Aikataulu syksy Kaukokartoitus-kurssi Sisältö. Suorittamisesta GEOINFORMATIIKKA GEOINFORMATIIKKA GEOINFORMATIIKKA

Koko: px
Aloita esitys sivulta:

Download "Aikataulu syksy 2008. Kaukokartoitus-kurssi Sisältö. Suorittamisesta GEOINFORMATIIKKA GEOINFORMATIIKKA GEOINFORMATIIKKA"

Transkriptio

1 Kaukokartoitus-kurssi Sisältö Johdanto kaukokartoituksen peruskäsitteitä, havaintolaitteet havainnoinnin kohteet: maa, vesi, ilmakehä säteilyn kulku ja ilmakehä Instrumentit Kuvan käsittely Kuvaoperaatiot Satelliittikuvien luokittelu Aineiston ja tietojen hankinta Sovellutuksia Suomessa ja ulkomailla Aikataulu syksy 2008 Luennot ke 12-16, luokka ETYA2132 (atk) 1. ke 3.9. Johdanto, sähkömagneettinen säteily 2. ke Kuvausalustat ja instrumentit, aloitellaan Sähkömagneettisen säteilyn vuorovaikutus kohteen kanssa 3. ke jatketaan Sähkömagneettisen säteilyn vuorovaikutus kohteen kanssa, lisäksi Organisaatiot ja satelliittisarjat 4. ke Datan esikäsittely I: kuvakorjaukset 5. ke Datan esikäsittely II: kuvan ehostaminen 6. ke ?? Tulkinta 7. ke ?? Sovellukset?? projekti- ja harjoitustyöviikoilla, siirretäänkö II jakson puolelle? Lisäksi kuvankäsittelyharjoituksia (Jussi Sumanen), to 14-17, ETYA2132 (atk) laserkailausta (Vesa Rope)? Suorittamisesta GEOINFORMATIIKKA Sähköpostilista on aiakisempina vuosina ollut tällä ilmoitellaan koska ja mistä luentojen esitys on saatavilla tai sitten käytetään Metropolian systeemeitä Minut tavoittaa: tai Tenttimateriaali: luentojen powerpointit + luentopruju (http://foto.hut.fi/~markus/presentation/evtek/jennin_kirja_2003.doc), englannin kieltä taitavat voivat etsiä käsiinsä Lillesand & Kiefer: Remote Sensing Image Interpretation Arvosana: tentti, Sumasen harjoitukset voivat nostaa +1. Yleisnimike maahan, kasvillisuuteen, rakennuksiin ja rakenteisiin yms. liittyvien tietojen keräämiselle. Toinen nimike geomatiikka GEOINFORMATIIKKA Keskeisessä osassa paikkatietojärjestelmät (GIS) GEOINFORMATIIKKA Paikkatieto: Sijaintitieto: kohteen koordinaatit joilla se voidaan paikantaa Ominaisuustieto: kertoo kohteen ominaisuuksista (mitä, millainen) TIEDON- KERUU TULOSTEET GIS TIEDON HYÖDYNTÄMINEN TIEDON- HALLINTA Sijaintitietojen ja osin ominaisuustietojen keruu seuraavin menetelmin: Geodesia Fotogrammetria Kuvatulkinta Kaukokartoitus 1

2 FOTOGRAMMETRIA Menetelmät joilla määritetään kohteen sijainti, koko ja muoto kuvilta mittaamalla kuvamittaus Hyödynnetään kohteen ja kuvan välisiä geometrisia suhteita DIGITAALINEN FOTOGRAMMETRIA Ennen ihminen mittasi Valokuvaus Manuaalinen Prosessointi => KUVAT => mittaus II Kuvatulkinta v Videosignaali => Digitointi II v Kaukokartoitusinstrumentit DIGITAALISET => KUVAT => nykyään kone mittaa ja ihminen valvoo Automaattinen mittaus Kuva-analyysi KUVATULKINTA Luokitellaan ja analysoidaan kuvalla esiintyviä kohteita Hahmoinformaatio: muoto tekstuuri: kohteen pintakuviointi Fysikaalinen informaatio: värisävy kuvalla: millaista ja kuinka paljon kohde heijastaa tai lähettää sähkömagneettista säteilyä KUVATULKINTA Perinteisesti kuvana ilmakuva jota ihminen tulkitsee Tietokoneen suorittama hahmontunnistus: kuvapikselit tunnistetaan luokitelemalla luokkiin kuva-analyysi: kuva jaetaan yhtenäisiin alueisiin jotka luokitellaan ja yhdistetään tarvittaessa naapurialueisiin Määritelmä: KAUKOKARTOITUS Informaation hankkiminen kohteesta koskettamatta sitä (käyttäen sähkömagneettista säteilyä informaation välittäjänä) NÄIDEN YHTEYS Perinteisesti on ajateltu että kaukokartoitus tarkoittaa satelliittikuvien käsittelyä ja tietokoneavusteista tulkintaa Tosiasiassa kaukokartoitus käsittää ainakin seuraavia asioita: mittausten suorittaminen (instrumentit) näiden tulkinta (kuvatulkinta) ja kohteen muodon määrittäminen (fotogrammetria) 2

