Pentti Harju. Ilmastointitekniikan oppikirja 1

Koko: px
Aloita esitys sivulta:

Download "Pentti Harju. Ilmastointitekniikan oppikirja 1"

Transkriptio

1 Pentti Harju Ilmastointitekniikan oppikirja 1

2 Ulkoilma, raaka-aineemme Ilmasto, ilmanvaihdon lähtötilanne Olemme monessa asiassa saattaneet havaita, kuinka kaikki vaikuttaa kaikkeen. Ilmastointitekniikan alussa opiskelemme laajemmin myös ilmastoamme, sen erilaisia käsitteitä ja sitä kautta ilmaston vaikutusta sisäilman käsittelyn tarpeisiin ilmanvaihdon yhteydessä. Ilmanvaihdon avulla tuotamme halutunlaatuisen sisäilman tai sisäilmaston. Selvittelemme yleisiä käsitteitä kuten ilmasto, ilman saasteet ja ilmaston muutosten syitä. Koska ulkoilma on lähtötuote, jota jalostetaan joiltakin osin jopa lähtötilannetta paremmaksi, on laajemmasta tietomäärästä apua kokonaisuuden hahmotuksessa. Koska suurimman osan ajasta kuitenkin asumme sisällä, on sisäilman laatu viihtyvyydelle ja terveydelle erittäin tärkeä. Ympärillämme olevia sääilmiöitä ovat esim. tuuli sekä veden kiertokulku ilmakehässä eri olomuodoissaan. Vettä on ilmakehässä näkymättömässä muodossa (vesihöyry), tiivistettynä (pilvet ja sadepisarat ) sekä kiinteässä muodossa (jää- ja lumikiteet). Vesihöyry sataa maahan tiivistyttyään kylmässä ilmassa kyllin suuriksi ja painaviksi pisaroiksi. 1. Mitä ilmasto on Jonkin alueen ilmastolla ymmärretään yleensä alueelle tyypillistä pitkäkestoista säätä. Meillä Suomessa tyypillinen pitkäaikainen ilmastokäyttäytyminen on esim. talvi, jolloin yleensä on lunta ja pakkasta. Afrikassa joissakin osissa tyypillisiä käyttäytymisiä ovat pitkä kuivuus ja rajut sadekaudet. Ilmastoa kuvataan erilaisilla tunnusluvuilla kuten sadannan, lämpötilan ja muiden säämuuttujien arvoilla. Säämuuttujat eivät riipu pelkästään ilmakehästä ja sen toiminnoista, vaan myös esim. maan alla olevasta vedestä tai sen puutteesta. Ilmastojärjestelmää on tarkasteltava kokonaisuutena, jolloin siihen sisällytetään ilmakehä, meret, järvet ja joet (hydrosfääri), maa-alueet (biosfääri) sekä lumi ja jää (kryosfääri). Tämän kokonaisuuden paremman ymmärtämisen avulla säämuutoksia voidaan ennustaa tarkemmin ja pitemmällä aikavälillä. Nykyisin sään ennustaminen pohjaa monesta mittauspisteestä saatujen säätulosten avulla tehtyyn supertietokoneanimaatioon. Tosin suunnattomasta muuttujamäärästä johtuva tulosten epätarkkuus puoltaa vielä nimitystä sääennustus. 1.1 Ilmakehä on nykyisessä muodossaan ja koostumuksessaan elämän perusedellytys maapallon hengittäville olennoille. Ilmassa on eniten typpeä, sitten happea ja hieman muita kaasuja. Maanpinnan pöly sekä merien suola tuottavat ilmakehään kiinteitä hiukkasia l. aerosoleja. Ilmakehä muodostuu maapalloa ohuena kerroksena ympäröivistä em. kaasuista, eikä sillä ole selvää ylärajaa. Ylöspäin mentäessä ilman tiheys vähenee nopeasti ja 100 km korkeudessa vallitsee jo lähes täydellinen tyhjiö. Mount Everest on maapallon korkein vuori (8850 m) ja jo tässä korkeudessa ilmakehä on ihmiselle liian ohutta. Ilman tiheys on vain noin 1/3 merenpinnan tason ilman tiheydestä. Vain harvat henkilöt voivat käydä kyseisissä korkeuksissa ilman happilaitteita. Pitempiaikainen hapenpuute tuhoaa aivot.

3 Sisäilma, lopputuote Ihminen tarvitsee elääkseen päivittäin n. 3 litraa vettä, yhden litran ruokaa ja litraa ilmaa. Ruuan ja juoman käyttäjä valitsee oman mieltymyksensä mukaan, terveellisenä tai epäterveellisenä. Hengitettävään ilmaan ja sen laatuun ei kuitenkaan voida paljonkaan vaikuttaa. Hengitettävä ilma on ympäröivää ilmaa, päivän tarjous. Tutkimusten mukaan työssäkäyvä suomalainen viettää keskimäärin 21 tuntia vuorokaudessa sisällä. Tästä ajasta noin 16 tuntia vietetään kotona. Sisäilman laadulla on terveyteemme ja hyvinvointiimme ratkaiseva merkitys. Vain erittäin pieni osa (alle 5 %) altistuksesta tulee ulkoilmasta. Toisaalta ulkoilman epäpuhtaudet kulkeutuvat osittain myös sisäilmaan ilmanvaihdon ja rakennuksen vaipan vuotojen kautta. Näin siis osa sisäilman altistumisesta on peräisin myös ulkoilmasta. Sivun teksti ja kuvat: Miimu Airaksinen Astma ja allergiatapaukset ovat kaksinkertaistuneet viimeisen 15 vuoden aikana. Epidemiologisissa tutkimuksissa on havaittu selkeä yhteys rakennuksien mikrobikasvun ja ihmisten terveysoireilujen välillä. Ulkoilma on yleensä niin puhdasta, että siitä on tarpeen suodattaa vain hiukkaset. Keväisin siitepöly on varsin merkittävä epäpuhtauslähde. Suodattimet olisikin hyvä vaihtaa puhtaisiin siitepölykauden jälkeen. Kaupungissa likaisin ilma on katutason lähellä, epäpuhtauspitoisuus pienenee ylöspäin mentäessä. Asuinrakennuksen sisäilman epäpuhtaudet ovat peräisin ulkoilmasta, rakenteista, kalusteista ja ihmisestä itsestään. Asiaa tarkentaen ne ovat peräisin epäpuhtauksista (tupakansavu, kaasut), inerttejä hiukkasia (pöly, kuidut) ja eläviä epäpuhtauksia (mikrobit, virukset, bakteerit). Maaperästä tuleva radon samoin kuin ryömintätilan asianmukainen toiminta on otettava huomioon suunnittelussa, jottei niistä tule sisäilman epäpuhtauslähteitä. Mikäli rakenneratkaisut ovat asianmukaisia ja kosteusteknisesti toimivia, on itse rakenteiden sisältä tuleva epäpuhtauskuorma varsin pieni.

4 Sisäilma, lopputuote 2.5. Sisäilman kosteus vaikuttaa ihmiseen, vaikka meillä ei olekaan kosteutta tuntevaa aistia. Iholla, limakalvoilla ja hengityselimillä aistimme alhaiset ja korkeat suhteellisen kosteuden arvot epämääräisinä tuntemuksina. Asuinhuoneen % suhteellinen kosteus on yleensä sopiva. Pitkäaikainen huoneilman suhteellinen kosteus ei saisi ylittää arvoa 60 %. Sisäilman kosteus vaikuttaa myös hikoiluun sekä hengitykseen. Liian kuiva tai kostea ilma aiheuttaa myös terveydellisiä oireita. Rakennuksen kosteusongelmia. Jos suihkun aikana peilin pinta huurtuu, kostuu, voidaan asiaa auttaa esim. lyhyellä tehostetulla ivpoistolla. Nelihenkinen perhe tuottaa kosteutta huoneilmaan noin l/vrk. Kosteutta, vesihöyryä, tulee huoneilmaan ruuanlaitosta, tiskauksesta, pyykinpesusta, saunomisesta ja ihmisistä. Ilman kostutus sitoo paljon energiaa ja siihen liittyy myös kosteusvaurioiden vaara ja mahdolliset homeongelmat. Puhdistamaton kostutin voi myös levittää ilmaan terveydelle haitallisia mikrobeja. Kostutuksen pitäisikin tapahtua höyrystävän kostuttimen avulla vettä kuumentamalla. Näin torjutaan mahdollisten mikrobien leviämistä. Kostutettua huoneilmaa tarvitaan esim. kirjapainoissa, atk-laitetiloissa, tekstiiliteollisuudessa ja joissakin sairaaloiden tiloissa. Alla on paikallinen kostutus Keittiön liesituulettimen avulla vähennetään ruoanlaitosta huoneilmaan leviävää kosteutta. Kesällä pyykki kannattaa kuivattaa ulkona. Pyykin koneellisessa kuivatuksessa kosteuden tiivistävä kuivausilmarumpu on parempi kuin kuivausilman suoraan huoneeseen johtava malli. Liiallinen ilman kosteus edistää pölypunkkien kasvua ja tiivistää kosteuden rakenteisiin lisäten mikrobikasvuston riskiä.

