HAJOAMISLAKI, AKTIIVISUUS JA RADIOHIILIMENETELMÄ

Koko: px
Aloita esitys sivulta:

Download "HAJOAMISLAKI, AKTIIVISUUS JA RADIOHIILIMENETELMÄ"

Transkriptio

1 HJOMISLKI, KTIIVISUUS J RDIOHIILIMENETELMÄ Radiakiivisuus arkiaa amiyimien hajamisa Radiakiivise alkuainee hajava ajan kuluessa isiksi alkuaineiksi Hajaminen vi apahua useiden välivaiheiden kaua, jihin liiyy mnesi alfaja beeasäeilyn lisäksi gammasäeilyä Lpula mudsuu pysyvä ydin Radiakiivinen hajaminen nudaaa ilasllisa lakia Radiakiivisen aineen puliinumisajalla T/2 arkieaan aikaa, jnka kuluessa pule radiakiivisisa yimisä n hajnnu Js akiivisen yimien määrä alkuhekellä ( = 0) n N, niin ajan = T /2 kuluua yimiä n jäljellä N /2 lla levassa kuvassa n esiey hajamaa levien yimien lukumäärä N ajan funkina; N = N() N0 = yimien määrä alussa ( = 0) N = yimien määrä hekellä T/2 = puliinumisaika N = N e T /2 = 2 Kun aikaväli Δ n pieni, Δ << T/2, niin hajnneiden yimien lukumäärä ΔN aikavälillä Δ n suraan verrannllinen akiivisen yimien lukumäärään N eli ΔN = - NΔ, missä verrannllisuuskerrin n nuklidille minainen hajamisvaki (yksikkö /s) 2 Vidaan siaa, eä T /2 = Tämä uls n myös aulukssa (MOL s 35 (27)) Puliinumisaikja ja radiakiivisia hajamisapja (α, β, E) n esiey aulukssa (MOL s 04-) (02-0)) RDIOKTIIVINEN HJOMISLKI vidaan esiää neljässä mudssa: ) N = N ( << T /2) 2) N = Ne 2 - T 2 /2 3) N = Ne = T/2 4) N N ( ) T /2 = 2 - missä puliinumisaika 2 T /2 =, = hajamisvaki (/s)

2 - hajamislain mudsa () saadaan laki (2), kun aikaväli n pieni; dn = - d ja inegridaan puliain (ea!) 2 - puliinumisaika T /2 = saadaan kaavasa (3), kun aseeaan: = T/2 ja N = N/2 (ea!) Osia, eä lausekkeesa 3) saadaan lauseke 4) KTIIVISUUS = hajamisen lukumäärä aikayksikössä; N = - akiivisuuden yksikkö n [] = s = Bq (= becquerel) - esim js näyeen akiivisuus n Bq, niin siinä apahuu keskimäärin yksi hajaminen sekunnissa - kun aikaväli Δ n pieni, niin akiivisuus = Kska N dn d dn d N e = d d = N e, niin ( ) = = Ne = N kiivisuus ajan kuluua n siis = N Olkn akiivisuus alussa = N, missä N n akiivisen yimien määrä alussa ( = 0) Tällöin saadaan siis = N = Ne = e Lausekkeessa = N, = hajamisvaki (/s) ja yimien lukumäärä vidaan laskea kahdella eri avalla: m m N = nn = N ai N = M u E lausekkeissa n = ainemäärä (ml), m = massa (g), M = mlimassa (g/ml), N = vgadrn vaki, = massaluku ja u = amimassayksikkö (ks MOL s 70 (7)) (MOL s (30-3)) Hum! Js suheellisa amimassaa ei le aulukssa, vidaan mlimassa M aa massaluvun mukaan: M = (g/ml) kiivisuus hekellä n = e (MOL s 35 (27)) - missä = akiivisuus hekellä = akiivisuus alkuhekellä ( = 0), = 2 T /2

3 RDIOHIILIMENETELMÄ = radiakiivinen iänmääriys radiakiivisen hiili- ispin avulla - hiili- ispin puliinumisaika T/2 = 5730 a - muinaisen eläinen, kasvien ja esineiden iänmääriys - meneelyapa: - verraaan ukiavan näyeen -piisuua elävän rganismin - piisuueen - miaaan säeilymiarilla akiivisuude (Bq): - = elävän rganismin (kasvi/eliö) akiivisuus - = kulleen rganismin akiivisuus - laskeaan näyeen ikä, kun hiili- ispin puliinumisaika T /2 unneaan, esim lausekkeesa = T/2 ai vas - e lauseke vidaan jhaa akiivisuuden lausekkeesa esim seuraavasi: e - 2 = : = e eaan lgarimi puliain = e = e e = = : () = Sijieaan T /2 = 2 = e lausekkeeseen, jllin saadaan /2 = = = T/2 2 T /2 T 2 Nykyisin radihiiliajiukseen käyeään useimmien hiukkaskiihdyinä, jlla määrieään suraan isppien ja 2 amien lukumääräsuhde (isppisuhde) ukiavassa näyeessä 2 2