3 Satelliittikuva dokumentoi ympäristön tilan kuvaushetkellä Landsat MSS kuva, Inari, , kanavat 5, 7, 4 Mihin kaukokartoitusta tarvitaan? saadaan tietoa laajoilta alueilta kattavaa ja ajantasaista tietoa, jopa useita kertoja päivässä voidaan seurata maastossa tapahtuvia nopeita muutoksia kuten säätä, lumen ja jään sulamista voidaan tehdä karttoja ja päivittää karttaaineistoja (pellot, avohakkuut, metsät, korkeuskäyrät, tiet) EDUT / HAITAT Kaukokartoituksen etuja Pysyvä tallennusväline Joskus ainoa tiedonhankintamenetelmä (lämpökuvaus) "Nähdään metsä puilta" Erilaiset kuvausmittakaavat Erilaiset kuvauspaikat Eri ajankohtina otetut kuvat Sähkömagneettisen spektrin eri osien käyttö Kuvankäsittelyllä saadaan eri asioita näkyviin Kaukokartoituksen haittoja Kuvauksessa syntyvien virheiden korjaaminen voi olla hankalaa Kaukokartoituksen käyttö vaatii oman erikoisosaamisen Sääolot voi häiritä Erotuskyky saattaa olla tehtävän kannalta riittämätön Tarvitaan: 1342 Neulanreikäkamera (Eurooppa, ilmeisesti kiinalaiset tunsi jo aiemmin) 1757 Hopeakloridin valoherkkyys 1838 Varsinainen valokuvaus 1858 Ensimmäinen ilmakuva ilmapallosta käsin 1859 Mittakamera 1889 Ilmakuvatulkintaan perustuva metsätalouskartta 1901 Stereoskooppinen mittausperiaate 1909 Ensimmäinen ilmakuva lentokoneesta 1915 Kartoituskoje HISTORIAA 1. Sähkömagneettista säteilyä keräävä laite 2. Säteilyn tallennus-järjestelmä Väri - ja infrapunakuvaus Tutkat ja lämpökuvaus 1957 Sputnik 1959 Avaruudesta otetaan valokuva maasta 1960 TIROS-I luvulla valokuvia avaruuslennoilta ja vakoilusatelliiteista 1972 ERTS-1 (Landsat 1) 1973 Skylab 1975 Landsat Landsat 3, HCMM, Seasat, Nimbus, TIROS-N 1981 Space shuttle jne... Mihin kaukokartoitus perustuu? Erilaisilla maastokohteilla on erilaiset sähköiset, fysikaaliset, kemialliset ja geometriset ominaisuudet Kaukokartoitus perustuu instrumenttien kykyyn havaita ja erottaa kohteiden erilaiset ominaisuudet Hyödynnetään sähkömagneettisen taajuusalueen eli spektrin eri osa-alueita Spektri: kaikkien aallonpituuksien muodostama kokonaisuus 3

4 Landsat ETM-kuva: kanavat Eri aallonpituusalueita hyödyntämällä kohteesta saadaan esiin monipuolisempaa informaatiota kuin vain näkyvän valon aallonpituuksilla. NOAA-sääsatelliitin AVHRR-instrumentti Näkyvän valon kanavat: sininen, vihreä, punainen Infrapunakanavat: lähi-infra I ja II, keski-infra Landsat ETM-kuva: värikombinaatiot Tosivärikuva, väärävärikuva... ja infrapunakanavista tehty värikuva Kaukokartoituksen eri osa-alueet eli mitä tarvitaan? A. Säteilylähde B. Ilmakehä (väliaine) C. Energian törmääminen kohteeseen D. Instrumentti havaitsemaan säteily E. Tiedon siirto, vastaanotto, prosessointi F. Tulkinta, laskenta ja analysointi G. Soveltaminen käytäntöön A D F B E C Sähkömegneettinen säteily Sähkömagneettinen säteily Sähkömagneettinen säteily on muodostunut sähkökentän ( E ) värähtelystä, joka on kohtisuora säteilyn etenemissuuntaan nähden, sekä magneettikentän (M) värähtelystä, joka on kohtisuora sähkökenttään nähden. Sähkömagneettinen säteily kulkee säteilylähteestään aaltoliikkeen muodossa valon nopeudella c (3*108 m/s). Aaltomalli Sähkömagneettinen säteily muodostuu etenemissuuntaa vastaan kohtisuorasti kaikkiin suuntiin tapahtuvasta värähtelystä sähkö- ja magneettikentissä, jotka ympäröivät sähköisesti varattua hiukkasta. Etenee valon nopeudella Ominaisuudet: aallonpituus, amplitudi, taajuus Aaltoyhtälö: valon nopeus = aallonpituus * taajuus Aaltomalli kertoo miten sähkömagneettinen säteily liikkuu (kuva: Canada Centre for Remote Sensing) 4

5 Sähkömagneettinen säteily Hiukkasmalli Säteilylähde lähettää säteilyenergiaa tietyn suuruisina "paketteina", kvantteina eli fotoneina -> Sähkömagneettinen säteily etenee fotonivirtana Fotonien ominaisuuksia: energia, lepomassa Fotonin energia = Planckin vakio * taajuus Suuri aallonpituus -> pieni energia Hiukkasmalli kertoo miten sähkömagneettinen säteily on vuorovaikutuksessa kohteen kanssa Sähkömagneettinen säteily: Säteilysuureet Säteilyn energia (Radiant energy, Q): Säteilylähteen kyky tehdä työtä liikuttamalla kohdetta, lämmittämällä kohdetta tai muuttaa kohdetta jotenkin muuten, Yksikkö: Joule, J Säteilyvirta, säteilyteho (Radiant Flux, F): Säteilyn energian määrä tietyssä ajassa, Yksikkö: Watti, W tai J / s Tehotiheys, irradianssi (Irradiance, E): Tietylle alueelle saapunut säteilyteho, Yksikkö: W / m2 Tehotiheys, säteilyn eksitanssi (Radiant exitance, M): Tietyltä alueelta lähtenyt säteilyteho, Yksikkö: W / m2 Säteilyintensiteetti (Radiant intensity, I): Pistemäisestä säteilylähteestä tiettyyn suuntaan lähtevä säteilyteho, Yksikkö: W / sr (sr=steradiaani, avaruuskulma) Radianssi (Radiance, L): Tietyltä säteilylähteen alueelta tiettyyn suuntaan lähtevä säteilyteho, Yksikkö: W / m2 / sr Säteilyn lähde Säteilyn lähde (kuva: Canada Centre for Remote Sensing) Säteilyä syntyy kaikissa absoluuttista nollapistettä lämpimämmissä kappaleissa Emissio; prosessi jossa kappale säteilee kappaleen lämpötilasta johtuvaa sähkömagneettista energiaa Luonnollisia säteilynlähteitä ovat aurinko ja maa. Keinotekoisia ovat esimerkiksi hehkulamppu ja tutka Tietyltä alueelta lähtenyt säteilyteho riippuu säteilijän lämpötilasta Stefanin-Bolzmannin laki pätee mustalle kappaleelle: M = σt 4 σ= Stefanin-Boltzmannin vakio, T= lämpötila Emittoituneen säteilyn spektrinen jakauma riippuu myös lämpötilasta UV, näkyvä valo, lähi-infra, maksimikohta vihreän valon aallonpituuksilla Auringon säteily (kuva: Canada Centre for Remote Sensing) Aallonpituus ja taajuus Aallonpituus λ on yhden kokonaisen aallon pituus aaltoliikkeessä, eli kahden samanvaiheisen kohdan etäisyys. Aallonpituus ilmaistaan usein joko nanometreinä (nm, 10-9 m) tai mikrometreinä (µm, 10-6 m). Taajuus on kokonaisten aaltosyklien lukumäärä aikayksikköä kohden. Taajuuden yksikkö on hertsi, Hz, joka on sama kuin 1/s. (kuva: Canada Centre for Remote Sensing) 5