5 Sisäilma, lopputuote Korkea radonpitoisuus on eräs Suomen asuntojen sisäilmaongelma. Pitkä lämmityskausi, maanvaraisen laatan käyttö, radonpitoiset alueet sekä ilmaa hyvin läpäisevä rakennusmaa edistävät maaperän radonin pääsyä huoneilmaan. Tuuletettu alapohja ns. rossipohja korjaisi tilanteen lähes täysin. Radon on radioaktiivinen hajuton ja mauton jalokaasu, jota syntyy radiumin hajoamistuotteena. Radiumia on maaperässä ja kaikessa kiviaineksessa, erityisesti Suomen graniitissa ja moreenissa. Radonin puoliintumisaika on 1622 vuotta ja sen hajoamistuotteet kulkeutuvat hengitysilman mukana keuhkoihin. Radon ei aiheuta mitään oireita, mutta keuhkojen saama säteilyannos lisää keuhkosyöpäriskiä. Tupakointi ja radon lisäävät keuhkosyöpäriskiä. Suomessa kuolee vuosittain ennenaikaisesti passiivisen tupakoinnin seurauksena noin 700 henkilöä. Bq = radioaktiivisen säteilyn annosnopeuden yksikkö. Radonpitoisuus (Bq/m³): S1 <100, S2 <100 ja S3 <100. Sisäilmaluokitus Radon-lähteitä ja poistoa 1. täytemaasta tuleva radon 2. kallioperästä tuleva radon 3. porakaivon radonpitoinen vesihöyry 4. rakennusmateriaaleista tuleva radon 5. maanvaraisten rakenteiden tiivistys 6. alapohjan alipaineistus radonputkistolla 7. radonkaasun poisto ulos 8. säädetty koneellinen ilmanvaihto 9. radontiivistysbitumihuopa Sosiaali- ja terveysministeriön päätöksen (994/92) mukaan asunnon huoneilman radonpitoisuuden vuosikeskiarvo ei saisi ylittää arvoa 400 becquereliä kuutiometrissä (Bq/m³). Suomessa on kuitenkin yli asuntoa, (3 % kaikista asunnoista) joiden radonpitoisuus sisäilmassa on yli 400 Bq/m³. Säteilyturvakeskus antaa myös ohjeita mittauslaitteista ja -menetelmistä. Radon tulee huoneeseen maaperästä sisätiloihin kulkeutuvan ilman mukana, rakennusmateriaaleista ja porakaivovedestä. Radonin vaaraa poistetaan siten, että vältetään rakentamista radiumpitoiselle maaperälle. Maanvastaiset rakenteet tehdään ilmatiiveiksi esim. asentamalla sokkelin yläpintaan bitumihuopa. Maanvaraisen alapohjan alapuoli alipaineistetaan maaputkiston ja puhaltimen avulla. Rakennukseen asennetaan myös tasapainotettu koneellinen ilmanvaihto. Ilmanvaihto ei saa olla painesuhteiltaan sellainen, että huonetila on allaolevaan maahan nähden huomattavan alipaineinen. Tällöin radonkaasu kulkeutuu sisälle huoneeseen. Radonaltistus on suurimmillaan rakennuksen alimmassa kerroksessa. Radonin on arvioitu aiheuttavan Suomessa noin keuhkosyöpätapausta vuosittain.

6 Sisäilma, lopputuote Höyrykostutus Kuva 4 Kun ilmaa kostutetaan puhaltamalla siihen höyryä, voidaan osoittaa, että prosessin suunta on kaavan 18 mukaisesti Δh/Δx = h h = l ho + c ph t h ( 18 ) Kun kostutukseen käytetään 100 C kylläistä höyryä saadaan prosessin suunnaksi kuvassa olevan suoran suunta. Δh/Δx = 2501 kj/kg + 1,85 kj /kg C 100 C = 2686 kj/kg Prosessin suunta on lievästi oikealle nouseva. Kylläisellä höyryllä kostutettaessa ei prosessin suunta poikkea paljoakaan kuivalämpötilasuorien suunnasta eli ilman lämpötila kohoaa vain hieman. Tämän päivän ilmastointilaitoksissa on höyrykostutus yleisin kostutusmenetelmä, koska vesikostutuksen kohdalla on pelättävissä, erilaisten hygienia - ja terveyshaittojen syntymistä huoneilmaan. Höyrykostuttimen vaatima energia tuodaan sähköllä ja kostuttimen liitostehot ovat helposti kymmeniä kilowatteja. Höyrykostuttimelle tarvittavan höyryvirran ja samalla kostuttimen lisävesimäärän voi laskea kaavasta 19. q mh = q mi Δx = ρ i q vi ( x B - x A ) ( 19 ) Kuivassa jäähdytyprosessissa (kuva 5) jäähdytettävästä ilmasta ei tiivisty vettä jäähdyttäjän pinnalle. Tällaisia prosesseja ovat esim. ilman jäähdyttäminen huonetilassa viileän tuloilman avulla, ilman jäähdyttäminen jäähdytyspalkeissa sekä ilman jäähdyttäminen puhallinkonvektorissa, kun halutaan toteuttaa puhallinkonvektorijärjestelmä ilman kondenssivesiviemäröintiä. Edellytyksenä kuivalle jäähdyttämiselle on se, että jäähdyttävän elementin pintalämpötila on jäähdytettävän ilman kastepistelämpötilaa t kp korkeampi. Prosessi on muuten sama kuin lämmitysprosessi, mutta suunnaltaan vastakkainen, eli h, x - diagrammissa pystysuoraan alaspäin vakiokosteussuorien suuntaisesti. Jäähdytyksessä tarvittava lämpöteho saadaan kaavasta 20. Φ = q mi Δh = ρ i q vi ( h A - h B ) ( 20 ) ρ i = ilman tiheys pisteessä, jossa ilmavirta on ilmoitettu q vi = ilman tilavuusvirta ( yleensä annettu pisteessä A ) Tai vastaavasti kuin lämmityspatterissa ( vain kuiva jäähdytys ) Φ = q mi c pi. Δt = ρ i q vi c pi ( t A - t B ) Märkä jäähdytys Kuva 6 Jos patterin pintalämpötila on jäähdytettävän ilman kastepistelämpötilaa alhaisempi, ilmasta tiivistyy vettä patterin pinnalle ja ilman kosteussisältö pienenee eli ilma kuivuu, haluttiin sitä tai ei. Prosessi suuntautuu kohti pistettä C. Piste on jäähdytyspatterin keskimääräistä pintalämpötilaa vastaava piste kyllästyskäyrällä. Kuvan mukainen prosessi esittää vain tapahtuman lopputulosta eikä niinkään itse prosessia. Suorahöyrystyspatterissa pintalämpötila muuttuu höyrystimen painehäviön aiheuttaman höyrystyslämpötilan muuttumisen sekä ilman lämpötilan muuttumisen johdosta. Kylmävesipatterissa muuttuu ilman lämpötila ja veden lämpötila ja samalla patterin pintalämpötila niiden mukana. Käytännön tapauksissa keskimääräinen patterin pintalämpötila on suorahöyrystyspatterissa noin 3 5 C korkeampi kuin höyrystymislämpötila höyrystimen lopussa ja vesipattereissa C korkeampi kuin sisäänmenevän ja ulostulevan jäähdytysveden lämpötilojen keskiarvo. Suunnitteluvaiheessa ei useimmiten ole vielä tarkempaa tietoa patterin mallista ja tyypistä, joten tässä esitetty mitoitusperiaate on riittävän tarkka. Mikäli patterin tiedot ovat olemassa, on pintalämpötila mahdollista määritellä tarkemmin. Märän jäähdytyksen tehontarve on laskettava aina kaavan 22 mukaisesti. Missään tapauksessa ei saa käyttää kuivan jäähdytyksen laskentakaavaa 21, joka ei huomioi veden tiivistymisen vaatimaa energiaa! Φ = q mi Δh = ρ i q vi ( h A - h B ) (22) Jäähdytyspatterin ohituskerroin OK, löytyy kohdasta 4.5

7 Ääni ja sen vaimennus 3.7. Meluntorjunta voidaan jakaa esim. kolmeen osa-alueeseen. Yleinen meluntorjunta sisältää esim. työpaikkamelun torjumisen. Ympäristömeluntorjunnassa keskitytään liikenteen, teollisuusmelun ja rakennustoiminnan aiheuttaman melun torjuntaan. LVI-äänitekniikassa keskitytään kiinteistön omien laitteiden melun torjuntaan. Laitteet tuottavat melua sekä rakennuksen sisäpuolelle että ympäristöön. Ääni-imissiolla tarkoitetaan kohteessa vallitsevaa ääntä, yleensä sen äänenpainetasoa. Se on ilman saastepitoisuuteen verrattava käsite, tavallaan melusaaste. Ääneneristyksellä ja meluntorjunnalla estetään melun leviäminen ympäristöön. Ne ovat rakenteita ja toimenpiteitä. Ääneneristys on ilmaäänen läpäisevyyden pienentämistä. Rajoittavina rakennusosina käytetään seiniä, välipohjia ja ikkunoita. Jos rakenteissa on ilman mentäviä aukkoja, siinä on silloin samalla äänen mentäviä aukkoja. Paras tapa ääneneristämiseen on eristää ääni syntypaikassaan. Äänenvaimennuksella eli äänenabsorptiolla äänienergia muutetaan lämpöenergiaksi absorptiomateriaalin (ääneneristevilla) kitkan avulla. Pinnan absorptiokerroin l. absorptiosuhde on pintaan kohdistuneen ja pinnasta palaamatta jääneen äänitehon suhde. Kuva mukailtu Olli Seppäsen kuvasta Ääneneristävyydellä tarkoitetaan äänen tehotason alenemista sen kulkiessa eristävän rakenteen esim. seinän läpi. Ääni etenee runkoäänenä ja ilmaäänenä. Akustiikka tutkii ääni-ilmiöitä. Ääni voidaan jakaa hyötyääniin ja haittaääniin. Hyötyääni on esim. puhe, haittaääni on eri lähteistä tuleva melu. Akustisella eristämisellä edistetään hyötyäänen kuuluvuutta sekä vaimennetaan haittaääniä. Ilmanvaihtolaitoksessa melua tuottaa piennopeusjärjestelmissä yleensä eniten puhallin. Melua tuottavat myös ilman virtaus kanavissa, säätölaitteissa sekä tuloja poistoilmaelimissä. Myöskin laitteiden mekaaninen värähtely aiheuttaa melua. Ilmastointikoneessa syntyvä melu siirtyy huoneeseen ilmaäänenä, runkoäänenä ja kanavaäänenä. Muita melun tuottajia ovat sekoituslaatikot, suutinkonvektorit, pumput, kompressorit, säätöpellit ja jäähdytystornit. Puhaltimissa melua syntyy sekä mekaanisena äänenä että ilmavirtauksesta muodostuvana äänenä. Mekaanista ääntä aiheuttavat laakerit, hihnat, levyosien värähtelyt ja sähkömoottori. Puhaltimessa syntyvä melu siirtyy kanavia pitkin ilmastoitavaan tilaan ja puhaltimen vaipan läpi sitä ympäröivään tilaan. Puhallinvalmistajat ilmoittavat puhaltimen ominaiskäyrissä eri toimintapisteitä vastaavia meluarvoja. Aerodynaaminen melu syntyy silloin, kun ilmavirtaus irtoaa siiven pinnasta ja muodostuu turbulenttista virtausta. Lisäksi melua aiheuttaa siipipyörän epätasapaino esim. likaantuessaan ja värähtelevät levypinnat. Keskipakoispuhaltimien melu on matalataajuisempaa kuin aksiaalipuhaltimen kehittämä melu. Melun mittauksissa selvitetään, aiheuttaako jokin laite huoneeseen liian korkean melutason. Tämän jälkeen mietitään tarvittaessa keinoja tilanteen korjaamiseen. Voimakkain melu peittää alleen muun melun. Laitteiden vuorottaisella käytöllä selvitetään suurin melua tuottava laite ja äänen etenemistapa. Selvitetään, onko melu ilmaääntä, kanavaääntä vai runkoääntä. Selvityksessä on aina huomioitava taustamelun osuus esim. liikenteen melu. Etäisyyden kaksinkertaistuessa äänenpainetaso laskee n. 6 db ja etäisyyden kymmenkertaistuessa lasku on n. 20 db. Äänitasomittarin on täytettävä standardeissa SFS P./IEC 651 ja IEC 804 esitetyt vaatimukset. LVIS-laitteiden äänitasosta mitataan keskiäänitaso L A,eq,T sekä enimmäisäänitaso L A,max. Äänen yksikkö on db, desibeli.

