelsolmusen laatan solmujen asemat globaalssa koordnaatstossa määrtellään yhtälöllä; r = S e, (.45) mssä 48-vapausastesen elementn solmujen asemat ja orentaatot (Mkkola ym., 003) lausutaan vektorlla e; [ e e e ] T e = e 3 K 48, (.46) ja muotofunktot matrslla S; S [ S I S I K S ] =, (.47) 3 3 6I 3 mssä I3 on 3 x 3-tyyppnen ykskkömatrs. Ressner-Mndlnn laattateoraan perustuvassa laattaelementssä, samon kun Krchhoffnkn laattaelementssä, muotofunktoden muodonmuutosgradentt määrtetään joko jatkuvks laattaelementn keskpnnan suhteen er elementten välllä ta stten vastaavassa tapauksessa epäjatkuvks.

31 4 Gradenteltaan elementten yl jatkuvat muotofunktot ovat muotoa (Mkkola ym., 003); S = ( x + )( x -) ( h + )( h - ), = h x ( x - 3)( h 3) S, 9 - S = Lx ( x -) ( h + )( h - ), = -Lh x ( x -)( h 3) S, 0 - S = Hh( x -) ( x + )( h - ), = -Hh x ( h -)( x 3) 3 ( x -)( ) 4 = WV h - S, S = WVxh S, -, S = -x ( x - 3)( h + )( h - ), = -h ( x + )( x -) ( h 3) 5 S, 3 - S = Lx ( x -)( h + )( h - ), = -Lxh ( x -) ( h 3) 6 S, 4 - S = -Hhx ( x - 3)( h - ), = Hh ( x -) ( x + )( h ) 7 S, 5 - S = -WxV ( h ), = -WhV ( x ) 8 - S, 6 - (.48) mssä ξ = x/l, η = y/h, ζ = z/w, L on elementn ptuus, H leveys ja W paksuus. Kontnuummekankan Green-Lagrangen venymäteoraa noudattaen muodostetaan venymätensor (Mkkola ym., 003); T ( J J I ) ε GL = - 3, (.49) mssä I3 on 3 x 3-tyyppnen ykskkömatrs ja J yhtälössä.4 estelty Jacobnmatrs venymäenergan saadessa muodon; U ò T = ε E ε V dv, (.50) mssä E on kmmomatrs ja ε Green-Lagrangen symmetrsestä venymätensorsta muodostettu venymävektor. Elastset vomat sekä jäykkyysmatrs noudattavat yhtälöä; T æ U ö el = ç K e. (.5) f ç = e è ø

32 5.3 Sekaelementtmenetelmä.3. Sekaelementt elementtmenetelmässä Sekaelementeks kutsutaan elementttyyppejä, jotka ssältävät useamman kun yhden muuttuja-avaruuden (Atlur ym., 983; Zenkewcz ym., 000; Castersen ym., 009). Tähän ryhmään kuuluvat elementt mahdollstavat myös monen sellasten tutkmusongelmen ta rakenneanalyysen ratkasemsen, mtkä vosvat olla joko mahdottoma ta anakn erttän haasteellsa ratkasta käyttämällä esmerkks tavanomasta, srtymäperustasta elementtmenetelmää. Sekaelementten kehtystyö on alkanut 960-luvulla (Vsser, 969; Herrmann, 968a; Herrmann, 968b; Atlur ym. 983; Zenkewcz ym., 000a; Zenkewcz ym., 000b), johtaen ensn sekaelementelle soveltuven varaatofunktonaalen kehttämseen, josta tunnetun on mahdollsest Veubeke-Hu-Washzun funktonaal (de Veubeke, 97). Tonen funktonaal, mtä on sekaelementtsovelluksssa käytetty paljon, on Hellnger-Ressner-funktonaal (Hellnger, 94; Ressner, 950). Tosn jälkmmäsen funktonaaln sovellusmahdollsuuksen rajotteet ovat olleet tedossa jo ptkään ja lsäks sllä on mahdollsta analysoda van srtymen ja jänntysten suhdetta rajottaen sen sovellusmahdollsuuksa jo lähtökohtasest merkttävällä tavalla. Sekaelementten konstruktota usessa tapauksssa merkttäväst rajottavat Babushka- Brezzn (Babushka, 973; Brezz, 974) ehdot ovat myös edellä mantun poneertyön tulosta ja monet tunnetummat sekaelementtkehtelmät on julkastu pääasassa 970-luvun akana (Atlur ym., 983). Sekaelementtmenetelmää on kutenkn rakenneanalyysessä käytetty yleensä van erkostapauksssa, tosn tästä huolmatta kehtystyötä sekaelementten ympärllä on tehty suhteellsen vlkkaast myös vmesen vuoskymmenen akana, mnkä osottavat muun muassa tutkmusjulkasut (Alsafade ym., 00; Castersen ym., 009; Hjelmstad ym., 00; Hjelmstad ym., 003; Kumar ym., 004; L, 007; Santos ym., 009; Sur, 005). Kakka elementttyyppejä, jotka ssältävät enemmän kun yhden muuttuja-avaruuden, e kutenkaan kutsuta sekaelementeks. Useamman muuttuja-avaruuden analysonnn mahdollstavat elementttyypt vovat olla myös redusotumattoma ta hybrdelementtejä (Zenkewcz ym., 000a). Useamman tuntemattoman muuttujan elementten jaottelu manttuhn ryhmn toteutetaan tarkastelemalla elementten ssältämen tuntemattomen muuttujen kentten luonnetta ja omnasuuksa.