6 Aaltoyhtälö: λ = c*f Spektrikaikkien aallonpituuksien muodostama kokonaisuus Taajuus ja aallonpituus ovat kääntäen verrannollisia; mitä pidempi on säteilyn aallonpituus, sitä pienempi on sen taajuus. (kuva: Canada Centre for Remote Sensing) Gammasäteily Aallonpituusalue: <0.03 nm Auringosta tuleva säteily absorboituu ilmakehän ylimmissä kerroksissa täysin Radioaktiivisten mineraalien lähettämää gammasäteilyä voidaan kuitenkin mitata matalalla lentävistä lentokoneista (X-rays) Röntgensäteily 0.03nm - 3 nm Tuleva säteily absorboituu täysin ilmakehään. Ei käyttöä maanpinnan kaukokartoituksessa Lääketiede Ultravioletti 3nm -0.4µm Auringon UV-säteet, joiden aallonpituus on alle 0.3 µm, absorboituvat täysin ilmakehään µm alueella säteily läpäisee ilmakehän, mutta ilmakehässä tapahtuva sironta on voimakasta. Instrumentteina käytetään kameraa ja UV-herkkiä ilmaisimia. Voidaan hyödyntää mineraalien ja kivien tutkimisessa. Näkyvä valo nm µm Näkyvän valon alue on varsin pieni osa spektriä. Punaisella valolla on pisin aallonpituus, ja violetilla lyhyin. Violetti: µm Sininen: µm Vihreä: µm Keltainen : µm Oranssi: µm Punainen: µm (kuva: Canada Centre for Remote Sensing) 6

7 Näkyvä valo Tallennettavissa valokuvauksella ja valoherkillä ilmaisimilla Maanpinnan heijastushuippu on noin 0.5 µm Useimmissa satelliittiinstrumenteissa on ainakin yksi ellei useampikin kanava näkyvän valon aallonpituudella. (kuva: Canada Centre for Remote Sensing) Infrapunasäteily Infrapunasäteily nm ( µm) lähi-infra µm keski-infra µm terminen infra µm ja 8-14 µm Vain tietyt osa-alueet infrapunasäteilystä läpäisevät ilmakehän. Alueella µm havainnot ovat lähinnä auringon heijastunutta säteilyä. Kaukokartoituksessa sovellutukset ovat paljolti samoja kuin näkyvän valon alueella. Termisen infrapunan havaittava säteily on kohteen emittoimaa lämpösäteilyä. Mikroaalto cm Mikroaallot läpäisevät ilmakehän lisäksi myös pilvet ja sumun. Voidaan mitata myös kohteen pinnan alla olevia ominaisuuksia, koska mikroaalloilla on hyvä tunkeutumiskyky. Voidaan tehdä mittauksia vuorokaudenajasta riippumatta. Satelliitti Landsat (kuva: Canada Centre for Remote Sensing) Instrumentti Kaukokartoitusinstrumentit voidaan jaotellaan eri tavoin toimintatapansa tai aallonpituusalueensa mukaisesti: 1. kuvaavat ja kuvaa muodostamattomat 2. aktiiviset ja passiiviset instrumentit 3. optisen ja infrapuna-alueen sekä mikroaaltoalueen instrumentit Kuvaavat vrs. kuvaa muodostamattomat Kuvaavat instrumentit keräävät havaintoja laajoilta alueilta Satelliiteissa sekä myös lentokoneissa olevat instrumentit ovat useimmiten kuvaavia. Kuvaa muodostamattomia instrumentteja käytetään, kun halutaan tarkkaa aineistoa pieneltä alueelta. Tällöin kuvan sijasta kohteesta saadaan yksi havainto (yksi pikseli), kuitenkin usealta eri aallonpituusalueelta. 7

8 Passiiviset instrumentit Havaitsevat joko kohteen emittoimaa säteilyä tai kohteesta heijastunutta auringon säteilyä Esimerkiksi kamerat, keilaimet, radiometrit sekä spektrometrit ovat passiivisia instrumentteja Näkyvän valon, infrapunan ja termisen alueen kaukohavainnoinnissa käytetään lähinnä passiivisia instrumentteja (kuva: Canada Centre for Remote Sensing) Aktiiviset instrumentit Lähettävät kohteeseen sähkömagneettista säteilyä tietyllä aallonpituusalueella. Mittaavat takaisin tulevan säteilyn, joka on joko heijastunut tai sironnut kohteesta. Mikroaalto- ja laser-tutkat ovat aktiivisia instrumentteja. (kuva: Canada Centre for Remote Sensing) Erotuskyky eli resoluutio Ilmoittaa sen alueen koon, jonka sisältä saadaan yksi havainto. Spatiaalinen resoluutio on siis yhden pikselin koko maastossa. Instrumenttien resoluutio vaihtelee paljon, useista kymmenistä kilometreistä yhteen metriin. Alueellinen erotuskyky Esimerkkejä instrumenttien alueellisista erotuskyvyistä vs. jenkkifutiskenttä Kanava (channel/band) Satelliitissa oleva instrumentti havaitsee usein maata usealla eri aallonpituusalueella. Näitä eri aallonpituusalueita kutsutaan kanaviksi. Kanavien lukumäärä ja aallonpituusalue vaihtelevat eri instrumenteissa, kanavia on usein 4 tai enemmän. Instrumentin eri kanavat (kuva: Canada Centre for Remote Sensing) 8