8 8 Ilma kojeelta huoneeseen Vasemmassa kuvassa on höyrysulun tiivistys, takan lämmön sekä lämpöpumpun lämmön hyödyntäminen. Vieressä on tiilikatolla olevan keittiön liesikuvun poistopuhallin. 6. Isoon ilmastointi- tai ilmanvaihtojärjestelmään kuuluu keskuskoje, kanavisto ja huoneiden ilmanjakolaitteet. Tässä osiossa käsitellään erilaisia IV-kojeita, kojeen osia ja ilman prosesseja sekä kanavistoa osineen. Ihminen on ilmastointiprosessin se osa, jota varten ilmaa käsitellään. Käytössä ilma likaantuu, jolloin sitä on jatkuvasti korvattava uudella käsitellyllä ja oleskeluvyöhykkeelle puhallettavalla ilmalla. Keskuskoje Rakennuksen katolla sijaitseva iv-koje Sisäilmaston olennaisimmat osa-alueet ovat ilman lämpötila, kosteus, virtausnopeus ja ilman puhtaus. Isot moduulimittaiset tehdasvalmisteiset koneet voidaan valmiina pakettina nostaa rakennuksen katolle. Kanavien vaatiman tilan vuoksi mietitään, sijoitetaanko katolle yksi iso koje vai muutama pienempi. 8

9 Ilma kojeelta huoneeseen 9 Kaasumaisia epäpuhtauksia ovat hiilidioksidi, tupakansavu, radon, otsoni, typpioksidi, häkä ja formaldehydi. Tupakansavussa on paljon nestemäisiä, kaasumaisia ja kiinteitä, terveydelle vaarallisia epäpuhtauksia. Ilmansuodattimen suoritusarvot määritellään standardin EN 779/2002 mukaisesti. Suoritusarvoista mitataan alkupainehäviö, pölynsitomiskyky, erotusaste, suodatinluokka ja suodatinmateriaalin mahdollisen sähköisen varauksen vaikutus erotusasteeseen. Valmistajan on ilmoitettava sähkösuodattimien otsonituotto. Suodatinmateriaalissa ei saa olla pölyn sitomiseen käytettäviä öljyjä tai biosideja. Suodattimille tehdään myös aistinvarainen hajutesti. Huoneilmaa voidaan parantaa kierrätysilmasuodattimen avulla. Kierrätysilmasuodattimia on käytetty mm. tupakansavun poistamisessa ja allergisten henkilöiden huoneilman puhdistuksessa. Kanavien likaantumisen estämiseksi paikallispoistojen ilmaa puhdistetaan ennen sen kanavistoon johtamista. Esim. keittiöiden liesituulettimeen liitetään aina rasvasuodatin. Suodatin voidaan asentaa ulko-, poisto-, kierrätys-, kierto- tai tuloilmavirtaan. Ulkoilmavirran suodatus on tarpeen ulkoilman epäpuhtauksien poistamiseksi. Samalla suojataan laitteet likaantumiselta ja puhdistetaan tuloilmaa. Kiertoilman puhdistus on välttämätöntä huoneesta poistoilman mukana kulkeutuvan pölyn erottamiseksi. Huonepöly on karkeampaa kuin ulkoilman mukana sisälle tuleva pöly. Pölyn mukana ilmasta poistuu huoneilman bakteereita ja muita mikrobeja. Suodattimesta ei saa irrota kuituja missään olosuhteessa haitallisessa määrin. Valmistajan on määriteltävä suodattimen vaihtotarve sekä se, miten käytetyt kuitusuodattimet hävitetään ympäristöystävällisesti. Viereinen graafi kertoo meille erilaisten aineiden hiukkaskoon sekä suodattimen merkinnän. Hitsaussavun hiukkaskoko on n µ. Jos halutaan poistaa kaikki hiukkaset on suodattimeksi valittava H13. Silmämääräisesti graafista katsoen F7 poistaa hiukkaset, jotka ovat kooltaan n. 0.5 µ. Sisäilmaluokitus 2008, tuloilman suodattimina käytetään: S1 S2 S3 Suodatusluokka F8 F7 F6 IV-järjestelmän puhtausluokka P1 P1 P2 Vilkkaiden liikenneväylien ja muiden hiukkaslähteiden läheisyydessä (<150 m) käytetään S1- ja S2 -luokissa yhtä astetta tehokkaampaa tuloilman suodatusta. 9

10 10 Ilma kojeelta huoneeseen Tuloilman lämpötilan ohjausesimerkki TE 1 = kanavatermostaatti TC 1 = säätökeskus TV 1 = kolmitieventtiili P 1 = kiertopumppu Säätöpiirin toimivuus todetaan kääntämällä lämpötilan säätönuppia normaalista lämpötilasta korkeampaan lämpötilaan. Nyt voidaan todeta säätöventtiilin toimimoottorin toiminta, patteriputkien lämpeneminen ja viimekädessä ilman lämpötilan nousu. Säätönuppi on muistettava kääntää takaisin normaaliin asentoonsa. Sulatusvaiheen aikana lämmityspatteriin on tuotava nopeasti lisäenergiaa korvaamaan LTO-patterin puuttuva osuus. Pelkistetystä yläkuvasta puuttuu lto -laitteen huurtumisen aikainen ohituskanava. Katso esim. alakuvaa. t p1 = poistoilma t u2 = tuloilma t p2 = jäteilma t u1 = ulkoilma 10

11 Ilma kojeelta huoneeseen Tuloilman esi- tai jälkilämmityspatteri Kylmää tuloilmaa lämmitetään lämmityspatterilla vedon tunteen eliminoimiseksi. Ilman lämpötila muuttuu patteriveden lämpötilaa säätämällä. Patterin lämmönluovutus riippuu patterin pintaalasta, meno- ja paluuveden lämpötilaerosta sekä patterille tulevan ja siitä lähtevän ilman lämpötilaerosta. Lisäksi patteritehoon vaikuttaa ilman virtausnopeus, veden virtausnopeus patteriputkissa sekä se, onko kytkentä vasta-, risti- tai myötävirtakytkentä. Nesteen virtausnopeuden patteriputkistossa on oltava vähintään 0,4 m/s ilmauksen takia. Lämmitykseen käytetyissä kupariputkipattereissa nesteen virtausnopeus ei saa ylittää 1,5 m/s. Teräsputkipattereissa ei nesteen nopeus saa ylittää 3,0 m/s. Lämmönluovutuksen parantamiseksi liuospattereiden virtausnopeus mitoitetaan turbulenttiseksi, ei laminaariseksi. Maksimipainehäviön esim. lämmityspatterin vesipiirissä tulisi olla noin 15 kpa, jäähdytyspattereissa 30 kpa ja LTO-pattereissa 80 kpa. Lämmitys- ja jäähdytyspatterit suunnitellaan ja asennetaan irrotettaviksi huollon ja korjausten vuoksi. Lämmityspatterin sijainti Lämmityspatteri Patteri koostuu kehyksestä, jakotukeista, alumiinilamelleista sekä niihin kiinni laajennetuista kupariputkista. Lämmittävä vesi kiertää kupariputkissa luovuttaen lämpöä alumiinilamelleihin, jolloin lamelleiden läpi virtaava ilma lämpenee. Vesipatteri on auton jäähdyttäjän kaltainen laite. Lamellijako riippuu käyttötarkoituksesta ja tarvittavasta lämmönluovutuspinta-alasta ollen 2-4 mm. Kehys voi olla alumiinia tai sinkittyä terästä. Lämmityspatteri 11

12 12 Ilma kojeelta huoneeseen Paisuntaventtiili voidaan korvata pienissä pattereissa riittävän vastuksen (paineen pudotuksen) aiheuttavalla kapillaariputkella. Lämpötilaa voidaan säätää esim. kompressorin on/off-toiminnalla. Suorahöyrystyspatteri voidaan varustaa myös lamellin reikiin työnnettävillä sähkövastuksilla mahdollisen huurteen sulatusta varten. Patterin kylmäpinnoille tiivistyy vesihöyryä silloin, kun patterin pintalämpötila on ilman kastepistelämpötilaa matalampi. Näin ilmaa voidaan myös kuivata l. sen absoluuttinen kosteus pienenee. Suorahöyrystyspatteri. Jäähdykeneste jaetaan patteriputkiin nestejakajalla. Jäähdyke höyrystyy putkissa ja sitoo höyrystymiseensä tarvittavan lämmön lamellien läpi virtaavasta ilmasta jäähdyttäen ilmaa. Suorahöyrystysjäähdytyspatteri ja paisuntaventtiili Suorahöyrystysjäähdytyspatterin kytkentäkaavio 12