33 6 Usemmssa tapauksssa redusotumattomat elementt erotetaan sekaelementestä srtymäkentän peraatteella. Mkäl srtymä ssältävä muuttuja-avaruus kuuluu tarkasteltavaan elementttyyppn ja srtymen lsäks elementllä analysodaan myös jotan muuta fyskaalsta lmötä, kutsutaan elementtä yleensä sekaelementks. Mkäl srtymä e analysoda lankaan ta srtymäkenttä vodaan elementstä redusoda sten, että elementt on edelleen numeersest stabl ja sen avulla kyetään ratkasemaan analysotava ongelma, nmetään elementttyypp yleensä redusotumattomaks. Tätä jaottelua noudatetaan usen (Babushka ym., 983; Castersen ym., 009; Zenkewcz ym., 983; Zenkewcz ym., 000a), mutta se on kutenkn osn kstanalanen (Atlur ym., 983). Redusotumattomen ja sekaelementten lsäks myös hybrdelementt (Atlur ym. 983) ssältävät useamman kun yhden muuttuja-avaruuden, mutta eroavat nästä kutenkn muuttuja-avaruuksen ulottuvuusehtoja tarkasteltaessa (Atlur ym., 983; Zenkewcz ym., 000a). Seka- ja redusotumattomssa elementessä muuttujen on ana oltava ulottuvuudeltaan samanastesa, el esmerkks srtymä- ja jänntyskentät on määrteltävä vakkapa normaalssa kolmulottesessa tlassa. Hybrdmenetelmssä tätä edellytystä e lähtökohtasest ole, joten samalla elementllä vodaan peraatteessa mallntaa nn tlavuuskun kaksulottesa pntakohtasakn lmötä. Sekaelementtmenetelmän soveltamnen tulee kysymykseen, mkäl halutun analyysn tekemnen tavanomasella srtymämenetelmällä ols sellasenaan mahdotonta, analysotava systeem ssältää vomakkaast tosstaan rppuvasa tekjötä ta tavanomasen srtymämenetelmän nterpolontfunktoden jatkuvuusvaatmukset olsvat vaketa toteuttaa (Atlur ym., 983; Zenkewcz ym., 000a). Rakenneanalyysessä tämänkaltaset sekat vovat olla seurausta esmerkks materaalomnasuukssta ta musta fyskaalssta tekjöstä. Kokemus elementtanalyysestä on osottanut, että tavanomasten analyysen ollessa kyseessä tarvtaan sekaelementten omnasuuksa yleensä harvon, sllä monssa tlantessa nstä e saada merkttäväst apua analyysn tarkotuksenmukaseen toteuttamseen, mutta stä vaston nstä koostuven systeemen numeernen ratkasemnen vaat usen enemmän laskentatehoa. Lsäks sekaelementtrakenteden numeerssta rajotukssta johtuen analysotavaan tlanteeseen sopva, numeersest vakata elementttyyppejä on yleensä tarjolla vähemmän verrattuna esmerkks srtymämenetelmään perustuvn elementttyyppehn (Atlur ym., 983; Zenkewcz ym., 000a) rajaten sekaelementtmenetelmän sovellusmahdollsuuksa entsestään.