9 Kaukokartoitusmittausten esittäminen Mitataan kohteesta heijastuneen tai emittoituneen sähkömagneettisen säteilyn voimakkuutta Eri aallonpituusalueilla Mittauksen paikantaminen, ts. sidottu koordinaatistoon Lähestymistapoja: Kuva-avaruus (image space / domain) Spektriavaruus (spectral space / domain) Piirreavaruus (feature space / domain) Kuva: mittaukset järjestetään kaksiulotteiseksi hilaksi Matemaattisesti g = f(x,y) jossa x ja y ovat paikkakoordinaatit ja g mitattu säteilyn voimakkuus Kunkin aallonpituusalueen mittaukset muodostavat oman kuvansa Kutsutaan myös nimellä kanava (band / channel) Kuva-avaruus Kuva-avaruus Landsat ETM-kuvan kanavat Yhdistämällä eri kanavat värijärjestelmän avulla saadaan värikuvia Yleisesti käytetään RGB-järjestelmää Red, Green ja Blue ovat päävärejä joita yhdistämällä muut värit muodostuvat R: Ch3, G: Ch2, B: Ch1 Kanava 1 (B): µm Kanava 2 (G): µm Kanava 3 (R): µm Kanava 4 (NIR): µm Kanava 5 (NIR): µm Kanava 7 (MIR): µm Spektriavaruus Tarkastelun kohteena on sähkömagneettinen spektri, etenkin miten mitattu säteilyn määrä muuttuu aallonpituuden vaihtuessa R: Ch4, G: Ch3, B: Ch2 R: Ch7, G: Ch4, B: Ch3 Piirreavaruus Mittauksia, piirteitä, tarkastellaan kahden tai useamman kanavan muodostamassa avaruudessa Kohteiden tunnistaminen eli luokittelu tarkoittaa tämän avaruuden jakamista osiin siten että kullakin luokalla on oma alueensa Eri materiaaleilla erilainen spektri Spektrejä vertailemalla voidaan tehdä päätelmiä materiaaleista ja näiden ominaisuuksista 9

10 ESIMERKKEJÄ Vasen: Landsat ETM kanava 3 (R) Oikea: Kanavien 3 ja 4 muodostama piirreavaruus Vaaka-akseli: kanava 3 Pystyakseli: kanava 4 Väritetyt alueet: kuvalta löytyvät pikselikombinaatiot, punaisia eniten, magentaa vähiten Meteosat-8 sääsatelliitin kuvaamat näkyvän valon ja infrapuna-alueen kuvat Vasen: Landsat kanava 4 (NIR) Oikea: Kanavista 3 ja 4 tehty RGB-kuva R: Ch3, G: Ch4, B: Ch3 Globaali merien pintalämpötila Spot Vegetation Intia,

11 TIR: Meriveden pintalämpötila (SYKE) Lumikarttoja keväältä 2000 (SYKE) Huhtikuu 09 Huhtikuu 27 Toukokuu 01 Toukokuu NOAA-16 AVHRR yökuvia Kanavat 4 (11 µm) ja 5 (12 µm) Pinnassa olevat levälautat heinäkuu 2002 Terra MODIS (SYKE) IRS IRS WiFS: Channels: RED and NIR Spatial resolution: 188m Jään lähtö, Toukok Landsat MSS Satelliittikuva dokumentoi ympäristön tilan kuvaushetkellä Landsat MSS kuva, Inari, , kanavat 5, 7, 4 11

12 Landsat ETM-kuva: värikombinaatiot Landsat, Sortavala (MSS 76/83, TM 86, ETM 99) Tosivärikuva, väärävärikuva... ja infrapunakanavista tehty värikuva Esimerkki: Landsat TM Landsat-5 Thematic Mapper Etna, Italia, otettu Kanavat 321 ja 453 IRS LISS Etna, : pun SWIR, vih IR, sin RED Esimerkki: tulivuori SPOT 4 monikanavakuva, SWIR kanava mukana Popocatepetl, Mexico, otettu Kraaterin kuuma kohta näkyy vihreänä Esimerkki: Tulva SPOT 5 monikanavakuva, alueellinen erotuskyky 10 m Bands: R: XS3 (NIR), G: XS2 (Red), B: XS1 (Green) Ebro-joki, Espanja, otettu

13 Esim.: SPOT-kuva maastopaloista SPOT-kuva Portugal, otettu palaneet alueet mustia Vesi: Spot esimerkki Spot kuva Portugalista Vedet tumman sinisiä Rannassa näkyy pohjahiekka Hiekka kirkas Spot: Porvoo Spot 5 Pankromaattinen Porvoo, Esimerkki: lentokenttä Le Bourget Airport, otettu SPOT 5 monikanavakuva, alueellinen erotuskyky 2.5 m IRS Pan Frankfurtin lentokenttä, IRS Pan + Monikanava Amsterdam 13

14 Quickbird IKONOS Kerava Pankromaattinen, 1m Helsinki, Malmi, Quickbird Helsinki, Malmi, Esimerkki: SAR-interferometria Esimerkki: SAR + tulva ERS-2 tutkakuvat, otettu ja Havel-joki Saksassa tulvan alla olevat alueet sinisiä SAR-interferometria, yhdistelmä kahdesta ERS-tutkakuvasta Izmit, Turkki, otettu 12. ja R: interferometrinen koherenssi, G: kahden kuvan minimi-intensiteetti, B: kahden kuvan välinen intensiteettimuutos Vihreät alueet metsiä tai varjoja, siniset vettä, punaiset paljas kallio ja osa pelloista, keltaiset asutusta Esimerkki: SAR + öljypäästö ENVISAT ASAR, otettu Tankkeri Prestige uppoaa 14

15 Esimerkki: SAR-aikasarja La Rochelle, Ranska R: G: B: Peltojen muutos ajan kuluessa Esimerkki: visualisointi DEM + Landsat ETM-kuvasta tehty tulkinta Syyria, Eufrat-joki Sininen vastaa vettä, vihreä kasvillisuutta, keltainen vähäkasvillista peltoa ja muut värit enemmän tai vähemmän kasvittomia alueita Landsat MSS, Qasr-al-Hair, Syyria, Corona-kuva Landsat MSS, , ympäristö Landsat MSS

16 Landsat MSS, , ympäristö Landsat MSS Landsat MSS , ympäristö Landsat TM, Landsat TM , ympäristö Landsat ETM,

17 Landsat ETM, , ympäristö Esimerkki: AISA-spektrometri Datakuutio, esitys AISA-spektrometrin 17 kanavasta (Juho Lumme, TKK/Foto) Esimerkki: AISA-spektrometri AISA-kuvan tulkinnan periaate (Juho Lumme, TKK/Foto) Esimerkki: AISA-spektrometri Luokiteltu AISA-kuva ja kasvillisuusindeksikuva (Juho Lumme, TKK/Foto) Esimerkki: Laserkeilaus Mittausperiaate Esimerkki: Laserkeilaus Metsikkö Pisteistä muodostettu pintamalli ja puuston korkeusmalli Maanpinnan korkeusmalli ja metsikön 3-D malli 17