4 Radiakiivisen hiili- ispin syny: - ksmisen säeilyn neurni örmäävä ilmakehän yppi- isppeihin, jllin synyy radiakiivinen hiili- -isppi n n N reaki: 0 n + 7N + p Oleus: ksminen säeily vaki, jllin piisuus pysyy ilman hiilidiksidissa O 2 vakina 2 = vaki - elävä kasvi saava ilmasa vaki-suuden - isppia radihiili - eenee ravinkejun kaua vaki-suuena myös eläimiin - rganismin (kasvi/eliö) kullessa radihiilen määrä alkaa vähenyä, kun - isppi hajaa: 0 7N + -e + ν - kun radihiilen - puliinumisaika unneaan (T /2 = 5730 a), saadaan ukiavan näyeen ikä selville veraamalla havaiua akiivisuua vasaavaan elävän kudksen akiivisuueen eliön kulinheki vidaan näin määriää hiili- ispin akiivisuuden peruseella (ks YO-S07-9, YO-S92-9) - vasaavasi piempien aikjen määriys (esim kalliperän ikä) vidaan määriää 40 K- ja 238 U isppien avulla 238 U: T /2 = 4, a ja 40 K: T /2 =, a (Vr YO-K89-9, YO-K84-8)

5 TEHTÄVIÄ: ) Tsernbylin ydinvimalannemuuden apahuessa 2498 reakrisydämeen li keryny uraanin halkeamisueina mm nin 00 kg cesiumin isppia 37 s ja 5 kg isppia 34 s Onnemuuden seurauksena kummankin ispin kknaismääräsä 3 % pääsi ilmakehään ja levisi pääasiassa eri pulille Eurppaa Laske 37 s- ja 34 s pääsöjen kknaisakiivisuude pääsöhekellä ja änään 37 s:n puliinumisaika n 30,2 a ja 34 s:n 2, a (YO-K9-7) 2) Hiilidiksidin mukana juuu elävään rganismiin ksmisen säeilyn synnyämää radiakiivisa isppia, jnka puliinumisaika n 5730 a -yimien ja 2 sabiilien -yimien lukumäärien suhde n elävässä rganismissa vaki Organismin kullessa sen hiilidiksidin saani lppuu ja - piisuus alkaa väheä hajamisen vuksi a) Täydennä asiaan liiyvä reakiyhälö: N + n e + ν b) Eläväsä rganismisa eu hiilinäye, jnka massa n,0 g, läheää β - -hiukkasa minuuissa ja ukiava,0 g näye 2 β - -hiukkasa minuuissa Laske näyeen ikä c) Kuinka paljn (%) radiakiivisen aineen yimisä n jäljellä kuuden puliinumisajan jälkeen? (2ab: YO-K83-8) 3) Susa löyyneessä suksenpalassa li beea-akiivisen hiili-ispin ja pysyvän ispin 2 määrien suhde neljässa ureen näyeen vasaavasa isppisuheesa kiivisen ispin puliinumisaika n 5730 vua Kuinka vanha suksenpala li? Mihin leamuksiin vasauksesi perusuu? (HY fysiikan valinake 94, 4) 4) a) Radihiiliajiuksen periaae (- meneelmä) b) Nykyisin radihiiliajiukseen käyeään useimmien hiukkakiihdyinä, jlla määrieään suraan isppien ja 2 amien lukumääräsuhde (isppisuhde) ukiavassa näyeessä Vunna 99 Tirlisa löydeyn muumin Jäämies Özin radihiiliajius ani isppisuheeksi,7 0-3 Mikä lisi muumin ikä ämän iedn peruseella, kun vasaava isppisuhde esimerkiksi elävässä puussa n,2 0-2? (YO-S07-9) 5) rkelgisesa löydösä eun,0 g massaisen hiilinäyeen akiivisuudeksi miaaan (7500 ± 90)/d (hajamisa/vrk) Laske näyeen ikä virherajineen, kun ureesa puusa saadun,0 g hiilinäyeen keskimääräinen akiivisuus n /d Radihiilen puliinumisaika n 5730 a (YO-S92-9b)

6 ) Erään erian mukaan aurinkkunamme n saanu alkunsa supernvaräjähdyksesä Oleeaan, eä supernvassa li uraani-isppeja 235 U ja 238 U yhä runsaasi Nykyisin suheellise runsaude maan päällä va 0,72 % ( 235 U) ja 99,3 % ( 238 U) Laske ämän peruseella aurinkkunnan ikä, kun 235 U-ispin puliinumisaika n 7, a ja 238 U-ispin 4, a (YO-K89-9) 7) Radiakiivinen isppi 238 U hajaa välivaiheiden kaua sabiiliksi ispiksi 20 Pb, jllin puliinumisaika n 4, a Kuusa uu kivinäye sisälää näiä isppeja suheessa N Pb : N U = 0,333 Laske näyeen ikä leaen, eä kk 20 Pb-määrä n synyny 238 U:n hajamisen ulksena (YO-K84-8) Vasaukse: ) Pääsöhekellä (2498): 4,2 0 Bq ( 37 s) 3, 0 Bq ( 34 s) Tänään (204205): 2,2 0 Bq ( 37 s) 3,0 0 2 Bq ( 34 s) 2) a) p ( = H ) ja N 7 b) 300 a c), % 3) Nin 500 a 4) Ks YO-S07-9, YO-S92a 5) (8200 ± 00) a ) 5,9 0 9 a 7), a

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

LÄMPÖOPPIA Aineen lämpötila t aineen saaman lämpömäärän Q funktiona; t = t(q)