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Kuntoilijan juoksumalli

Kuntoilijan juoksumalli Rakenteden Mekankka Vol. 42, Nro 2, 2009, s. 61 74 Kuntoljan juoksumall Matt A Ranta ja Lala Hosa Tvstelmä. Urhelututkmuksen melenknnon kohteena ovat yleensä huppu-urheljat. Tuokon yksnkertastettu juoksumall

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

KOKONAISRATKAISUT YHDESTÄ PAIKASTA

KOKONAISRATKAISUT YHDESTÄ PAIKASTA KOKONAISRATKAISUT YHDESTÄ PAIKASTA Monpuolset järjestelmät varastontn ja tuotantoon TUOTELUETTELO 2009 Kappale D Varasto- ja hyllystövältasot vältasot optmaalsta tlankäyttöä varten SSI SCHÄFER: n varasto-

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

3D-mallintaminen konvergenttikuvilta

3D-mallintaminen konvergenttikuvilta Maa-57.270, Fotogammetan, kuvatulknnan ja kaukokatotuksen semnaa 3D-mallntamnen konvegenttkuvlta nna Evng, 58394J 2005 1 Ssällysluettelo Ssällysluettelo...2 1. Johdanto...3 2. Elasa tapoja kuvata kohdetta...3

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Mekatronisten koneiden reaaliaikainen simulointi Linux-ympäristössä

Mekatronisten koneiden reaaliaikainen simulointi Linux-ympäristössä Lappeenrannan teknllnen korkeakoulu Koneteknkan osasto Konstruktoteknkan latos Mekatronsten koneden reaalakanen smulont Lnux-ympärstössä Dplomtyön ahe on hyväksytty koneteknkan osaston osastoneuvostossa

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

7. Modulit Modulit ja lineaarikuvaukset.

7. Modulit Modulit ja lineaarikuvaukset. 7. Modult Vektoravaruudet ovat vahdannasa ryhmä, jossa on määrtelty jonkn kunnan skalaartomnta. Hyväksymällä kerronrakenteeks kunnan sjaan rengas saadaan rakenne nmeltä modul. Moduln käste on ss vektoravaruuden

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio

Geneettiset algoritmit ja luonnossa tapahtuva mikroevoluutio Mat-2.108 Sovelletun matematkan erkostyöt Geneettset algortmt ja luonnossa tapahtuva mkroevoluuto 11.5.2005 Teknllnen korkeakoulu Systeemanalyysn laboratoro Oll Stenlund 47068f 1 Johdanto 3 2 Geneettset

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

Laskennallisen virtausmekaniikan ja lämmönsiirron perusteet Timo Siikonen

Laskennallisen virtausmekaniikan ja lämmönsiirron perusteet Timo Siikonen Laskennallsen vrtausmekankan ja lämmönsrron perusteet Tmo Skonen c 2012 by Aalto Unversty School of Engneerng Department of Appled Mechancs Sähkömehente 4 FIN-00076 Aalto Fnland 1 Ssällys 1 Johdanto 5

Lisätiedot

FDS-OHJELMAN UUSIA OMINAISUUKSIA

FDS-OHJELMAN UUSIA OMINAISUUKSIA FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.

Lisätiedot

TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ. Juha Hyyppä, Anna Salonen

TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ. Juha Hyyppä, Anna Salonen The Photogrammetrc Journal of Fnland, Vol. 22, No. 3, 2011 TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ Juha Hyyppä, Anna Salonen Geodeettnen latos, Kaukokartotuksen ja fotogrammetran osasto

Lisätiedot

Jäykän kappaleen liike

Jäykän kappaleen liike aananta 9.9.014 1/17 Jäykän kappaleen lke Tähän ast tarkasteltu massapstemekankkaa : m, r, v Okeast fyskaalset systeemt ovat äärellsen kokosa, esm. jäykät kappaleet r r j = c j =vako, j elastset kappaleet

Lisätiedot

Maanhintojen vikasietoisesta mallintamisesta

Maanhintojen vikasietoisesta mallintamisesta Maanmttaus 8:-2 (2006) 5 Maanmttaus 8:-2 (2006) Saapunut 0.8.2005 ja tarkstettuna.4.2006 Hyväksytty 30.6.2006 Maanhntojen vkasetosesta mallntamsesta Marko Hannonen Teknllnen korkeakoulu, Kntestöopn laboratoro