18 HUTSCAT: profiloiva sirontamittari TOPOGRAFINEN KARTOITUS Venäläinen TK-350 kuva ja stereoparista tehty topografinen kartta VIDEOKUVAUS Videokuvaus lentokoneesta kuvamosaiikki + pintamalli VIDEO- KUVAUS EnsoMOSAIC: forestconsulting/eng/ ensomosaic/ensomosaic. html VTT:n GLORE-projekti: 3D KAUPUNKIMALLIT Zürichin Teknillisen korkeakoulun CyberCity Modeler Rakennukset mallinnetaan ilmakuvilta Julkisivut maakuvilta Esimerkki Torontosta Rakennusten lisäksi myös kasvillisuus ja maanpinta mallinnettu ja teksturoitu 3D KAUPUNKIMALLIT 18

19 LASERPROFILOINTI (TKK/Foto) 19

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006

MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 MAA-57.1010 (4 OP) JOHDANTO VALOKUVAUKSEEN,FOTOGRAM- METRIAAN JA KAUKOKARTOITUKSEEN Kevät 2006 I. Mitä kuvasta voi nähdä? II. Henrik Haggrén Kuvan ottaminen/synty, mitä kuvista nähdään ja miksi Anita Laiho-Heikkinen:

Lisätiedot

YKJ ETRS (usein joutuu säätämään itse)

YKJ ETRS (usein joutuu säätämään itse) GPS-järjestelmästä ja kaukokartoituksesta Kertausta GPS-järjestelmästä GPS:n käyttämät koordinaatistot Sisäisesti GPS-järjestelmä käyttää WGS84-pallokoordinaatistoa Koordinaatit voidaan projisoida lennossa

Lisätiedot

TIETOPAKETTI KAUKOKARTOITUKSESTA 1

TIETOPAKETTI KAUKOKARTOITUKSESTA 1 TIETOPAKETTI KAUKOKARTOITUKSESTA Tähän tietopakettiin on kerätty perustietoa kaukokartoituksesta ja siitä miten satelliittikuvia hyödynnetään. Paketin pohjana on käytetty Kaukokartoituksen perusteet luentomonistetta

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI TEORIA Spektroskopia on erittäin yleisesti käytetty analyysimenetelmä laboratorioissa, koska se soveltuu

Lisätiedot

Mistä on kyse? Pilvien luokittelu satelliittikuvissa. Sisältö. Satelliittikartoitus. Rami Rautkorpi 25.1.2006. Satelliittikartoitus

Mistä on kyse? Pilvien luokittelu satelliittikuvissa. Sisältö. Satelliittikartoitus. Rami Rautkorpi 25.1.2006. Satelliittikartoitus Pilvien luokittelu satelliittikuvissa Mistä on kyse? Rami Rautkorpi 25.1.2006 25.1.2006 Pilvien luokittelu satelliittikuvissa 2 Sisältö Satelliittikartoitus Satelliittikartoitus Pilvien luokittelu Ensimmäinen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

BOREAALISEN METSÄN SITOMAN SÄTEILYN (FPAR) ARVIOIMINEN SATELLIITTIMITTAUKSISTA SATELLIITTIMITTAUSTEN PERUSTEITA METSÄTIETEEN PÄIVÄN TAKSAATTORIKLUBI

BOREAALISEN METSÄN SITOMAN SÄTEILYN (FPAR) ARVIOIMINEN SATELLIITTIMITTAUKSISTA SATELLIITTIMITTAUSTEN PERUSTEITA METSÄTIETEEN PÄIVÄN TAKSAATTORIKLUBI BOREAALISEN METSÄN SITOMAN SÄTEILYN (FPAR) ARVIOIMINEN SATELLIITTIMITTAUKSISTA METSÄTIETEEN PÄIVÄN TAKSAATTORIKLUBI Titta Majasalmi 1 *, Miina Rautiainen 1, Pauline Stenberg 1 and Terhikki Manninen 2 1

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta

Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta Sanna Kaasalainen Kaukokartoituksen ja Fotogrammetrian Osasto Ilmastonmuutos ja ääriarvot 13.9.2012 Ympäristön Aktiivinen

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian perusteet ja pedagogiikka. Kari Sormunen Kevät 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen.

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR)

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR) 86 Opettele jako: - Gammasäteet (Gamma rays) - Röntgensäteet (X-rays) - Ultravioletti (Ultraviolet) - Näkyvä (Visible) - Infrapuna-alue (Infrared) - Mikroaaltoalue (Microwave) - Radioaallot 87 Valo-opissa

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

Kehittyvien satelliittiaineistojen mahdollisuudet

Kehittyvien satelliittiaineistojen mahdollisuudet VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Kehittyvien satelliittiaineistojen mahdollisuudet Forest Big Data loppuseminaari, Heureka 8.3.2016 Tuomas Häme, Laura Sirro, Yrjö Rauste VTT VTT:n satelliittikuvatutkimusaiheet

Lisätiedot

ROMUMETALLIA OSTAMASSA (OSA 1)

ROMUMETALLIA OSTAMASSA (OSA 1) ROMUMETALLIA OSTAMASSA (OSA 1) Johdanto Kupari on metalli, jota käytetään esimerkiksi sähköjohtojen, tietokoneiden ja putkiston valmistamisessa. Korkean kysynnän vuoksi kupari on melko kallista. Kuparipitoisen

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila Optisessa hilassa on hyvin suuri määrä yhdensuuntaisia, toisistaan yhtä kaukana olevia

Lisätiedot

Paikkatietojärjestelmät

Paikkatietojärjestelmät Paikkatietojärjestelmät Engl. GIS, Geographical Information Systems. Paikkatieto on tietoa, johon liittyy maantieteellinen sijainti (koordinaatit). Paikkatieto esitetään taulukkona jossa on kunkin sijainnin

Lisätiedot

MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1)

MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1) MAIDON PROTEIININ MÄÄRÄN SELVITTÄMINEN (OSA 1) Johdanto Maito on tärkeä eläinproteiinin lähde monille ihmisille. Maidon laatu ja sen sisältämät proteiinit riippuvat useista tekijöistä ja esimerkiksi meijereiden

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän

Lisätiedot

Luento 1 Koko joukko kuvia! Moniulotteiset kuvat Maa Johdanto valokuvaukseen, fotogrammetriaan ja kaukokartoitukseen

Luento 1 Koko joukko kuvia! Moniulotteiset kuvat Maa Johdanto valokuvaukseen, fotogrammetriaan ja kaukokartoitukseen Luento 1 Koko joukko kuvia! Moniulotteiset kuvat. 1 Maa-57.1010 Johdanto valokuvaukseen, fotogrammetriaan ja kaukokartoitukseen (4op) Sisältyy maanmittausosaston geomatiikan koulutusohjelman O-moduuliin.