LÄMPÖOPPIA Aineen lämpötila t aineen saaman lämpömäärän Q funktiona; t = t(q) LÄMÖOIA Aineen lämpöila aineen saaman lämpömäärän Q funkina; (Q) C Q 5 F D Q 4 Q 3 B Q C Q Q A N R G I A A S I T O U T U U N R G I A A V A A U T U U AB: Kiineä aine lämpenee (BA: jäähyy) Q cm BC: Kiineä

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

Maahanmuuttajan työpolkuhanke Väliraportti 31.8.2003-31.12.2004

Maahanmuuttajan työpolkuhanke Väliraportti 31.8.2003-31.12.2004 Maahanmuuajan yöplkuhanke Välirapri 31.8.2003-31.12.2004 Prjekin aviee hankepääöksessä Määrällise aviee Prjekin avieena n edesauaa maahanmuuajien yöllisymisä. Tämä apahuu maahanmuuajien ammaillisen valmiuksien

Lisätiedot

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS

SytytysjarjestelmaDIIAPCLH2.4, LH2.4 ETS 6 SyyysjarjesemaD/APCLH 24 LH 24 ETS SyyysjarjesemaDAPCLH24 LH24 ETS 75 cy 100 122A YE 2 +30 230 1063 RO 0 1019 101A RO 25 RO 40 101C RD 25 J73 123 123A CNWH 1S CN/WH 1 13122A J 342A 22 20 YE 10 1 1CY

Lisätiedot

KOSMOLOGISIA HAVAINTOJA

KOSMOLOGISIA HAVAINTOJA KOSMOLOGISIA HAVAINTOJA 1) Olbersin paradksi Miksi taivas n öisin musta? Js tähdet lisivat jakautuneet keskimäärin tasaisesti äärettömään ja muuttumattmaan avaruuteen, tulisi taivaan listaa yhtä kirkkaana

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

a) Ortogonaalinen, koska kantafunktioiden energia 1

a) Ortogonaalinen, koska kantafunktioiden energia 1 S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä

Lisätiedot

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on

pienempää, joten vektoreiden välinen kulma voidaan aina rajoittaa välille o. Erikoisesti on 5 Pistetul ja sen svellutuksia Kun kahdella vektrilla, a ja b n hteinen alkupiste, niiden määräämät pulisurat jakavat tasn kahteen saan, kahteen kulmaan, jtka vat tistensa eksplementtikulmia, siis kulmia,

Lisätiedot

Aineen häviämättömyyden periaate Jos lähtöaineissa on tietty määrä joitakin atomeja, reaktiotuotteissa täytyy olla sama määrä näitä atomeja.

Aineen häviämättömyyden periaate Jos lähtöaineissa on tietty määrä joitakin atomeja, reaktiotuotteissa täytyy olla sama määrä näitä atomeja. KE3 Pähkinänkuressa Olmudt reaktiyhtälössä 1) Ilmassa esiintyvät alkuaineet ja yhdisteet kaasuja (g). 2) Metallit, lukuun ttamatta elhpeaa, vat huneen lämmössä kiinteitä (s). 3) Iniyhdisteet vat huneen

Lisätiedot

ENERGIAN TUOTTAMISEN FYSIKAALINEN PERUSTA

ENERGIAN TUOTTAMISEN FYSIKAALINEN PERUSTA ENERGIAN TUOTTAMISEN FYSIKAALINEN ERUSTA Energia on kyky ehdä yöä ENERGIAN ALKUERÄ Ydinreakioiden energia Auringon ydinreakio Maankuoren ydinreakio Auringon säeilyenergia Lämpöenergia Ilmakehän lämpö-

Lisätiedot

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6

Fy06 Koe 20.5.2014 Kuopion Lyseon lukio (KK) 1/6 Fy06 Ke 0.5.04 Kupin Lysen luki (KK) /6 6p/tehtävä.. Kaksi varattua palla rikkuu lankjen varassa lähellä tisiaan. Pallt vetävät tisiaan puleensa 0,66 N vimalla. Pienemmän palln varaus n kaksinkertainen

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

Ratkaisut FYS02: Lämpö

Ratkaisut FYS02: Lämpö Rakaisu FYS0: Lämpö 6.4.007. Seliä lyhyesi seuraava käsiee. a) absluuinen nllapise ( p) b) höyrysymislämpö ( p) c) sisäenergia ( p) d) faasidiagrammi ( p) Rakaisu a) Kelvinaseikn peruspise, 0 K. Absluuinen

Lisätiedot

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön.

LH9-1 Eräässä prosessissa kaasu laajenee tilavuudesta V1 = 3,00 m 3 tilavuuteen V2 = 4,00 m3. Sen paine riippuu tilavuudesta yhtälön. LH9- Eräässä rsessissa kaasu laajenee tilavuudesta = 3, m 3 tilavuuteen = 4, m3. Sen aine riiuu tilavuudesta yhtälön 0 0e mukaan. akiilla n arvt = 6, 0 Pa, α = 0, m -3 ja v =, m 3. Laske kaasun tekemä

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

( ) N z ( RADIOAKTIIVISUUS TILASTOLLISENA ILMIÖNÄ. B.1 Radioaktiivisten ytimien hajoamislaki. P( z) =

( ) N z ( RADIOAKTIIVISUUS TILASTOLLISENA ILMIÖNÄ. B.1 Radioaktiivisten ytimien hajoamislaki. P( z) = B RADIOAKTIIVISUUS TILASTOLLISENA ILMIÖNÄ B.1 Radioakiivisen yimien hajoamislaki Miaaessa radioakiivisen yimien hajoamisessa synyvän säeilyn inensieeiä havaiaan, eä ilmaisimeen aikayksikössä saapuvien

Lisätiedot

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????

Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä???? MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä

Lisätiedot

Biologian yhteisvalinta 2014 / Mallivastaus Kysymys 1

Biologian yhteisvalinta 2014 / Mallivastaus Kysymys 1 Bilgian yhteisvalinta 2014 / Mallivastaus Kysymys 1 Mitkä tekijät vaikuttavat kasviplanktnin määrään Sumen järvissä? A) Aiheen käsittelyn vaatimat määritelmät: 6 p Kasviplanktnin määritelmä: levät ja sinibakteerit,

Lisätiedot

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa; VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

REKISTERINPITÄJÄN MUUTOKSET: Toimintamalli muutostilanteessa

REKISTERINPITÄJÄN MUUTOKSET: Toimintamalli muutostilanteessa Rekisterinpitäjän muutkset 1(7) REKISTERINPITÄJÄN MUUTOKSET: Timintamalli muutstilanteessa Ptilasasiakirjan rekisterinpitäjä: alkutilanne Tiet ptilaan hidssa syntyvien asiakirjjen rekisterinpitäjästä tallennetaan

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

1/29/09 Petteri Huuska 1

1/29/09 Petteri Huuska 1 Ilmastnmuutksen takaisinkytkennät ja vaikutukset 1/29/09 Petteri Huuska 1 Ilmastnmuutksen takaisinkytkennät ja vaikutukset eri lämpenemistasilla Takaisinkytkennät vimistavat tai heikentävät ilmastnmuutsta

Lisätiedot

Tuloste: Omistajien yhteystietoja

Tuloste: Omistajien yhteystietoja Määrittely (kierrs 1) 1(5) KIOStp/mä-prjekti Versi 0.1 Tulste: Omistajien yhteystietja 1 Yleiskuvaus Tute, jlla luetellaan annettujen kiinteistöjen tai määräaljen mistajien nimet ja sitteet. Tutteen saa

Lisätiedot

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL

Lisätiedot

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

YO Fysiikka. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Sanoma Pro Oy Helsinki

YO Fysiikka. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Sanoma Pro Oy Helsinki YO Fysiikka Heikki Leho Raimo Havukainen Jukka Maalampi Janna Leskinen Sanoma Pro Oy Helsinki Sisällys Opeajalle ja opiskelijalle 4 1 Kohi fysiikan ylioppilaskoea 5 Yleisä fysiikan ylioppilaskokeesa 6

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

Excel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä

Excel 2013:n käyttö kirjallisen raportin, esim. työselostuksen tekemisessä Excel 2013:n käyttö kirjallisen raprtin, esim. työselstuksen tekemisessä Sisällysluettel EXCEL-TAULUKKOLASKENTAOHJELMAN PERUSTEET... 2 1. PERUSASIOITA... 2 2. TEKSTIN KIRJOITTAMINEN TAULUKKOON... 3 3.

Lisätiedot

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA

DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA 1 (6) Vivi 1110/230/2013 DNA OY:N LAUSUNTO KUSTANNUSSUUNTAUTUNEEN HINNAN MÄÄRITTELYYN SOVELLETTAVASTA MENETELMÄSTÄ SUOMEN TELEVISIOLÄHETYSPALVELUIDEN MARKKINALLA [Liikesalaisuudet merkitty hakasulkein]

Lisätiedot

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1 EKHBRD011ADY1 EKHBRD014ADY1 EKHBRD016ADY1 KÄYÖOPAS Ilma vesilämpöpumppujärjeselmän sisäyksikkö ja lisävarusee EKHBRD011ADV1+Y1 EKHBRD014ADV1+Y1 EKHBRD016ADV1+Y1

Lisätiedot

Tulityöt: järjestäminen ja suunnittelu

Tulityöt: järjestäminen ja suunnittelu Tulityöt: järjestäminen ja suunnittelu 2012 Tulitöitä vat kaikki työt, jssa n syttymän aiheuttaja (esim. kipinöinti, hitsaus, avtuli, kuuma ilma) sekä ympäristössä leva palvaara Tulityökrtti ei le lakisääteinen,

Lisätiedot

OPISKELIJOI- DEN TULOSTAMI- SESTA

OPISKELIJOI- DEN TULOSTAMI- SESTA OPISKELIJOI- DEN TULOSTAMI- SESTA Mika Siisknen Tiethallint tulstus_piskelijat.dcx 1 / 4 Sisällys 1. Yleistä tulstamisesta... 2 2. Vanha tulstusjärjestelmä (lasertulstimet ym.)... 3 3. Uusi tulstusjärjestelmä

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy?