13 Ilma kojeelta huoneeseen 13 Taajuusmauuttajakäyttöinen kammiopuhallin, Fläkt Woods Joitakin puhallinsovellutuksia Huippuimuri on katolle sijoitettu, ylöspäin puhaltava ja imupuolelta yleensä kanavistoon liitetty poistopuhallin. Sen pääosat ovat siipipyörä, moottori, tärinänvaimentimet, sadekatos ja pohjalevy. Huippuimuri ei saa aiheuttaa kattolumen sulamista. Puhallusaukon pystysuoran etäisyyden katon yläpinnasta tulee olla Suomen rakentamismääräyskokoelman osan D2 mukaisesti yleensä vähintään 900 mm. Imurin on oltava helposti avattavissa puhdistusta ja huoltoa varten. Huippuimuri voidaan liittää valmiiseen kattoläpivientiosaan, jolloin kattoläpivienti toimii kokoojakammiona sekä äänenvaimentimena ja voidaan varustaa sulkulaitteella. Takkaimuri on tähän nimenomaiseen tarkoitukseen valmistettu huippuimuri. Kuva on alla. Kanavapuhallin sopii esim. työpajoihin ja käymälöihin. Puhallin on kanavan osana, jatkona. Savunpoistopuhaltimia käytetään palokaasujen poistoon ja ne voivat olla aksiaalitai keskipakoispuhaltimia tai huippuimureita. Yleensä savunpoistopuhaltimien ja niiden sähkönsyötön on kestettävä toimintakuntoisena yhden tunnin ajan +350 C lämpötilaa. Puhaltimelle voi olla myös mahdollisuus virran syöttöön palokunnan varavoimageneraattorilla. Puhallinta voidaan käyttää myös tavalliseen ilmanvaihtoon, mutta sen joustavien liittimien ja tärinänvaimentimien on kestettävä +350 C lämpötilaa tunnin ajan, kun se voi joutua toimimaan savunpoistopuhaltimena. Savunhallinnan perustehtävänä on pitää palotilanteessa poistumistiet savuttomina ja turvata ihmisten vapaa poistuminen rakennuksesta. Koneellinen paineistus varmentaa poistumistiet. Kerrostaloissa yleistyy porraskäytävän, aulan ja hissikuilun paineistus. Palotilanteessa näihin tiloihin tuodaan suuri määrä puhdasta ilmaa, joka syrjäyttää savun. Tilat pidetään ympäristöönsä nähden ylipaineisina. 13

14 14 Ilma kojeelta huoneeseen Kanavien avulla jaetaan iv-koneessa käsitelty ilma käyttöpisteisiin l. huoneisiin. Kanavina käytetään sinkitystä teräslevystä valmistettua kierresaumattua, poikkipinnaltaan pyöreää kanavaa, samasta materiaalista valmistettuja suorakaidepoikkipintaisia kanavia tai poikkipinnaltaan pyöreitä muovikanavia. Lisäksi on olemassa myös ruostumattomasta teräksestä tehtyjä kanavia. Kanavina käytetään puhtausluokiteltuja tehdasvalmisteisia kanavia ja kanavanosia. Ilmanvaihtokanaviston puhdistamiseksi puhdistusluukkuja asennetaan sekä tulo- että poistokanavistoon. Ilmanvaihtokoje ja myös ilmalämmityskoje tulisi sijoittaa rakennukseen mahdollisen keskeisesti, koska kanavat saadaan lyhyiksi ja ilmavirtojen tasapainotus helpottuu. Kanavisto ja sen nimikkeitä Rakennusen huoneet ovat osa kanavaa Ilma virtaa sisään esim. olohuoneen sisäänpuhallusventtiilistä ja jatkaa matkaa wc-tilaan sekä poistuu sen poistoventtiilin kautta. Tämän vuoksi ovet eivät saa muodostaa esteitä ilman virtaukselle, vaan ovien alla on oltava virtausaukko l. ovirako. Oven ollessa kiinni ilma pääsee esteettä virtaamaan oven alla olevan raon kautta seuraaviin tiloihin. Oviraon suuruus riippuu huoneen lattiapinta-alasta, virtaavan ilman määrästä. Jos huonepinta-ala on alle 15 m 2, raon suuruus on 15 mm. Jos pinta-ala on yli 15 m 2, ovirako on 30 mm. Asunnon ja saunaosaston välinen ovirako on 30 mm. Ovirakojen tilalla voidaan käyttää siirtoilmakanavia. Kanavat asennetaan rakennuksen pohjalaattaan, yläpohjaan tai yläpohjan yläpuolelle. Tällöin puhutaan ylä- tai alajakoisesta ilmalämmityksestä. Kaikissa asennustavoissa on huomioitava kanavan oikea eristys sekä kanavien puhdistusmahdollisuus. Suunnittelussa on huomioitava kanavien suuri tilantarve. Vesikeskuslämmityksessä lämmin vesi voidaan viedä huoneen pattereille esim. kupariputkilla, joiden ulkohalkaisija on 15 mm. Ilmastoinnissa voi kanavan halkaisija vastaavasti olla mm. Kanavien ilmavirrat Vesi voi virrata patteriputkissa nopeudella 0, m/s ja ilma kanavassa jopa 5,0 m/s. Suuri virtausnopeus, 5,0 m/s, on myös ääniongelmariski. Virtausnopeuksilla 4,5-5 m/s 125 mm kanavassa virtaa ilmaa n. 65 l/s ja 160 mm kanavassa n. 105 l/s. Poistoilmavirtaus on 10 % suurempi kuin tuloilmavirta. Näin rakennus on ulkoilmaan nähden lievästi alipaineinen. Jos rakenteessa on ilmavuotoja, ilmavirtaus kulkee ulkoa sisäänpäin, eikä kosteusvahinkoja tapahdu. Jos rakennus on ylipaineinen, ilmavirtaus kulkee sisältä ulospäin ja vie mukanaan kosteutta rakenteisiin aiheuttaen home- ja kosteusvaurioita. Rakennuksen eristeissä oleva kosteus huonontaa myös eristeiden eristysominaisuuksia. 14

15 Erilaisia ilmanvaihto- ja ilmastointijärjestelmiä 15 Rakennuksen ilmavuotokohtia. Kuvassa on myös rakennuksen energiatase. Arvot ovat peräisin kerrostalosta. Kuva muokattu, Olli Seppänen. Puhaltimella varustetun oviaukon avulla tuotetaan kiinteistöön vaipan vuotomittauksessa tarvittava paine. Kuva on yllä. Teknocalor Oy. Kiinteistön vaipan ilmanpitävyyden enimmäisarvoksi suositellaan <1...1,5 m³/h ulkovaippaneliömetriä kohden 50 pascalin paine-erolla. Tämän mukaan: -pientaloille: n 50 <1,0...2,0 1 /h -muille rakennuksille n 50 <0,5...0,7 1/h 7.2. Ilmanvaihtojärjestelmät voidaan karkeasti luokitella painovoimaiseen ilmanvaihtoon, koneelliseen poistoilmanvaihtoon sekä koneelliseen tulo- ja poistoilmanvaihtoon. Koneellinen poistoilmanvaihto on periaatteessa poistoilmaimurilla varustettu painovoimainen järjestelmä. Koneellisella tulo- ja poistoilmanvaihdolla saadaan aikaan hallittu ilmanvaihto silloin, kun rakenteiden ilmavuodot on minimoitu. Painovoimaisessa ilmanvaihdossa jokaiselta poistoventtiililtä on oma horminsa vesikaton yläpuolelle asti. Hormeja ei saa yhdistellä keskenään ja niiden on oltava mahdollisimman suoria, ilman sivuttaisia siirtoja, koska järjestelmän kiertovoima on pieni. Poistoilmahormia vaativat tilat (WC, keittiö ja kylpyhuone) rakennetaan vierekkäin, jotta ilmanvaihdon hormit voidaan keskittää rakennuksen samaan pisteeseen. Näin välipohjien ja vesikaton läpäisyt tulevat yhdelle alueelle. Hormit vievät myös paljon tilaa. Painovoimainen ilmanvaihto ei sovellu yksikerroksisiin rakennuksiin. Poistoventtiilit ovat ns. likaisissa huonetiloissa. Sisään tuleva korvausilma lämpenee esim. pattereiden avulla ja vedon tunne poistuu/pienenee. Liesituulettimen käyttö voi tuoda ulkoilmaa sisään esim. takan kautta ja sen huomaa noen hajusta. Painovoimaisen ilmanvaihdon käyttövoima muodostuu lämpimän sisäilman ja kylmän ulkoilman lämpötilaerosta l. painoerosta. Mitä korkeampi kanava on ja mitä suurempi on lämpötilaero, sitä suurempi on ilman poistovaikutus. Talvella laitos toimii usein liian tehokkaasti. Kesällä se ei vastaavasti toimi ollenkaan, silloinkaan kun korvausilmaa saadaan tilalle. Myös seinää vastaan puhaltava tuuli lisää käyttövoimaa rakennevuotojen kautta usein jopa lämpötilaeroa enemmän. Painovoimaiseen ilmanvaihtoon ei saada lämmöntalteenottoa. 15