Lisätiedot

LIITE 2. ALTISTUMISRAJA-ARVOT OPTISELLE SÄTEILYLLE

LIITE 2. ALTISTUMISRAJA-ARVOT OPTISELLE SÄTEILYLLE MUISTIO 1137121 v. 1 1(17) 12.06.2017 2388/2017 LIITE 2. ALTISTUMISRAJA-ARVOT OPTISELLE SÄTEILYLLE 1. Epäkoherentti optinen säteily Biofysikaalisesti merkittävät optisen säteilyn altistumisraja-arvot määritellään

Lisätiedot

Pysytään piilossa häivetekniikan uudet mahdollisuudet. TkT Jouko Haapamaa PVTUTKL Asetekniikan osasto Häivetekniikan tutkimusala

Pysytään piilossa häivetekniikan uudet mahdollisuudet. TkT Jouko Haapamaa PVTUTKL Asetekniikan osasto Häivetekniikan tutkimusala Pysytään piilossa häivetekniikan uudet mahdollisuudet TkT Jouko Haapamaa PVTUTKL Asetekniikan osasto Häivetekniikan tutkimusala Häivetekniikka = herätteiden hallintatekniikka stealth technology signature

Lisätiedot

7.4 Fotometria CCD kameralla

7.4 Fotometria CCD kameralla 7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Valo ja muu sähkömagneettinen säteily

Valo ja muu sähkömagneettinen säteily Valo ja muu sähkömagneettinen säteily Valon luonne Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valoaallot eivät

Lisätiedot

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 6 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet Jan Biström TerraTec Oy TerraTec-ryhmä Emoyhtiö norjalainen TerraTec AS Liikevaihto 2015 noin 13 miljoonaa euroa ja noin 90 työntekijää

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Sateen mittaaminen Sademäärä ilmaistaan yksikössä [mm]=[kg m -2 ] Yleisesti käytetään sadeastiaa, johon kerääntynyt

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

Luento 10: Optinen 3-D mittaus ja laserkeilaus

Luento 10: Optinen 3-D mittaus ja laserkeilaus Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 19.10.2004) Luento 10: Optinen 3-D mittaus ja laserkeilaus AIHEITA Optinen 3-D digitointi Etäisyydenmittaus

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, yhteenveto

Havaitsevan tähtitieteen peruskurssi I, yhteenveto Havaitsevan tähtitieteen peruskurssi I, yhteenveto Luento 23.4.2009, T. Hackman & J. Näränen 1. Yleisesti tärkeätä Peruskäsitteet Mitä havaintomenetelmää kannatta käyttää? Minkälaista teleskooppia millekin

Lisätiedot

LED-valojen käyttö kasvitutkimuksessa

LED-valojen käyttö kasvitutkimuksessa LED-valojen käyttö kasvitutkimuksessa Minna Kivimäenpää, Jarmo Holopainen Itä-Suomen yliopisto, Ympäristötieteen laitos (Ympäristöekofysiologia), Kuopio Johanna Riikonen Metsäntutkimuslaitos (Taimitarhatutkimus),

Lisätiedot

MAA-C2001 Ympäristötiedon keruu

MAA-C2001 Ympäristötiedon keruu MAA-C2001 Ympäristötiedon keruu Luento 1b Petri Rönnholm, Aalto-yliopisto 1 Laserkeilauksen, fotogrammetrian ja kaukokartoituksen harjoituksista Laserkeilausharjoitus Tarkempi aikataulu julkaistaan lähiaikoina

Lisätiedot

Spektroskooppiset menetelmät kiviaineksen laadun tutkimisessa. Lasse Kangas Aalto-yliopisto Yhdyskunta- ja ympäristötekniikka

Spektroskooppiset menetelmät kiviaineksen laadun tutkimisessa. Lasse Kangas Aalto-yliopisto Yhdyskunta- ja ympäristötekniikka Spektroskooppiset menetelmät kiviaineksen laadun tutkimisessa Lasse Kangas Aalto-yliopisto Yhdyskunta- ja ympäristötekniikka Kalliokiviaineksen tunnistaminen ja luokittelu Nykymenetelmät Hitaita (päiviä,

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014

VALAISTUSTA VALOSTA. Fysiikan ja kemian pedagogiikan perusteet. Kari Sormunen Syksy 2014 VALAISTUSTA VALOSTA Fysiikan ja kemian pedagogiikan perusteet Kari Sormunen Syksy 2014 OPPILAIDEN KÄSITYKSIÄ VALOSTA Oppilaat kuvittelevat, että valo etenee katsojan silmästä katsottavaan kohteeseen. Todellisuudessa

Lisätiedot

LÄMPÖSÄTEILY. 1. Työn tarkoitus. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2

LÄMPÖSÄTEILY. 1. Työn tarkoitus. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 LÄMPÖSÄTEILY 1. Työn tarkoitus Kun panet kätesi lämpöpatterille, käteen tulee lämpöä johtumalla patterin seinämän läpi. Mikäli pidät

Lisätiedot

Luento 1: Fotogrammetria? Opintojakson sisältö ja tavoitteet.