Ongelma 1: Mistä joihinkin tehtäviin liittyvä epädeterminismi syntyy? Ongelma : Mistä jihinkin tehtäviin liittyvä epädeterminismi syntyy? 0-0 Lasse Lensu Ongelma : Miten vidaan pelata algritmisesti? 0-0 Lasse Lensu Ongelma : Onk mahdllista pelata ptimaalisesti? 0-0 Lasse

Lisätiedot

Sydän- ja verenkiertoelimistön toiminta rasituksen aikana

Sydän- ja verenkiertoelimistön toiminta rasituksen aikana Sydän- ja verenkiertelimistön timinta rasituksen aikana Terve Urheilija iltaseminaari 5.3.2013 Niina Mutanen, testauspäällikkö, LitM Tampereen Urheilulääkäriasema 1 Sydän- ja verenkiertelimistö Verenkiertelimistö

Lisätiedot

Fysiikan labra Powerlandissa

Fysiikan labra Powerlandissa Fysiikan labra Pwerlandissa Bumper Cars Bumper Cars n suuri autrata jka spii niin vanhille kuin nurillekin kuljettajille. Autt vat varustetut turvavöin ja autja vi ajaa yksin tai pareittain. Lievemmät

Lisätiedot

KITI - kilpailu anomuksesta ajoon. Ohjeistus kilpailujen anomisesta ja muokkaamisesta KITIssä.

KITI - kilpailu anomuksesta ajoon. Ohjeistus kilpailujen anomisesta ja muokkaamisesta KITIssä. KITI - kilpailu anmuksesta ajn Ohjeistus kilpailujen anmisesta ja mukkaamisesta KITIssä. Kilpailun anminen kalenteriin KITIssä Kilpailun vi ana kalenteriin KITIssä henkilö, jlla n jäsenrekisterin ylläpitäjän

Lisätiedot

KOMISSION VALMISTELUASIAKIRJA

KOMISSION VALMISTELUASIAKIRJA EUROOPAN UNIONIN NEUVOSTO Bryssel, 23. oukokuua 2007 (24.05) (OR. en) Toimielinen välinen asia: 2006/0039 (CNS) 9851/07 ADD 2 N 239 RESPR 5 CADREN 32 LISÄYS 2 I/A KOHTAA KOSKEVAAN ILMOITUKSEEN Läheäjä:

Lisätiedot

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen

Lisätiedot

Ajankohtaista europarlamentista. Bioenergiapäivät 29.11.2013 Eija-Riitta Korhola, MEP

Ajankohtaista europarlamentista. Bioenergiapäivät 29.11.2013 Eija-Riitta Korhola, MEP Ajankhtaista eurparlamentista Bienergiapäivät 29.11.2013 Eija-Riitta Krhla, MEP Sisältöä Bienergian kestävyyskriteereistä EU:n energia- ja ilmastplitiikka 2030 mututumassa EU:n päästökaupan ajankhtaiset

Lisätiedot

Kelan järjestelmä muodostaa erän apteekin yhden vuorokauden aikana lähettämistä ostoista.

Kelan järjestelmä muodostaa erän apteekin yhden vuorokauden aikana lähettämistä ostoista. 11 Tilitysmenettely Kelalta tai työpaikkakassalta tilitettävä kustannus syntyy sillin, kun lääkkeet luvutetaan asiakkaalle sairausvakuutuslain mukaisella krvauksella vähennettyyn hintaan. Kun lääkkeet

Lisätiedot

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut Kunaeläkkeiden rahoius ja kunnallise palvelu I LA Rapori LA Repors 30.1.2013 No 4 Kunaeläkkeiden rahoius ja kunnallise palvelu Jukka Lassila * Niku Määänen ** armo Valkonen *** * LA linkeinoelämän ukimuslaios,

Lisätiedot

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa

3. Kolmiulotteisten kohteiden esitys ja mallintaminen: jatkoa . Klmiultteisten khteiden esitys ja mallintaminen: jatka Mnikulmiverkkn nähden ilmeisiä etuja vat: eksakti analyyttinen esitysmut klmiultteinen mudn mukkaaminen mahdllista vähemmän muistitilaa vaativa

Lisätiedot

ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT

ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT ÅLANDSBANKEN DEBENTUURILAINA 2/200 LOPULLISET EHDOT Ålandsbanken Debenuurilaina 2/200 (ISIN: FI400003875) lopullise ehdo on 9. heinäkuua 200 vahviseu seuraavasi: - Lainan pääoma 9 980 000 euroa Maarianhamina

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

MAKSETUISTA ELÄKKEISTÄ ELÄKESELVITTELYÄ VARTEN ETK:LLE ANNETTAVAN ELÄKEMENOTIEDOSTON SEKÄ PERINTÄTIEDOSTON TÄYTTÖOHJE VUODELLE 2013

MAKSETUISTA ELÄKKEISTÄ ELÄKESELVITTELYÄ VARTEN ETK:LLE ANNETTAVAN ELÄKEMENOTIEDOSTON SEKÄ PERINTÄTIEDOSTON TÄYTTÖOHJE VUODELLE 2013 1 (25) MAKSETUISTA ELÄKKEISTÄ ELÄKESELVITTELYÄ VARTEN ETK:LLE ANNETTAVAN ELÄKEMENOTIEDOSTON SEKÄ PERINTÄTIEDOSTON TÄYTTÖOHJE VUODELLE 2013 Sisällysluettel OSA I: ELÄKEMENOTIEDOSTON TÄYTTÖOHJE... 3 YLEISTÄ...