16 16 Erilaisia ilmanvaihto- ja ilmastointijärjestelmiä Ilmastoitipalkki-ilmastoinnilla toteutetaan korkeatasoinen huonekohtainen ilmastointi. Keskusyksikköön kuuluu suodatus, lämmöntalteenotto, lämmitys ja jäähdytys. Ilmastointipalkissa on jäähdytysilmanvaihto ja haluttaessa lämmitys. Jäähdytys toteutetaan kylmän veden avulla. Poistolaitteet ovat seinässä tai alakatossa. Järjestelmä soveltuu tiloihin, joissa ei tarvita suuria ilmavirtoja lämpökuormien olleessa kuitenkin suuria esim. toimistoissa. Ilmastointipalkkijärjestelmällä saadaan aikaan hyvä sisäilmasto matalalla energian kulutuksella. Jäähdytyspalkit ovat yleisin ratkaisu toimistojen ilmastoinnissa ja jäähdytyksessä. Toimiston jäähdytystehon tarve on W/m². Aktiivipalkkijärjestelmään on integroitu huonetilaan tuotava ulkoilmavirta sekä vesijäähdytys. Passiivipalkkijärjestelmän jäähdytysteho perustuu luonnolliseen konvektioon, kun huoneen lämmönsiirtimessä virtaa kylmä vesi. Vesijäähdytys ja tuloilman tuonti ovat erillisiä ratkaisuja. Passiivipalkeissa ilman virtaus tapahtuu pääosin vapaan konvektion ja osittain säteilyn avulla. Passiivipalkkeja käytetään pääosin jäähdytykseen. Aktiivipalkissa ilma puhalletaan sisään huoneeseen palkin kautta. Ilmastointipalkkijärjestelmä on suutinkonvektorin kaltainen järjestelmä, jossa ilmanvaihto, jäähdytys sekä lämmitys on toteutettu erillisillä järjestelmillä. Ikkunoiden lämpöteknisten ominaisuuksien parantuessa yleistyy ilmastointipalkkien käyttö myös lämmitykseen. Ilamastointipalkit voidaan varustaa myös valaisimilla, joiden teho on 28 W tai 35 W. 16

17 Erilaisia ilmanvaihto- ja ilmastointijärjestelmiä 17 Ilmanvaihtokatto Ammattimaisten keittiöiden poistoilmalaitteissa voi olla rasvanerotin ja integroitu valaistus sekä ohjauslaitteita. Laitteet rakennetaan helposti puhdistettaviksi, esim. rasvanerotin on helppo irrottaa ja pestä. Työkohteeseen johdettavan kohdeilman ilmavirta ja suunta on työntekijän säädettävissä. Jäähdytyskattojärjestelmän huone jäähtyy katossa olevilla jäähdytyspaneleilla säteilyn ja vähäisessä määrin myös konvektion avulla. Palkit mitoitetaan ei-kondensoiviksi. Huoneen tuloilma voidaan johtaa jäähdytyspanelin kautta ja huoneilman lämmitys tapahtuu vesipattereilla. Tuloilmavirta mitoitetaan ilmanvaihdon tarpeen mukaan. Kuvassa on eräs kaavio jäähdytykseen tarvittavasta kylmän veden jäähdytysyksiköstä. Hajautetussa järjestelmässä ilman lämmitys ja jäähdytys tapahtuvat huonekohtaisesti. Rakennuksessa ei ole vesikeskuslämmitystä ja ilmanvaihto tapahtuu erillisellä laitteistolla huonekohtaisesti. Nyt saneerauksen yhteydessä rakennukseen asennetaan huonekohtainen lämpöpumppu. Yleensä se on ilmalämpöpumppu, koska maalämpöpumpun keräysputkisto tai lämpökaivo maksavaa enemmän. Lämpöpumpun avulla huoneilma lämmitetään ja joissakin tapauksissa myös jäähdytetään. Vieressä on huonekohtainen lämpöpumppu. Enervent Oy:n tutkimusprojektin tuloksena kehitettiin pientalon ilmanvaihtolaitteeseen integroitava poistoilmalämpöpumppu. Asunnosta poistettavasta ilmasta otetaan lämpöä talteen lämpöpumpulla ja pyörivällä lämmönsiirtimellä. Poistoilma on läpi vuoden lähes tasalämpöistä, jolloin lämpöpumppu toimii hyvällä hyötysuhteella. Ilmanvaihtolaitteen sisään integroitu lämpöpumppu on valmiiksi tehtaalla asennettu, joten laitteen käyttöönotto ei tarvitse erillistä kylmäasennusta. Laite tuo merkittäviä säästöjä pientalon lämmitystarpeeseen pienentämällä ilmanvaihdon kautta tapahtuvaa lämpöhäviötä. Vuonna 2003 voimaan tulleiden viranomaismääräysten mukaan pientalon ilmanvaihdon poistoilman lämmöstä on otettava talteen vähintään 30 % ilmanvaihdon lämmityksen tarvitsemasta lämpömäärästä. Optimaalinen toiminta vaatii käytännössä invertteriohjatun kompressorin ja elektronisen paisuntaventtiilin. Poistoilmapatteri on lämmityskäytössä kylmäainepiirin höyrystin ja se ottaa lämpöä talteen poistoilmasta. 17

18 18 Ilman jako huoneeseen Kuvat muokattu, Olli Seppänen Puhallus ulkoseinältä Puhallus käytäväseinältä Tuloilmakanavat voidaan sijoittaa käytävän alaslaskettuun kattoon. Ilma johdetaan huoneisiin käytäväseinän läpi lyhyillä kanavilla. Tuloilmasuihkun, lämmityspatterin ja ikkunan konvektiovirtausten yhteisvaikutuksesta keskelle huonetta saattaa syntyä vetoisia paikkoja. Ihmisten ja muiden lämmönlähteiden lämmittämä käytetty ilma nousee ylös ja kohti kattoa poistuakseen huoneesta. Jos huoneeseen tuodaan ylhäältä alaspäin suuntautuvaa tuloilmaa, lämmin käytetty ilma työntyy osaksi takaisin kohti lämmönlähteitä. Oleskeluvyöhykkeen hyvän ilmanlaadun varmistamiseksi on huoneeseen on tuotava riittävä tuloilmavirta laimentamaan epäpuhtaudet. Huoneilman ja tuloilman välistä lämmön ja epäpuhtauksien sekoittumista tapahtuu kaikkialla huoneessa. Kuva on alla. Puhallus käytäväseinältä Kuvat muokattu, Olli Seppänen Keskelle kattoa sijoitettuja hajottimia voidaan käyttää useissa eri ilmastointijärjestelmissä. Menetelmä soveltuu hyvin suuriin jäähdytystehoihin sekä alilämpöisen ilman puhaltamiseen huoneeseen. Kuva on alla. Kuvat muokattu, Olli Seppänen 18

19 Ilman jako huoneeseen 8.5. Laminaarisen virtauksen ilmavirrat ovat suuria ja ne saadaan aikaan vedottomasti. Laminaarinen ilmanjako soveltuu korkeiden hankintakustannusten vuoksi erikoistiloihin, joissa vaaditaan suurta ilmamäärää ja puhtautta. Tällaisia tiloja on lääketeollisuudessa, leikkaussaleissa, elektroniikkateollisuudessa ja erilaisissa tutkimuskeskuksissa. Ilma voi virrata pienellä nopeudella joko vaaka- tai pystysuunnassa. Ilmavirta voidaan suunnata myöskin katosta lattiaan, jolloin myös raskaampien hiukkasten poistaminen helpottuu. Ilman vaihtuvuutena voidaan käyttää arvoa jopa 60 kertaa tunnissa. Kuva on alla. DECO AIR TULOILMALAITTEET 19 Laminaarinen virtaus ja syrjäyttävä virtaus yrjäyttävät tuloilmalaitteet usia Lähivyöhyke: eco-tekniikalla an halutulla tavalla teessa ilman, että itteen ulkomuotoa, immissa malleissa uviota muuttaa. lettu hyödyntää suutta paineen- ja laatua ja osaamista. Lähivyöhyke Lv tarkoittaa etäisyyttä ilmalaitteen ulkopinnasta siihen rajaan, jossa keskimääräinen ilman nopeus on laskenut 100 mm:n korkeudessa lattiasta arvoon 0,2 m/s ja ilmavirran lämpötila poikkeaa huoneen keskilämpötilasta enintään yhden Cº asteen Syrjäyttävässä ilmanjaossa viileä ja puhdas tuloilma tuodaan pienellä nopeudella oleskeluvyöhykkeelle. Syrjäyttävässä ilmanjaossa pyritään epäpuhtauksien ja lämpötilan kerrostumiseen ja huoneilman sekoittumista vältetään. Huoneeseen tuodaan huoneilman lämpötilaan nähden alilämpöistä tuloilmaa, jolloin ilma jää tiheyserosta johtuen oleskeluvyöhykkeelle. Huoneilma kerrostuu siten, että puhtaan ilman vyöhyke muodostuu lattiatasolla oleville ihmisille, ja lämmennyt, epäpuhtauksia sisältävä ilma suuntautuu tilan yläosaan. L V Ylävyöhykkeellä oleva käytetty ilma pääsee poistumaan huoneesta, eikä tuloilma häiritse sen poistumista. Ilmanvaihdon tehokkuus saattaa silloin kasvaa sekoittavan ilmastoinnin maksimaalista 50 % tehoa suuremmaksi. Jäähdytetty tuloilma lähellä oleviin ihmisiin suunnattuna aiheuttaa usein ongelmia vetoisuuden ja kylmien jalkojen muodossa. Tuloilmalaite esim.deco.l Lähivyöhyke Lv on etäisyys sisäänpuhalluslaitteen ulkopinnasta siihen rajaan, jossa keskimääräinen ilman nopeus on laskenut 100 mm korkeudessa lattiasta arvoon 0,2 m/s ja ilmavirran lämpötila poikkeaa huoneen keskilämpötilasta enintään 1 C. Syrjäyttävässä ilmanjaossa raikas ja viileä ilma on painavampaa kuin huoneen lämmin ja likainen ilma. Pienellä nopeudella sisään tuotu raikas ilma syrjäyttää likaisen vanhan ilman ylös katon rajaan poistettavaksi. Ilmanjaon laitteet ovat suurikokoisia ja tämän vuoksi ne ovat yleensä lattian rajassa. Ilmanjakoa käytetään suurissa rakennuksissa esim. pankeissa tai tavarataloissa. 100 Muokattu, Olli Seppänen jako Syrjäyttävä ilmanjako Jeven Oy viileä ilma min, ienellä yttää a nousee kerrostuu DECO AIR Kansioväli 2 Pidätämme oikeuden muutoksiin sivu