Luento 1: Fotogrammetria? Opintojakson sisältö ja tavoitteet. Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.1.2003) (Päivitys: Katri Koistinen, 3.2.2004) Luento 1: Fotogrammetria? Opintojakson

Lisätiedot

Korkean suorituskyvyn lämpökameran käyttö tulipesämittauksissa. VI Liekkipäivä, Lappeenranta 26.1.2012 Sami Siikanen, VTT

Korkean suorituskyvyn lämpökameran käyttö tulipesämittauksissa. VI Liekkipäivä, Lappeenranta 26.1.2012 Sami Siikanen, VTT Korkean suorituskyvyn lämpökameran käyttö tulipesämittauksissa VI Liekkipäivä, Lappeenranta 26.1.2012 Sami Siikanen, VTT 2 OPTICAL MEASUREMENT TECHNOLOGIES TEAM Kuopio, Technopolis Key research area: Development

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 8 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittausprojekti Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

Kaukokartoituksen peruskäsitteet ja vesialueiden tilan tutkiminen

Kaukokartoituksen peruskäsitteet ja vesialueiden tilan tutkiminen Geologian tutkimuskeskus Kaukokartoituksen peruskäsitteet ja vesialueiden tilan tutkiminen Miia Eskelinen T&K, Kaukokartoituslaboratorio V1 GTK/RS/2001/1 Sisällys: 1. Johdanto 1 2. Tausta ja käsitteet

Lisätiedot

www.terrasolid.com Kaupunkimallit

www.terrasolid.com Kaupunkimallit www.terrasolid.com Kaupunkimallit Arttu Soininen 03.12.2015 Vuonna 1993 Isoja askeleita 1993-2015 Laserkeilaus helikopterilla/lentokoneella Laserkeilaus paikaltaan GPS+IMU yleistynyt kaikkeen ilmasta mittaukseen

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Kertausta 1. luennolta. Kertausta 1. luennolta mitä kaukokartoitus vaatii? 2. luennon aiheet. Instrumenttien kuvausalustat

Kertausta 1. luennolta. Kertausta 1. luennolta mitä kaukokartoitus vaatii? 2. luennon aiheet. Instrumenttien kuvausalustat Kertausta 1. luennolta mitä kaukokartoitus vaatii? Kertausta 1. luennolta Auringon säteily ja ilmakehä A. Säteilylähde B. Ilmakehä (väliaine) C. Energian törmääminen kohteeseen D. Instrumentti havaitsemaan

Lisätiedot

Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen.

Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen. Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen. -pienentää maanpinnalle (ja siitä valuntaan joutuvaa) saapuvaa sademäärää -riippuu latvuston kokonaispinta-alasta

Lisätiedot

LIITE I. Epäkoherentti optinen säteily. λ (H eff on merkityksellinen vain välillä 180 400 nm) (L B on merkityksellinen vain välillä 300 700 nm)

LIITE I. Epäkoherentti optinen säteily. λ (H eff on merkityksellinen vain välillä 180 400 nm) (L B on merkityksellinen vain välillä 300 700 nm) N:o 146 707 LIITE I Epäkoherentti optinen säteily Biofysikaalisesti merkittävät optisen säteilyn altistumisarvot voidaan määrittää alla esitettyjen kaavojen avulla. Tietyn kaavan käyttö riippuu kulloisestakin

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Spektroskopia. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Spektroskopia Helsingin yliopisto, Fysiikan laitos kevät 2013 8. Spektroskopia Peruskäsitteet Spektroskoopin rakenne Spektrometrian käyttö Havainnot ja redusointi Spektropolarimetria 8. Yleistä spektroskopiasta

Lisätiedot

Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa

Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa Satu Kuukankorpi, Markku Pentikäinen ja Harri Toivonen STUK - Säteilyturvakeskus Testbed workshop, 6.4.2006, Ilmatieteen

Lisätiedot

Metsien kaukokartoitus ja avoimet aineistot

Metsien kaukokartoitus ja avoimet aineistot Geoinformatiikan valtakunnallinen tutkimuspäivä 2013 Metsien kaukokartoitus ja avoimet aineistot Sakari Tuominen, MMT METLA Valtakunnan metsien inventointi Metsäntutkimuslaitos Skogsforskningsinstitutet

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA Juha Lehtonen 20.3.2002 Joensuun yliopisto Tietojenkäsittelytiede Kandidaatintutkielma ESIPUHE Olen kirjoittanut tämän kandidaatintutkielman Joensuun yliopistossa

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Ympäristötalon seminaari Outi Kesäniemi

Ympäristötalon seminaari Outi Kesäniemi Vettä läpäisemätön pinta Seudullisessa maanpeiteaineistossa Ympäristötalon seminaari 24.11.2014 Outi Kesäniemi Sisältö 1) Seudullinen maanpeiteaineisto 1) Taustaa 2) Aineiston tuottaminen 2) Longinojan

Lisätiedot

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sonifikaatio Menetelmä Sovelluksia Mahdollisuuksia Ongelmia Sonifikaatiosovellus: NIR-spektroskopia kariesmittauksissa

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz

Lisätiedot

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot

Jani Heikkilä, Myyntijohtaja, Bitcomp Oy. Kantoon -sovellus ja muut metsänomistajan palvelut

Jani Heikkilä, Myyntijohtaja, Bitcomp Oy. Kantoon -sovellus ja muut metsänomistajan palvelut Jani Heikkilä, Myyntijohtaja, Bitcomp Oy Kantoon -sovellus ja muut metsänomistajan palvelut Missio: Tietojärjestelmämme tuottavat asiakkaillemme aitoa arvoa ja rahassa mitattavia hyötyjä. Bitcomp Oy osaamista

Lisätiedot

4 VALO. nettiin ja Euklides (325-265) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista

4 VALO. nettiin ja Euklides (325-265) postuloi, että näkösäteet ovat suoria viivoja ja esineiden näennäinen koko riippuu säteiden muodostamista 65 4 VALO Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valon luonne on kaksijakoinen: 1. Klassillisessa optiikassa valoa käsitellään sähkömagneettisena aaltona.

Lisätiedot

Gimp alkeet XIII 9 luokan ATK-työt/HaJa Sivu 1 / 8. Tasot ja kanavat. Jynkänlahden koulu. Yleistä

Gimp alkeet XIII 9 luokan ATK-työt/HaJa Sivu 1 / 8. Tasot ja kanavat. Jynkänlahden koulu. Yleistä Gimp alkeet XIII 9 luokan ATK-työt/HaJa Sivu 1 / 8 Tasot ja kanavat Yleistä Tasot eli layerit ovat tärkeä osa nykyajan kuvankäsittelyä. Tasojen perusidea on se, että ne ovat läpinäkyviä "kalvoja", joita

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 11. Muut aaltoalueet 1. 2. 3. 4. 5. 6. Gamma Röntgen Ultravioletti Lähiinfrapuna Infrapuna

Lisätiedot

Polaarisatelliittidataan perustuva lumentunnistusalgoritmi (valmiin työn esittely)