Lisätiedot

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B

KÄYTTÖOPAS. -järjestelmän sisäyksikkö HXHD125A8V1B KÄYÖOPAS -järjeselmän sisäyksikkö SISÄLÖ 1. Määrielmä... 1 1.1. Merkkien ja varoiusen arkoiukse... 1 1.2. Käyeyjen ermien merkiys... 1 2. Yleise varooime... 2 3. Johdano... 2 3.1. Yleisä... 2 3.2. ämän

Lisätiedot

Ominaisuus- ja toimintokuvaus Idea/Kehityspankki - sovelluksesta

Ominaisuus- ja toimintokuvaus Idea/Kehityspankki - sovelluksesta www.penspace.fi inf@penspace.fi 15.6.2015 1 Ominaisuus- ja timintkuvaus Idea/Kehityspankki - svelluksesta 1. Yleistä Kun jäljempänä puhutaan prjektista, tarkitetaan sillä mitä tahansa kehittämishjelmaa

Lisätiedot

TAPULIKAUPUNGINTIEN ETELÄPUOLI JA MAATULLIN ALA-ASTEEN YMPÄRISTÖ

TAPULIKAUPUNGINTIEN ETELÄPUOLI JA MAATULLIN ALA-ASTEEN YMPÄRISTÖ Helsingin kaupunki Kaupunkisuunnitteluvirast, kirjaam PL 2100 00099 Helsingin kaupunki TAPULIKAUPUNGINTIEN ETELÄPUOLI JA MAATULLIN ALA-ASTEEN YMPÄRISTÖ Tapulikaupunki- Seura ry. esittää seuraavaa: Yleistä

Lisätiedot

Flash ActionScript osa 2

Flash ActionScript osa 2 Liiketalus syksy 2012 Flash ActinScript sa 2 Scripti-kieli Skriptikieli n tarkitettu skriptien eli kmentsarjjen tekemiseen. lyhyitä hjeita, siitä kuinka svelluksen tulisi timia Skripteillä autmatisidaan

Lisätiedot

ME-C2400 Vuorovaikutustekniikan studio

ME-C2400 Vuorovaikutustekniikan studio Luent 22.11.2016 ME-C2400 Vurvaikutustekniikan studi Tilastanalyysiä (liittyen tehtävään 2A): Kuinka tarkkaa n viivan piirtäminen? Tapi Takala http://www.cs.hut.fi/~tta/ Input-menetelmän tutkiminen Kuinka

Lisätiedot

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri

Lisätiedot

Toistoleuanvedon kilpailusäännöt

Toistoleuanvedon kilpailusäännöt 1.0 Yleisä Toisoleuanvedossa kilpailija suoriaa häjaksoisesi mahdollisimman mona leuanveoa omalla kehonpainollaan. Kilpailijalla on käössään ksi kilpailusuorius sekä asauloksen sauessa mahdollise uusinakierrokse

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

Vaaratilanteet - ilmoittaminen ja hyödyntäminen

Vaaratilanteet - ilmoittaminen ja hyödyntäminen 2012 Vaaratilanteet - ilmittaminen ja hyödyntäminen Tilastllisesti yhtä vakavaa tapaturmaa khden sattuu samankaltaisessa työssä: 1 10 30 600 Vakava tapaturma Lievä tapaturma Materiaalivahink Vaaratilanne

Lisätiedot

Termiinikurssi tulevan spot-kurssin ennusteena

Termiinikurssi tulevan spot-kurssin ennusteena TAMPEREEN YLIOPISTO Talousieeiden laios Termiinikurssi ulevan spo-kurssin ennuseena Kansanalousiede Pro gradu-ukielma Talousieeiden laios Tampereen yliopiso 28.2.2006 Ville Kivelä 1 TIIVISTELMÄ Tampereen

Lisätiedot

PIKAOHJE-PEBBELL 2 WATERPROOF GPS-PAIKANNUSLAITE

PIKAOHJE-PEBBELL 2 WATERPROOF GPS-PAIKANNUSLAITE PIKAOHJE-PEBBELL 2 WATERPROOF GPS-PAIKANNUSLAITE 1PEBBELL 2 WATERPROOF 2LAITTEEN LATAAMINEN Pebbell 2 Waterprf paikannuslaite n varustettu ladattavalla akulla. Akun kest vi vahdella riippuen GPS and GSM

Lisätiedot

Tuotannon suhdannekuvaajan menetelmäkuvaus

Tuotannon suhdannekuvaajan menetelmäkuvaus 1(15) Tuoannon suhdannekuvaajan meneelmäkuvaus Luku 1 Luku 2 Luku 3 Luku 4 Tuoannon suhdannekuvaajan yleiskuvaus Tuoannon suhdannekuvaajan julkaisuaikaaulu, revisoinikäyännö ja jakelu Tuoannon suhdannekuvaajan

Lisätiedot

Notor Upotettava. 6 www.fagerhult.fi

Notor Upotettava. 6 www.fagerhult.fi Upoeavan Noor-valaisimen avulla kaoon voidaan luoda joko huomaamaomia ai ehokkaan huomioa herääviä ja yhenäisiä valaisinjonoja ilman minkäänlaisia varjosuksia. Pienesä koosaan huolimaa Noor arjoaa hyvin

Lisätiedot

Suomessa tuotetun minkin- ja ketunnahan elinkaariarviointi

Suomessa tuotetun minkin- ja ketunnahan elinkaariarviointi 29 Suomessa uoeun minkin- ja keunnahan elinkaariarvioini MTT:n Suomen Turkiseläinen Kasvaajain Liio ry:lle ja Turkisuoaja Oyj:lle ekemä ilausukimus Frans Silvenius, Nia Koskinen, Sirpa Kurppa, Teppo Rekilä,