20 20 Ilman jako huoneeseen 8.8. Tuulikaappikoje ja ilmaverho Tuulikaappikoje sijaitsee tuulikaapin katossa. Sen avulla puhalletaan tuulikaappiin ulko-ovien avaamisen yhteydessä voimakas lämmin ilmavirta. Sen tarkoituksena on estää kylmän ulkoilman pääsy huonetilaan, joka on yleensä julkinen tila esim. posti. Tuulikaappikojeen ilman puhallus Ilmaverhot erottavat sisäilman ulkoilmasta liiketiloissa ja toimistorakennuksissa. Erottuminen saavutetaan minimoimalla luonnollinen lämpövuoto ja lämmittämällä sisään tuleva kylmä vuotoilma. Tavallisten ilmaverhojen lämmitystehoa lisätään usein talvella säätämällä puhallusnopeutta. Ilmaverhojen toisena tehtävänä on sisään tulevan kylmän vuotoilman lämmittäminen. Ilmaverhot eivät pysäytä sisään tulevaa ilmaa, mutta pystyvät lämmittämään tämän ilmanvirtauksen niin, ettei sitä tunneta vetona rakennuksen sisällä. Ilmaverho vähentää merkittävästi ulos pyrkivää lämmintä ilmaa. Tästä johtuen ilmaverho on energian säästäjä! Kun tarvittava lämmitysteho on suuri, perinteisellä ilmaverholla suurennetaan puhallusnopeutta. Suurempi puhallusnopeus saa kuitenkin myös ilmavirran törmäämään lattiaan. Sitten ilmavirta jakaantuu kahteen osaan. Ulos karkaava osa menee hukkaan, joten lämmönhukkaa on enemmän. Näyttää siltä, että suuri puhallusnopeus johtaa huonoon hyötysuhteeseen. Myös ilmavirran pyörteisyys alentaa tehoa. Ilmaverhon lämmitystehoa voidaan lisätä myös leventämällä puhallussuihkua automaattisilla pelleillä. Tämä lisää lämmitystehoa, vaikka puhallusnopeus pysyy muuttumattomana. Tämän ratkaisun etuna on se, että ilmavirta ei osu niin suurella nopeudella lattiaan, joten lämpöenergia voidaan kokonaisuudessaan hyödyntää sisään tulevan kylmän ilman lämmittämiseen. Näin saavutetaan sama tulos, mutta käyttämällä vähemmän energiaa kuin perinteisellä ilmaverhoilla. Ilmaverhokoje 20

21 Mittaus- ja ohjaustoimintoja 21 Menetelmä oppii rakennuksen käyttöhistorian ja hyödyntää sitä laitteiden ohjaamisessa. Epäviihtyvyyttä ilmenee saavuttaessa rakennukseen normaalista poikkeavaan aikaan, kun rakennus on seisontatilassa, eikä siitä ole kerrottu automatiikalle esim. tekstiviestillä. Jos painotetaan 100 % viihtyvyyteen, ei huonelämpötilaa alenneta ollenkaan. Älykkään säätimen käyttöliittymän pitäisi olla yksinkertainen, havainnollinen ja sellainen, että käyttäjälle jää mahdollisuus vaikuttaa järjestelmän toimintaan. Käyttöliittymän tulisi olla käyttäjää ohjaava, jolloin selvitään ilman käyttöoppaita. Valintakytkimellä voitaisiin painottaa esim. taloudellisuutta tai viihtyisyyttä. Valinnan vaikutus energiankulutukseen havainnollistettaisiin esim. ruudulla näkyvänä säästettynä rahamääränä. Säästöarvion hinnoitteluun vaikuttaa senhetkisen energian hinta, rakennuksen ja sen järjestelmien ominaisuudet sekä rakennuksen käyttö. Säästöarvion hinnoittelu tarkentuu käytössä laitteen itseoppivuuden kautta. Asukkaiden läsnäoloa seurataan läsnäoloantureilla, seuraamalla huoneilman hiilidioksidipitoisuutta, lukituksen tai turvajärjestelmien tilaa sekä tarkkailemalla veden tai sähkön kulutusta. Tämän tiedon oikeellisuus on olennaista järjestelmän toiminnan ja erityisesti oppimisen kannalta. Vieressä on kuva ja ajatuksia artikkelista: Tulevaisuuden rakennus oppii käyttäjän mieltymyksiä, Sami Karjalainen ja Satu Paiho/VTT Rakennus- ja yhdyskuntatekniikka, Lasse Eriksson /TKK Systeemitekniikan laboratorio Säädön nimikkeitä Automaatio -sana tarkoittaa yleisesti itsestään tapahtuvaa, itsestään toimivaa. Säätölaitteiden toiminta määritellään sen piirrosmerkin sisällä olevalla kirjainkoodilla. Tämä koodi muodostuu seuraavasti. Ensimmäinen kirjain merkitsee mittasuuretta tai sen alkuperää. Käytön on oltava allaolevan taulukon sarakkeen 2 mukainen. Sitä voidaan täydentää tarvittaessa sarakkeen 3 mukaisella lisäkirjaimella. Seuraavat kirjaimet esittävät instrumentin toiminnan. Asukkaalla on mahdollisuus valita taloudellisuus/viihtyisyystaso. Valittu taso voidaan tehdä konkreettiseksi esim. säästettynä rahana kuukaudessa. Mittaus- ja ohjaustoimintojen merkit ovat toiminnallisia merkkejä, joiden avulla voidaan ilmaista vaikkapa aikaa. 21

22 22 Mittaus- ja ohjaustoimintoja T = lämpötila, I = osoitus. TI = lämpötilan osoitus, lämpömittari. P = paine, I = osoitus. TI = paineen osoitus, painemittari. Kuvassa ovat vierekkäin rakenteelliset ja toiminnalliset piirustusmerkit. Viereinen säätökaaviopiirustus on osa suuremmasta kokonaisuudesta. Mikä laite on TF01? (IV-piirustusten lyhenteet ja piirustusmerkit). Millainen laite on toiminnaltaan? Mitä toimintaa FI tekee? Mikä laite on TE10? Mitä toimintoja sillä säätökaaviopiirustuksen mukaan on? Mikä laite on WC-tilan TF02? Millainen se on toiminnaltaan? Mitä tarkoittaa HS01? Mikä toimintoja on laitteella HS01? Mitä mielestäsi tekee WCtilan yhteydessä oleva HS01? Säätöpoikkeama on asetusarvon ja säädettävän suureen välinen ero annettuna hetkenä. Viritysparametri on säätimen toimintaan vaikuttava suure. Viritysparametreja ovat mm. vahvistus, integrointiaika ja derivointiaika. Säädön värähtely on tarkasteltavan suureen arvon vuorottaista nousemista ja laskemista ajan funktiona. Jatkuva värähtely on säännöllistä tai lähes säännöllistä vaimenematonta värähtelyä. Säätöpiiri Alakuvassa on säätöpiirin kaaviokuva. Säätöpiiri muodostaa suljetun piirin ja sen toiminta perustuu palautteen saamiseen säädettävän prosessin tilasta. Älykkäässä tarkoituksenmukaisessa säädössä huoneeseen puhalletaan ilmaa tarpeen mukaan. 22

23 Mittaus- ja ohjaustoimintoja 23 Vasemmalla on ns. peltimoottori ja oikealla kolmitieventtiilin toimimoottori. Säätöpelti toimielimenä Yleisin toimielin on säätöventtiili. Säätöpelti puolestaan kuristaa johonkin kanavan osaan menevän ilman virtausta pienentäen ilmamäärää. Vasemmalla oleva toimielin on iv-kojeen sulku/säätöpelti. Käsin ohjattava ilmavirran kertasäätölaite Säädin voi olla esim. Ouman EH-105, joka voidaan konfiguroida sopivaksi erilaisiin ilmastointisovellutuksiin. Ilmastoinnin ohjaus voi toimia tuloiman-, poistoilman- tai huoneilman lämpötilan mukaan. Ilmastoitavan tilan käyttötarkoituksesta riippuu, mikä ohjaustapa kulloinkin on tarkoituksenmukaisin. Säädin ohjaa ilmanvaihdon tehoa, ilmamäärää, joko portaattomasti ( taajuusmuuntajaohjatut puhaltimet) tai portallisesti ( puoliteho/täysteho). Ilmanvaihdon tehon ohjaus voi tapahtua säätimelle asetettujen aikaohjelmien mukaan tai mittaustietojen ( hiilidioksidi, ilmankosteus, lämpötila) perusteella. LTO -laitteen huurtumisen suojausperiaate vaihtelee LTO -tyypin mukaan. Toimimoottorilla varustettu säätölaite Säädin 23

24 Mittaus- ja ohjaustoimintoja 24 Esimerkki Ouman -säätimestä SLK /EH-105 ilmastoinninsäädin FG 1 Jousipalautteinen pellinsäätömoottori FG 2 Jousipalautteinen pellinsäätömoottori FG 3 Pellinsäätömoottori AM 24-SR TE 1, 2 ja 5 Kanavalämpötila-anturi TMD TE 3 Jäätymisvaara-anturi, TMI M Venttiilimoottori M41A15 TV 1 Säätöventtiili 2-tie kierreliittimillä Levy-LTO:lla varustettu tuloilmakoje, jossa on poistoilmaohjaus Toiminta käyntiaikana Puhaltimien käyntiä ohjataan säätimen omalla kellolla (viikko/vuosi-kello) tai ulkopuolisella käsikytkimellä. Poistoilman lämpötilan mittauksen TE2 perusteella muutetaan tuloilman lämpötilaa TE1 niin, että saavutetaan asetettu poistoilman asetusarvo (kaskadisäätö). Säätimen haluama tuloilman lämpötila (TE1) saavutetaan ohjaamalla LTO:n peltejä ja venttiiliä TV1. TE1 toimii samalla minimi- ja maksimirajoitusanturina. Sulkupellit FG1 ja FG2 ovat auki. Sähkökatkon yhteydessä pellit FG1 ja FG2 sulkeutuvat jousivoimalla kiinni. Toiminta seisonta-aikana FG1 ja FG2 ovat kiinni. Säädin ohjaa lämpötila-anturin TE3 mukaan venttiiliä TV1 niin, että paluuveden lämpötila pysyy asetusarvossaan. FG3:n pellin asento on aseteltavissa. Varo- ja hälytystoiminnot Jäätymissuoja (toimii 2-vaiheisesti). Avaa venttiiliä TV1 suhteellisesti, kun TE3 lämpötila lähestyy asetusarvoa sekä estää puhaltimen käynnin ja hälyttää, kun TE3 lämpötila laskee asetusarvoon. Uudelleen viritys tapahtuu kuittaamalla säätimestä. Palovaaratoiminta Mikäli tuloilman lämpötila anturin TE 1 kohdalla ylittää säätimelle asetetun palovaararajan, puhaltimet pysähtyvät, ja pelti sulkeutuu sekä tapahtuu hälytys. Uudelleen viritys tapahtuu kuittaamalla säätimestä. Lisätoiminnot Säätimessä on ulkolämpötilan mukaan tapahtuva IV-tehon rajoitustoiminta (edellyttää raitisilma-anturia TE7). Säätimessä on lisäksi myös seuraavat valmiudet: kiertoilmapeltien ohjaus, jäähdytyksen ohjaus sekä LTO:n hyötysuhteen mittaus. Kuvassa Ouman EH-105 ilmastointikojeen automatiikan tulot ja lähdöt. Säätimen käyttöönotossa (konfiguroinnissa) päätetään mitkä mittaukset ja tilatiedot sekä ohjaukset otetaan käyttöön. 24