Lisätiedot

Paikkatietotyökalut Suomenlahden merenkulun riskiarvioinnissa

Paikkatietotyökalut Suomenlahden merenkulun riskiarvioinnissa Teknllnen korkeakoulu Lavalaboratoro Helsnk Unversty of Technology Shp Laboratory Espoo 2007 M-300 Tomm Arola Pakkatetotyökalut Suomenlahden merenkulun rskarvonnssa TEKNILLINEN KORKEAKOULU HELSINKI UNIVERSITY

Lisätiedot

KUVIEN LAADUN ANALYSOINTI

KUVIEN LAADUN ANALYSOINTI KUVIEN LAADUN ANALYSOINTI Lasse Makkonen 1.7.2003 Joensuun Ylopsto Tetojenkästtelytede Pro gradu tutkelma Tvstelmä Tutkelmassa luodaan katsaus krjallsuudessa esntyvn dgtaalsten kuven laadullsen analysonnn

Lisätiedot

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI n 2/2012 fo INMICSIN ASIAKASLEHTI 6-7 Dgtova kynä ja Joun Mutka: DgProfITn sovellukset pyörvät Inmcsn konesalssa. 4-5 HL-Rakentajen työmalle on vedettävä verkko 8-9 InHelp palvelee ana kun apu on tarpeen

Lisätiedot

Soile Kulmala. Yksikkökohtaiset kalastuskiintiöt Selkämeren silakan kalastuksessa: bioekonominen analyysi

Soile Kulmala. Yksikkökohtaiset kalastuskiintiöt Selkämeren silakan kalastuksessa: bioekonominen analyysi Sole Kulmala Ykskkökohtaset kalastuskntöt Selkämeren slakan kalastuksessa: boekonomnen analyys Helsngn Ylopsto Talousteteen latos Selvtyksä nro 29 Ympärstöekonoma Helsnk 2005 Ssällys 1 Johdanto... 1 1.1

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

VERKKOJEN MITOITUKSESTA

VERKKOJEN MITOITUKSESTA J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä

Lisätiedot

Kuinka väestö sijoittuu siirryttäessä tietoyhteiskuntaan?

Kuinka väestö sijoittuu siirryttäessä tietoyhteiskuntaan? Kunka väestö sjottuu srryttäessä tetoyhteskuntaan? Esmerkknä Itä-Suom Oll Lehtonen & Markku Tykkylänen Johdanto 199-luvulla ja 2-luvun alussa väestönkasvu kesktty van muutamalle suurmmalle kaupunkseudulle,

Lisätiedot

Karttaprojektion vaikutus alueittaisten geometristen tunnuslukujen määritykseen: Mikko Hämäläinen 50823V Maa-123.530 Kartografian erikoistyö

Karttaprojektion vaikutus alueittaisten geometristen tunnuslukujen määritykseen: Mikko Hämäläinen 50823V Maa-123.530 Kartografian erikoistyö Karttaprojekton vakutus aluettasten geometrsten tunnuslukujen määrtykseen: Mkko Hämälänen 50823V Maa-23.530 Kartografan erkostyö SISÄLLYSLUETTELO JOHDANTO... 4. TUTKIMUKSEN LÄHTÖKOHTA... 4.2 RAPORTISTA...

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

Segmentointimenetelmien käyttökelpoisuus

Segmentointimenetelmien käyttökelpoisuus Metsäteteen akakauskrja t e d o n a n t o Rasa Sell Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa Rasa Sell Sell, R. 00. Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa. Metsäteteen akakauskrja

Lisätiedot

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen

Lisätiedot

asettamia ehtoja veroluonteisesta suhdannetasausjärjestelmästä. komitean mietintöön. Esityksessä on muutama ratkaisevan heikko kohta.

asettamia ehtoja veroluonteisesta suhdannetasausjärjestelmästä. komitean mietintöön. Esityksessä on muutama ratkaisevan heikko kohta. -112- asettama ehtoja veroluontesesta suhdannetasausjärjestelmästä. Estetty hntasäännöstelyjärjestelmä perustuu nk. Wahlroosn komtean metntöön. Estyksessä on muutama ratkasevan hekko kohta. 15 :ssä todetaan:

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen

Lisätiedot

11. Vektorifunktion derivaatta. Ketjusääntö

11. Vektorifunktion derivaatta. Ketjusääntö 7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta

Lisätiedot

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta.