Lisätiedot

TARVITSEMASI PALVELUT PAIKASTA RIIPPUMATTA

TARVITSEMASI PALVELUT PAIKASTA RIIPPUMATTA TARVITSEMASI PALVELUT PAIKASTA RIIPPUMATTA Palveludirektiivin tarkituksena n tuda kuluttajille enemmän valinnanvaraa, enemmän vastinetta rahille ja paremmat mahdllisuudet käyttää palveluja eri pulilta

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

5. PAINOVOIMA. Painovoima voidaan perusluonteeltaan kiteyttää seuraavaan yksinkertaiseen lauseeseen:

5. PAINOVOIMA. Painovoima voidaan perusluonteeltaan kiteyttää seuraavaan yksinkertaiseen lauseeseen: 5. PAINOVOIMA Painvima vidaan peruslunteeltaan kiteyttää seuraavaan yksinkertaiseen lauseeseen: Sähkömagneettinen gravitaatikenttä ja ϕ-kenttä virtaavat suurten taivaankappaleiden sisälle, missä ne plymerituvat

Lisätiedot

KITI - kilpailu anomuksesta ajoon. Ohjeistus kilpailujen anomisesta ja muokkaamisesta KITIssä.

KITI - kilpailu anomuksesta ajoon. Ohjeistus kilpailujen anomisesta ja muokkaamisesta KITIssä. KITI - kilpailu anmuksesta ajn Ohjeistus kilpailujen anmisesta ja mukkaamisesta KITIssä. Kilpailun anminen kalenteriin KITIssä Kilpailun vi ana kalenteriin KITIssä henkilö, jlla n jäsenrekisterin ylläpitäjän

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Tulityöt tilapäisellä tulityöpaikalla

Tulityöt tilapäisellä tulityöpaikalla 2012 Tulityöt tilapäisellä tulityöpaikalla Tulitöitä vat kaikki työt, jssa n syttymän aiheuttaja (esim. kipinöinti, hitsaus, avtuli, kuuma ilma) sekä ympäristössä leva palvaara Tulityökrtti ei le lakisääteinen,

Lisätiedot

MoViE- sovelluksen käyttöohjeet

MoViE- sovelluksen käyttöohjeet MViE- svelluksen käyttöhjeet Yleistä tieta: MViE- palvelua vidaan käyttää mbiililaitteilla jk käyttämällä laitteessa levaa selainhjelmaa tai lataamalla laitteeseen ma MViE- svellus Svelluksen kautta vidaan

Lisätiedot

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a

Lisätiedot

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92

MAB2. Kertaustehtävien ratkaisut. 120. a) α = 15 16 1. β = 95 58 45. 95 o 58. b) α = 11,9872 0,9872 = 0,9872 60 = 59,232 0,232 = 0,232 60 = 13,92 MAB Kertaustehtävien ratkaisut 10. a) α = 15 16 1 16 1 15 60 β = 95 58 45 600 15,669 95 58 45 95,979 60 600 b) α = 11,987 0,987 = 0,987 60 = 59, 0, = 0, 60 = 1,9 α = 11 59 1,9 = 11 59 14 β = 95,4998 0,

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

Viranomaisten yhteiskäyttöiset rekisterit

Viranomaisten yhteiskäyttöiset rekisterit Valtiknttri Liite 1 (9) Viranmaisten yhteiskäyttöiset rekisterit Valtiknttrin Valmiina digikiriin selvityksessä ehdtettiin tiednhallinnan kknaisarkkitehtuurin kuvausta ja timeenpana sekä rekisterienpidn

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

RADIOAKTIIVISEN HAJOAMISEN NOPEUS

RADIOAKTIIVISEN HAJOAMISEN NOPEUS IX RADIOAKTIIVISE HAJOAMISE OPEUS Hajoamisnopeus akiivisuus - hajoamislaki Radioakiivisen hajoamisen nopeus on kullekin nuklidille karakerisinen ominaisuus. Hajoamisnopeus, joa kusuaan yleisesi myös akiivisuudeksi,

Lisätiedot

TAMPEREEN EV.LUT. SEURAKUNTAYHTYMÄ PÖYTÄKIRJA 7/2014 1(15) Perheneuvontatyön johtokunta Kokous 20.10.2014

TAMPEREEN EV.LUT. SEURAKUNTAYHTYMÄ PÖYTÄKIRJA 7/2014 1(15) Perheneuvontatyön johtokunta Kokous 20.10.2014 TAMPEREEN EV.LUT. SEURAKUNTAYHTYMÄ PÖYTÄKIRJA 7/2014 1(15) Aika 20.10.2014 kl 17:15-18:36 Paikka Perheasiain neuvttelukeskus Osallistujat Jäsenet Käpylä, Tarja puheenjhtaja Andreassn, Kari Hankela, Jussi

Lisätiedot

Työnantajan koulutusvähennys. Työnantajan lisävähennys henkilöstön kouluttamisesta

Työnantajan koulutusvähennys. Työnantajan lisävähennys henkilöstön kouluttamisesta Työnantajan kulutusvähennys Työnantajan lisävähennys henkilöstön kuluttamisesta Elinkeintimintaa ja maatalutta harjittavalla työnantajalla n mahdllisuus tehdä massa vertuksessaan ylimääräinen vähennys