Ulkoilma, raaka-aineemme

Ulkoilma, raaka-aineemme Ulkoilma, raaka-aineemme Maapalloa ympäröivä ilmakehä jakaantuu ionosfääriin, mesosfääriin, stratosfääriin ja troposfääriin. Missä korkeudessa tarvitaan happilaitteita? Ulkoilma, raaka-aineemme Mikä aiheuttaa

Lisätiedot

Näytesivut. 3.2 Toimisto- ja liiketilojen. Ilmastointijärjestelmät 57

Näytesivut. 3.2 Toimisto- ja liiketilojen. Ilmastointijärjestelmät 57 3.2 Toimisto- ja liiketilojen ilmastointijärjestelmät Toimisto- ja liiketilojen tärkeimpiä ilmastointijärjestelmiä ovat 30 yksivyöhykejärjestelmä (I) monivyöhykejärjestelmä (I) jälkilämmitysjärjestelmä

Lisätiedot

Toimiva ilmanvaihtojärjestelmä 7.4.2014

Toimiva ilmanvaihtojärjestelmä 7.4.2014 Energiaekspertin jatkokurssi Toimiva ilmanvaihtojärjestelmä 7.4.2014 Jarmo Kuitunen 1. ILMANVAIHTOJÄRJESTELMÄT 1.1 Painovoimainen ilmanvaihto 1.2 Koneellinen poistoilmanvaihto 1.3 Koneellinen tulo-/poistoilmanvaihto

Lisätiedot

Terveen talon ilmanvaihto

Terveen talon ilmanvaihto Terveen talon ilmanvaihto DI. Terveellisen ja viihtyisän sisäympäristön haasteet asunnoissa Lämpöolosuhteet talvella vetää, kesällä on kuuma Ilman laatu riittämätön ilmanvaihto yli puolessa asunnoista

Lisätiedot

Lämmöntalteenotto ekologisesti ja tehokkaasti

Lämmöntalteenotto ekologisesti ja tehokkaasti Hallitun ilmanvaihdon merkitys Lämmöntalteenotto ekologisesti ja tehokkaasti on ekologinen tapa ottaa ikkunan kautta poistuva hukkalämpö talteen ja hyödyntää auringon lämpövaikutus. Ominaisuudet: Tuloilmaikkuna

Lisätiedot

Ilmanvaihtojärjestelmän korjaus ja muutokset 28.10.2013. Jarmo Kuitunen Suomen LVI liitto, SuLVI ry

Ilmanvaihtojärjestelmän korjaus ja muutokset 28.10.2013. Jarmo Kuitunen Suomen LVI liitto, SuLVI ry Ilmanvaihtojärjestelmän korjaus ja muutokset 28.10.2013 Jarmo Kuitunen Suomen LVI liitto, SuLVI ry ASUINRAKENNUSTEN ILMANVAIHTO Hyvältä ilmanvaihtojärjestelmältä voidaan vaatia seuraavia ominaisuuksia:

Lisätiedot

Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin

Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin Energiataloudellinen uudisrakennus tai lyhyt takaisinmaksuaika yhdistämällä energiasaneeraus Julkisen rakennuksen remonttiin Timo Luukkainen 2009-05-04 Ympäristön ja energian säästö yhdistetään parantuneeseen

Lisätiedot

Vanhan kiinteistön ilmanvaihdon ongelmakohdat Ilmanvaihdon tavoite asunnoissa Ilmanvaihdon toiminta vanhoissa asuinkerrostaloissa Ongelmat

Vanhan kiinteistön ilmanvaihdon ongelmakohdat Ilmanvaihdon tavoite asunnoissa Ilmanvaihdon toiminta vanhoissa asuinkerrostaloissa Ongelmat Vanhan kiinteistön ilmanvaihdon ongelmakohdat Ilmanvaihdon tavoite asunnoissa Ilmanvaihdon toiminta vanhoissa asuinkerrostaloissa Ongelmat TARMOn ilmanvaihtoilta taloyhtiölle 28.10.2013 Päälähde: Käytännön

Lisätiedot

Näytesivut. 3.1 Yleistä

Näytesivut. 3.1 Yleistä 3 3.1 Yleistä IlmastoinTIjärjestelmät Tuloilmajärjestelmän tarkoituksena voi olla joko ilmanvaihto tai ilmastointi. Ilmanvaihdolla tarkoitetaan yleisesti huoneilman laadun ylläpitämistä ja parantamista

Lisätiedot

KONEELLISEN POISTOILMANVAIHDON MITOITTAMINEN JA ILMAVIRTOJEN MITTAAMINEN

KONEELLISEN POISTOILMANVAIHDON MITOITTAMINEN JA ILMAVIRTOJEN MITTAAMINEN KONEELLISEN POISTOILMANVAIHDON MITOITTAMINEN JA ILMAVIRTOJEN MITTAAMINEN Koneellinen poistoilmanvaihto mitoitetaan poistoilmavirtojen avulla. Poistoilmavirrat mitoitetaan niin, että: poistopisteiden, kuten

Lisätiedot

Air-In. Ratkaisuja hallitun ilmanvaihdon saavuttamiseksi. Lämmöntalteenotto ekologisesti ja tehokkaasti

Air-In. Ratkaisuja hallitun ilmanvaihdon saavuttamiseksi. Lämmöntalteenotto ekologisesti ja tehokkaasti Air-In Kehitämme, valmistamme ja myymme Air-In raitisilma venttiileitä ja äänenvaimentimia vaativiin tarpeisiin. Ratkaisuja hallitun ilmanvaihdon saavuttamiseksi Lämmöntalteenotto ekologisesti ja tehokkaasti

Lisätiedot

EXIMUS Mx 180, EXIMUS Jr 140

EXIMUS Mx 180, EXIMUS Jr 140 EXIMUS Mx 180, EXIMUS Jr 140 LÄMMÖNTALTEENOTTOKONEET EXIMUS Mx 180 EXIMUS Jr 140 Elektroninen säädin (E) Parmair - puhtaan ilman puolesta 25 vuoden kokemuksella AirWise Oy on merkittävä ilmanvaihtolaitteiden

Lisätiedot

Näin suunnittelet kerrostavan ilmanvaihdon

Näin suunnittelet kerrostavan ilmanvaihdon Min.100 mm SOFTFLO-SUUNNITTELUOPAS Näin suunnittelet kerrostavan ilmanvaihdon Softflo-tekniikka toimistoissa Soft o-tuotteiden jäähdyttäessä yksittäistä tilaa tuodaan jäähdytetty ilma oleskelualueelle

Lisätiedot

PRO Greenair Heat Pump -laitesarja. Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla

PRO Greenair Heat Pump -laitesarja. Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla PRO Greenair Heat Pump -laitesarja Ilmanvaihtolaitteet sisäänrakennetulla ilmalämpöpumpulla Raikas sisäilma energiatehokkaalla ilmanvaihdolla PRO Greenair Heat Pump -laitesarja Sisäänrakennettu ilmalämpöpumppu

Lisätiedot

600e-hp-co LÄMMÖNTALTEENOTTOLAITE, POISTOILMALÄMPÖPUMPPU JA JÄÄHDYTYS. Smart-käyttöliittymä

600e-hp-co LÄMMÖNTALTEENOTTOLAITE, POISTOILMALÄMPÖPUMPPU JA JÄÄHDYTYS. Smart-käyttöliittymä 600e-hp-co LÄMMÖNTALTEENOTTOLAITE, POISTOILMALÄMPÖPUMPPU JA JÄÄHDYTYS 600e-hp-co Smart-käyttöliittymä Huippuunsa vietyä lämmöntalteenottoa ja jäähdytystä AirWise Oy on merkittävä ilmanvaihtolaitteiden

Lisätiedot

2 Ilmastointijärjestelmän hoidon ja huollon organisointi 45

2 Ilmastointijärjestelmän hoidon ja huollon organisointi 45 Sisällys Alkusanat 5 1 Ilmastoinnin perustiedot 13 1.1 Johdanto 13 1.2 Viihtyvyystekijät 13 1.2.1 Perinteiset viihtyvyystekijät 14 1.2.2 Ulkoilman määrä sisätiloissa 14 1.2.3 Ilman epäpuhtaudet 15 1.2.4

Lisätiedot

ILTO 400M ILMANVAIHTOA MIELLYTTÄVÄÄN ASUMISEEN ILMANVAIHDON LÄMMÖNTALTEEN- OTTOLAITE RIVI- JA OMAKOTITALOIHIN UUDIS- JA SANEERAUSKOHTEISIIN PARASTA ILMANVAIHTOA www.ilto.fi ILTO-ilmanvaihtojärjestelmä

Lisätiedot

Piccolo - energiataloudellinen ilmanvaihdon pikkujättiläinen

Piccolo - energiataloudellinen ilmanvaihdon pikkujättiläinen ILMANVAIHTOA LUONNON EHDOILLA VUODESTA 1983 KERROS- JA RIVITALOIHIN Piccolo - energiataloudellinen ilmanvaihdon pikkujättiläinen Piccolo ON -mallit Pienessä asunnossa voi olla vaikeaa löytää sopivaa paikkaa