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta. VUOKRSOPMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALM Hallan Sauna Oy (y-tunnus: 18765087) CO Tl-Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde Hallan

Lisätiedot

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta 2001 2005.

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta 2001 2005. TAMPEREEN YLIOPISTO Talousteteden latos JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: emprnen tutkmus kotmassta ptkän koron rahastosta vuoslta 2001 2005. Kansantaloustede Pro gradu

Lisätiedot

Työllistääkö aktivointi?

Työllistääkö aktivointi? Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

Palkanlaskennan vuodenvaihdemuistio 2014

Palkanlaskennan vuodenvaihdemuistio 2014 Palkanlaskennan vuodenvahdemusto 2014 Pkaohje: Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest muuttuneet

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Kuorielementti hum

Kuorielementti hum Kuorelementt hum.. ämä estys e kuulu kurssvaatmuksn, vaan se on tarkottu asasta knnostunelle. arkastellaan tässä yhteydessä eaarsta -solmusta AIZ (Ahmad, Irons ja Zenkewcz, 970) kuorelementtä, jonka knematkka

Lisätiedot

5. KVANTTIMEKANIIKKAA

5. KVANTTIMEKANIIKKAA 5. KVANTTIMEKANIIKKAA Bohrn atommallsta samme jonknlasen kuvan atomn rakenteesta. Kutenkaan Bohrn atommall e pysty selttämään kakka kokeellsa havantoja spektrestä: Mks osa spektren vvosta on tosa vomakkaampa

Lisätiedot

Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto

Timo Tarvainen PUROSEDIMENTIIANALYYSIEN HAVAINNOLLISTAMINEN GEOSTATISTIIKAN KEINOIN. Outokumpu Oy Atk-osasto Tmo Tarvanen PUROSEDMENTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSTKAN KENON Outokumpu Oy Atk-osasto PUROSEDMENTTANALYYSEN HAVANNOLLSTAMNEN GEOSTATSSTKAN KENON 1. Johdanto Nn sanotulla SKALAn alueella (karttaleht

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden

Lisätiedot

Usean muuttujan funktioiden integraalilaskentaa

Usean muuttujan funktioiden integraalilaskentaa Usean muuttujan funktoden ntegraallaskentaa Pntantegraaln määrtelmä Yhden muuttujan tapaus (kertausta) Olkoon f() : [a, b] R jatkuva funkto Oletetaan tässä ksnkertasuuden vuoks, että f() Remann-ntegraal

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

VERKKO-OPPIMATERIAALIN LAATUKRITEERIT

VERKKO-OPPIMATERIAALIN LAATUKRITEERIT VERKKO-OPPIMATERIAALIN LAATUKRITEERIT Työryhmän raportt 16.12.2005 Monste 1/2006 Opetushalltus ja tekjät Tm Eja Högman ISBN 952-13-2718-9 (nd.) ISBN 952-13-2719-7 ISSN 1237-6590 Edta Prma Oy, Helsnk 2006

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Eräs Vaikutuskaavioiden ratkaisumenetelmä

Eräs Vaikutuskaavioiden ratkaisumenetelmä Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä

Lisätiedot

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN DANSKE BANK A/S 2017: NOUSEVA KIINA Lanakohtaset ehdot A. Sopmusehdot Nämä lanakohtaset ehdot muodostavat yhdessä 28.6.2012 pävättyyn sekä 8.8.2012, 5.11.2013 ja 13.2.2013 täydennettyyn ohjelmaestteeseen

Lisätiedot

Hakemikaoen on liitettävä asiakirja. Jolla valitsijayhdistys on

Hakemikaoen on liitettävä asiakirja. Jolla valitsijayhdistys on 5 bdokaelbtojen Ttedstalallt tl Valt8lJ«yhdlstyks«a MlMdehon ta tmnmn valtuuttankma vaalltoo ManahM tul««hak««ohdokaalstan ottaaata ehdokaslstojan ybdatelayn va«8t«mn MlJHkyMntM (40) pävmm «nnen ennl MlntM

Lisätiedot

Betoniteollisuus ry 18.2.2010 1 (43)

Betoniteollisuus ry 18.2.2010 1 (43) Betonteollsuus r 18.2.2010 1 (43) 2 Jäkstsjärjestelmät... 2 2.1 Rakennuksen jäkstssuunnttelun tehtävät... 4 Alustava jäkstssuunnttelu... 4 Jäkstksen mtotus murtorajatlassa... 6 Jäkstksen mtotus kättörajatlassa...