Lisätiedot

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen

Automaatiojärjestelmät 18.3.2010 Timo Heikkinen Autmaatijärjestelmät 18.3.2010 Tim Heikkinen AUT8SN Malliratkaisu 1 Kerr muutamalla lauseella termin tarkittamasta asiasta! (2 p / khta, yhteensä 6 p) 1.1 Hajautus (mitä tarkittaa, edut, haitat) Hajautuksella

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

11. Takaisinkytketyt vahvistimet

11. Takaisinkytketyt vahvistimet Kar berg Kar berg. akankykey vahvme. ahvn yyppejä Jännevahvn Ohjaun läheen pääyyppejä Jänne hjau jännelähde ra hjau jännelähde Jänne hjau vralähde ra hjau vralähde v kun >> v kun >> ja >> njänne n en uraan

Lisätiedot

SPL TAMPEREEN PIIRI: SEURATUTOROINTI

SPL TAMPEREEN PIIRI: SEURATUTOROINTI SPL TAMPEREEN PIIRI: SEURATUTOROINTI Tampellan esplanadi 6, 33100 Tampere, puh. 010 841 1880, fax 010 841 1888, www.pallliitt.fi/tampere Jaettu vastuu auttaa yhteisöä kehittymään Ihmisyhteisöt rakentuvat

Lisätiedot

Ohje viranomaisille 8/2012 1 (6)

Ohje viranomaisille 8/2012 1 (6) Ohje viranmaisille 8/2012 1 (6) Dnr 7845/06.10.06.00/2012 Jakelussa mainituille Tupakkalaki ulkalueilla järjestettävissä yleisötilaisuuksissa Taustaa Tämä hje n päivitys Ssiaali- ja terveysalan lupa- ja

Lisätiedot

Tuulivoima, Suomen Hyötytuuli Oy / TOF ja Sachtleben Kirrinsanta. Tasoristeyksien saneeraussuunnitelman toteutuminen

Tuulivoima, Suomen Hyötytuuli Oy / TOF ja Sachtleben Kirrinsanta. Tasoristeyksien saneeraussuunnitelman toteutuminen Kaupunkisuunnittelu Yleisötilaisuus Yyterinniemi Lyttylä sayleiskaava 27.5.2014 Yyterin kylpylähtelli - Kaupunkisuunnittelupäällikkö Olavi Mäkelä avasi tilaisuuden ja tivtti läsnälijat tervetulleiksi.

Lisätiedot

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne

HENKKARIKLUBI. Mepco HRM uudet ominaisuudet vinkkejä eri osa-alueisiin 1 (16) 28.5.2015. Lomakkeen kansiorakenne 1 (16) Mepc HRM uudet minaisuudet vinkkejä eri sa-alueisiin Khta: Kuvaus: Lmakkeen kansirakenne Lmakkeen kansirakenne Lmakkeet vidaan kategrisida tiettyyn lmakekategriaan. Tämä helpttaa käyttäjiä hakemaan

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus

KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus EUROOPAN KOMISSIO Bryssel 27.2.205 COM(205) 4 final KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan nojalla laadiu keromus FI FI KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan

Lisätiedot

- ONCELMAT JA PARANNUSEHDOTUKSET

- ONCELMAT JA PARANNUSEHDOTUKSET RATTJUOPUMUKSEN ALKOHOLMAARTYKSET SUOMESSA - ONCELMAT JA PARANNUSEHDOTUKSET P,]T.]R T]RKSSON Alkhlihumala heikentää ajtaita j a aiheuttaa nnettmuuksia. Humala-asteen nustessa riskit kasvavat. Aikaisemmin

Lisätiedot

LIITE III RAHOITUS- JA SOPIMUSSÄÄNNÖT

LIITE III RAHOITUS- JA SOPIMUSSÄÄNNÖT FI_Annex III_mnbeneficiary_valmis.dc I. JOHDANTO LIITE III RAHOITUS- JA SOPIMUSSÄÄNNÖT Tämä liite täydentää spimuksessa määriteltyjä ehtja tuen käyttämisestä hankkeen eri kululukissa. Nämä tarkennukset

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

SGY 204. Infra pohjatutkimusformaatti versio 2.2

SGY 204. Infra pohjatutkimusformaatti versio 2.2 SGY 204 Inra pohjaukimusormaai versio 2.2 Helsinki 2012 INRA -pohjaukimusormaai v2.2 12.06.2012 Sivu 2/20 Versiohisoria Versio Pvm Sisälö Dra A1-A3 23.09.2003-14.11.2003 Tekla ormaain rakeneen mukaise

Lisätiedot

Hävitä kaikki käyttämättömät säiliöt, joita tämä markkinoilta poistaminen koskee.

Hävitä kaikki käyttämättömät säiliöt, joita tämä markkinoilta poistaminen koskee. 5.7.2013 Medtrnic-viite: FA586 Hyvä Paradigm-insuliinipumpun käyttäjä Tällä kirjeellä ilmitamme, että Medtrnic MiniMed pistaa vapaaehtisesti markkinilta Paradigminsuliinipumpuissamme käytettävien MMT-326A-mallin

Lisätiedot

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi: 77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen

Lisätiedot