Polaarisatelliittidataan perustuva lumentunnistusalgoritmi (valmiin työn esittely) Polaarisatelliittidataan perustuva lumentunnistusalgoritmi (valmiin työn esittely) 24.01.2011 Ohjaaja: Niilo Siljamo, Ilmatieteen Laitos Valvoja: Harri Ehtamo Esityksen sisältö Termejä Tausta Menetelmät

Lisätiedot

RADIOMETRIAN PERUSTEET

RADIOMETRIAN PERUSTEET .1.003 RADIOMETRIAN PERUSTEET Kari Jokela Kalvo 1 OPTINEN RADIOMETRIA Käsittelee optisen säteilyenergian emittoitumista etenemistä väliaineessa siirtymistä optisen laitteen sisällä ilmaisua sähköiseksi

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

Johdatus paikkatietoon

Johdatus paikkatietoon Johdatus paikkatietoon - Paikkatieto tutuksi - PAIKKATIETOPAJA hanke 9.5.2007 Paikkatiedon määritelmiä Paikannettua kohdetta tai ilmiötä kuvaava sijaintitiedon ja ominaisuustiedon looginen kokonaisuus

Lisätiedot

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden

+ 0, (29.20) 32 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) i c+ ε 0 dφ E / dt ja silmukan kohdalla vaikuttavan magneettivuon tiheyden 5 3 SÄHKÖMAGNEETTISET AALLOT (Electromagnetic Waves) Mitä valo on? Tämä kysymys on askarruttanut ihmisiä vuosisatojen ajan. Nykykäsityksen mukaan valo on luonteeltaan kaksijakoinen eli dualistinen. Valoa

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

Limsan sokeripitoisuus

Limsan sokeripitoisuus KOHDERYHMÄ: Työn kohderyhmänä ovat lukiolaiset ja työ sopii tehtäväksi esimerkiksi työkurssilla tai kurssilla KE1. KESTO: N. 45 60 min. Työn kesto riippuu ryhmän koosta. MOTIVAATIO: Sinun tehtäväsi on

Lisätiedot

UVB-säteilyn käyttäytymisestä

UVB-säteilyn käyttäytymisestä UVB-säteilyn käyttäytymisestä 2013 Sammakkolampi.net / J. Gustafsson Seuraavassa esityksessä esitetään mittaustuloksia UVB-säteilyn käyttäytymisestä erilaisissa tilanteissa muutamalla matelijakäyttöön

Lisätiedot

e) levyssä olevan pienen reiän läpi pääsevä valovirta, kun reiän halkaisija on 5 cm.

e) levyssä olevan pienen reiän läpi pääsevä valovirta, kun reiän halkaisija on 5 cm. 98 kotitehtävä ------------------------------------------------Esimerkki: Isotrooppinen 100 :n lamppu on 2.0 m:n korkeudella lattiasta (ks. edelliset esimerkit). Sen säteilyintensiteetti on I e = 8.0 sr

Lisätiedot

Lääketieteellinen kuvantaminen. Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen

Lääketieteellinen kuvantaminen. Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen Lääketieteellinen kuvantaminen Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen 1 Muista ainakin nämä Kuinka energia viedään kuvauskohteeseen? Aiheuttaako menetelmä kudostuhoa? Kuvataanko anatomiaa

Lisätiedot

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

Fysikaalisten tieteiden esittely puolijohdesuperhiloista Fysikaalisten tieteiden esittely puolijohdesuperhiloista "Perhaps a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing the same thing."

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

Ilmaisia ohjelmia laserkeilausaineistojen käsittelyyn. Laserkeilaus- ja korkeusmalliseminaari 8.10.2010 Jakob Ventin, Aalto-yliopisto

Ilmaisia ohjelmia laserkeilausaineistojen käsittelyyn. Laserkeilaus- ja korkeusmalliseminaari 8.10.2010 Jakob Ventin, Aalto-yliopisto Ilmaisia ohjelmia laserkeilausaineistojen käsittelyyn Laserkeilaus- ja korkeusmalliseminaari 8.10.2010, Aalto-yliopisto Johdanto Aalto-yliopiston maanmittausosastolla tehdyn kesätyön tuloksia Tehtävä oli

Lisätiedot

e =tyhjiön permittiivisyys

e =tyhjiön permittiivisyys 75 4.3 ENERGIA JA LIIKEMÄÄRÄ On tuttu tosiasia, että sähkömagneettinen aalto kuljettaa mukanaan energiaa. Esimerkiksi auringon säteet lämmittävät ihoa. Liikkuvaan energiaan liittyy aina myös liikemäärä.

Lisätiedot

LAS- ja ilmakuva-aineistojen käsittely ArcGIS:ssä

LAS- ja ilmakuva-aineistojen käsittely ArcGIS:ssä Esri Finland LAS- ja ilmakuva-aineistojen käsittely ArcGIS:ssä November 2012 Janne Saarikko Agenda Lidar-aineistot ja ArcGIS 10.1 - Miten LAS-aineistoa voidaan hyödyntää? - Aineistojen hallinta LAS Dataset

Lisätiedot

MARV Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä. Ruuduille lasketut puustotunnukset:

MARV Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä. Ruuduille lasketut puustotunnukset: MARV1-11 Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä Metsikkökoealojen puuston mittaukseen käytetty menetelmä, jossa puut etsitään laseraineistosta/ilmakuvilta ja mitataan

Lisätiedot

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen!

The acquisition of science competencies using ICT real time experiments COMBLAB. Kasvihuoneongelma. Valon ja aineen vuorovaikutus. Liian tavallinen! Kasvihuoneongelma Valon ja aineen vuorovaikutus Herra Brown päätti rakentaa puutarhaansa uuden kasvihuoneen. Liian tavallinen! Hänen vaimonsa oli innostunut ideasta. Hän halusi uuden kasvihuoneen olevan

Lisätiedot

Avointa energiapaikkatietoa Decumanus-hankkeesta. Outi Kesäniemi HSY Seutu- ja ympäristötieto

Avointa energiapaikkatietoa Decumanus-hankkeesta. Outi Kesäniemi HSY Seutu- ja ympäristötieto Avointa energiapaikkatietoa Decumanus-hankkeesta Outi Kesäniemi HSY Seutu- ja ympäristötieto 1.10.2015 Tiedon avaaminen HSY:ssä HSY:ssä käynnissä avoimen datan projekti, jossa luodaan käytännöt datan avaamiselle

Lisätiedot