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

TYÖVÄENARKISTO SUOMEN SOSIALIDEMOKRAATTISEN PUOLUEEN PUOLUENEUVOSTON PÖYTÄKIRJA

TYÖVÄENARKISTO SUOMEN SOSIALIDEMOKRAATTISEN PUOLUEEN PUOLUENEUVOSTON PÖYTÄKIRJA TYÖVÄENARKSTO SUOMEN SOSALDEMOKRAATTSEN PUOLUEEN PUOLUENEUVOSTON PÖYTÄKRJA ) _ V 1973 RULLA 455 KUVANNUT r > ' V t K MONKKO OY 1994 a - ) - ;! kuljetus tämän seurauksena taas vähenee sekä rautateden pakallslkenteen

Lisätiedot

TYÖVOIMAKOULUTUKSEN VAIKUTUS TYÖTTÖMIEN TYÖLLISTYMISEEN

TYÖVOIMAKOULUTUKSEN VAIKUTUS TYÖTTÖMIEN TYÖLLISTYMISEEN VATT-TUTKIMUKSIA 85 VATT-RESEARCH REPORTS Juha Tuomala TYÖVOIMAKOULUTUKSEN VAIKUTUS TYÖTTÖMIEN TYÖLLISTYMISEEN Valton taloudellnen tutkmuskeskus Government Insttute for Economc Research Helsnk 2002 ISBN

Lisätiedot

JYVÄSKYLÄN YLIOPISTO JULKISEN JA YKSITYISEN SEKTORIN VÄLISET PALKKAEROT SUOMESSA 2000-LUVULLA

JYVÄSKYLÄN YLIOPISTO JULKISEN JA YKSITYISEN SEKTORIN VÄLISET PALKKAEROT SUOMESSA 2000-LUVULLA JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta JULKISEN JA YKSITYISEN SEKTORIN VÄLISET PALKKAEROT SUOMESSA 2000-LUVULLA Kansantaloustede, Pro gradu- tutkelma Huhtkuu 2007 Laatja: Terh Maczulskj Ohjaaja:

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Valmistelut INSTALLATION INFORMATION

Valmistelut INSTALLATION INFORMATION Valmstelut 1 Pergo-lamnaattlattan mukana tomtetaan kuvallset ohjeet. Alla olevssa tekstessä on seltykset kuvn. Ohjeet on jaettu kolmeen er osa-alueeseen, jotka ovat valmstelu, asennus ja svous. Suosttelemme,

Lisätiedot

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet

Rahastoonsiirtovelvoitteeseen, perustekorkoon ja vakuutusmaksukorkoon liittyvät laskentakaavat ja periaatteet SU/Vakuutusmatemaattnen ykskkö 3..209 (7) Rahastoonsrtovelvotteeseen, perustekorkoon ja vakuutusmaksukorkoon lttyvät laskentakaavat ja peraatteet Soveltamnen. Rahastosrtovelvote RSV 2. Täydennyskerron

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

TkT Marko Matikainen

TkT Marko Matikainen LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknllnen tedekunta LUT Kone Koneteknkan koulutusohjelma Petr Kärkkänen LIIKKUVAN KIVIMURSKAIMEN SYÖTINOSAN RAKENNEANALYYSI OSARAKENNETEKNIIKAN AVULLA Työn tarkastajat:

Lisätiedot

Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys

Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys Ylestä Teäsakenteden ltokset (EC3-1-8, EC3-1-8-NA) Teäsakenteden lttämsessä tosnsa vodaan käyttää seuaava menetelmä: uuv-, ntt- ja nveltappltokset htsausltokset lmaltokset Ltos ja knntys Ltosta asttavan

Lisätiedot

Fysiikkaa työssä. fysiikan opiskelu yhteistyössä yritysten kanssa

Fysiikkaa työssä. fysiikan opiskelu yhteistyössä yritysten kanssa Fyskkaa työssä yskan opskelu yhtestyössä yrtysten kanssa Fyskkaa työssä yskan opskelu yhtestyössä yrtysten kanssa Annka Ampuja Suv Vanhatalo Hannele Levävaara 1 Käytännön kytkentöjä yskan opskeluun...

Lisätiedot

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä. VUOKRASOPIMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALMI Hallan Sauna Oy (y-tunnus: 18765087) CIO Tl- Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde

Lisätiedot

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1] Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord

Lisätiedot