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Turku 18.01.2010 Tarjolla tänään Energiatehokkaita korjausratkaisuja: Ilmanvaihdon parantaminen

Lisätiedot

TOTEUTUSKUVAUS EEMONTTI - REMONTISTA

TOTEUTUSKUVAUS EEMONTTI - REMONTISTA TOTEUTUSKUVAUS EEMONTTI - REMONTISTA Kohdekiinteistö 2: 70-luvun omakotitalo Kiinteistön lähtötilanne ennen remonttia EEMontti kohdekiinteistö 2 on vuonna 1974 rakennettu yksikerroksinen, 139 m², omakotitalokiinteistö,

Lisätiedot

Like a Breath of Fresh Air. Enervent Pingvin Kotilämpö Ilmalämmityslaite saneerauskohteisiin

Like a Breath of Fresh Air. Enervent Pingvin Kotilämpö Ilmalämmityslaite saneerauskohteisiin Like a Breath of Fresh Air Enervent Pingvin Kotilämpö Ilmalämmityslaite saneerauskohteisiin Uusi Pingvin Kotilämpö -laite Ja kotisi energiatehokkuus nousee ratkaisevasti Ilmalämmitysjärjestelmä uusiksi

Lisätiedot

Esimerkkikuvia ja vinkkejä mittaukseen

Esimerkkikuvia ja vinkkejä mittaukseen Esimerkkikuvia ja vinkkejä mittaukseen Tässä on esitetty esimerkkinä paikkoja ja tapauksia, joissa lämpövuotoja voi esiintyä. Tietyissä tapauksissa on ihan luonnollista, että vuotoa esiintyy esim. ilmanvaihtoventtiilin

Lisätiedot

INTELLE-SÄÄDINKUVUN KÄYTÖN JA HUOLLON YLEISOHJEET

INTELLE-SÄÄDINKUVUN KÄYTÖN JA HUOLLON YLEISOHJEET INTELLE-SÄÄDINKUVUN KÄYTÖN JA HUOLLON YLEISOHJEET ASUNTOKOHTAINEN ILMANVAIHTOJÄRJESTELMÄ Rakennuksissa joissa on asuntokohtainen ilmanvaihto, on asukkaalla itsellään mahdollisuus vaikuttaa ilmanvaihdon

Lisätiedot

LUONNOSTEKSTIÄ 1/JL 30.10.2012, päivitetty 16.1.2014

LUONNOSTEKSTIÄ 1/JL 30.10.2012, päivitetty 16.1.2014 IV-kuntotutkimus LUONNOSTEKSTIÄ 1/JL 30.10.2012, päivitetty 16.1.2014 ÄÄNITEKNISET TARKASTELUT VTT Expert Services Oy 1 IV-JÄRJESTELMIEN ÄÄNIONGELMIEN TUTKIMINEN Ilmanvaihto- ja ilmastointijärjestelmät

Lisätiedot

ECO130 LÄMMÖNTALTEENOTTOKONE. säädin (E)

ECO130 LÄMMÖNTALTEENOTTOKONE. säädin (E) ECO130 LÄMMÖNTALTEENOTTOKONE ECO130 Elektroninen säädin (E) Parmair - puhtaan ilman puolesta 25 vuoden kokemuksella AirWise Oy on merkittävä ilmanvaihtolaitteiden valmistaja sekä Suomen johtava pientalojen

Lisätiedot

kansi Enerventin perusilmeellä

kansi Enerventin perusilmeellä Enervent Superior ja Premium Ilmanvaihtolaitteet ilmalämpöpumpulla kansi Enerventin perusilmeellä Fresh, hot & cool Enervent Superior- ja Premium -sarjat Ilmanvaihto lämmitys jäähdytys Ensto Enerventin

Lisätiedot

Lämmöntalteenotto ekologisesti ja tehokkaasti

Lämmöntalteenotto ekologisesti ja tehokkaasti Tapio Tarpio Lämmöntalteenotto ekologisesti ja tehokkaasti Air Termico/Air Kameleontti -tuloilmaikkuna on ekologinen tapa ottaa ikkunan kautta poistuva hukkalämpö talteen ja hyödyntää auringon lämpövaikutus.

Lisätiedot

IIWARI Ex, Kx, MxE LÄMMÖNTALTEENOTTOKONEET. IIWARI Ex IIWARI Kx IIWARI MxE 180 Elektroninen säädin (E)

IIWARI Ex, Kx, MxE LÄMMÖNTALTEENOTTOKONEET. IIWARI Ex IIWARI Kx IIWARI MxE 180 Elektroninen säädin (E) IIWARI Ex, Kx, MxE LÄMMÖNTALTEENOTTOKONEET IIWARI Ex IIWARI Kx IIWARI MxE 180 Elektroninen säädin (E) Parmair - puhtaan ilman puolesta 25 vuoden kokemuksella AirWise Oy on merkittävä ilmanvaihtolaitteiden

Lisätiedot

Omasta kodista turvallisempi Uponor-radonratkaisuilla

Omasta kodista turvallisempi Uponor-radonratkaisuilla RADONJÄRJESTELMÄ Omasta kodista turvallisempi Uponor-radonratkaisuilla 12 2010 40001 Voiko radon olla vaarallista? Radon on terveydelle vaarallista ja sitä esiintyy suomalaisissa kodeissa rakennuspaikasta

Lisätiedot

Energia- ilta 01.02.2012. Pakkalan sali

Energia- ilta 01.02.2012. Pakkalan sali Energia- ilta 01.02.2012 Pakkalan sali Pekka Seppänen LVI- Insinööri Kuntoarvioija, PKA energiatodistuksen antajan pätevyys, PETA Tyypilliset ongelmat -Tilausvesivirta liian suuri (kaukolämpökiinteistöt)

Lisätiedot

KOSTEUS. Visamäentie 35 B 13100 HML

KOSTEUS. Visamäentie 35 B 13100 HML 3 KOSTEUS Tapio Korkeamäki Visamäentie 35 B 13100 HML tapio.korkeamaki@hamk.fi RAKENNUSFYSIIKAN PERUSTEET KOSTEUS LÄMPÖ KOSTEUS Kostea ilma on kahden kaasun seos -kuivan ilman ja vesihöyryn Kuiva ilma

Lisätiedot

Kiinteistöhuolto taloyhtiössä ja säästötoimenpiteet

Kiinteistöhuolto taloyhtiössä ja säästötoimenpiteet Kiinteistöhuolto taloyhtiössä ja säästötoimenpiteet 12.04.2012 Pakkalasali Pekka Seppänen LVI- Insinööri Kuntoarvioija, PKA energiatodistuksen antajan pätevyys, PETA Tyypilliset ongelmat -Tilausvesivirta

Lisätiedot

Työkoneohjaamoiden pölynhallinta STHS koulutuspäivät 28.01.2015. Matti Lehtimäki

Työkoneohjaamoiden pölynhallinta STHS koulutuspäivät 28.01.2015. Matti Lehtimäki Työkoneohjaamoiden pölynhallinta STHS koulutuspäivät 28.01.2015 Matti Lehtimäki Ohjaamojen pölynhallintaan liittyviä hankkeita VTT Oy:ssä Työkoneiden ohjaamoilmastoinnin kehittäminen (TSR 1991) ohjaamoilmanvaihdon/ilmastoinnin

Lisätiedot

Miten parannan sisäilman laatua?

Miten parannan sisäilman laatua? Miten parannan sisäilman laatua? Tuula Syrjänen DI, rakennusterveysasiantuntija 17/05/2014 Mitä on hyvä sisäilma? Sisäilma on hyvää, jos suurin osa rakennuksen käyttäjistä on tyytyväisiä sisäilman laatuun

Lisätiedot

LÄMMÖNTALTEENOTTOLAITE

LÄMMÖNTALTEENOTTOLAITE 425 LÄMMÖNTALTEENOTTOLAITE SunAIR 425 Elektroninen säädin Kun ominaisuudet ratkaisevat AirWise Oy on merkittävä ilmanvaihtolaitteiden valmistaja sekä Suomen johtava pientalojen ilmanvaihtojärjestelmien

Lisätiedot

TIETOKARTOITUS - TALOTEKNIIKKA

TIETOKARTOITUS - TALOTEKNIIKKA TIETOKARTOITUS - TALOTEKNIIKKA Jari Palonen Aalto yliopiston Teknillinen korkeakoulu, Energiatekniikan laitos 27.9.2010 TALOTEKNIIKAN MAHDOLLISUUDET ENERGIANSÄÄSTÖ ASUMISVIIHTYISYYS SISÄILMASTO-ONGELMAT

Lisätiedot

Kotimaiset, energiatehokkaat. Fair-80 ja -120 ec. ilmanvaihtokoneet

Kotimaiset, energiatehokkaat. Fair-80 ja -120 ec. ilmanvaihtokoneet Kotimaiset, energiatehokkaat Fair-80 ja -120 ec ilmanvaihtokoneet Fair-80 ja -120 ec -ilmanvaihtokoneet Miksi tinkiä terveellisistä olosuhteista omassa kodissa? Energiansäästöä raikkaasta sisäilmasta tinkimättä

Lisätiedot

Suorahöyrystys tasavirtainvertteri

Suorahöyrystys tasavirtainvertteri Suorahöyrystys tasavirtainvertteri Usean yksikön samanaikainen jäähdytys ja lämmitys Seinäasennus MAFP Lattia tai kattoasennus Alakattoasennus Kasetti Kanavaasennus KPAFP SPAFP CAFP DSAFP Lisävarusteet

Lisätiedot

Lämmityksen perusteita 1

Lämmityksen perusteita 1 Lämmityksen perusteita 1 A K K L O E K JE = = K JJ= K I J = L = = J = J = EI A L = EEJ E I EL K = L = H = A JA A = K JJ= I K H = = A H J J = L EA 0 ) 7 0 ) 7 H = A J A E@ A F E F = J J A H EL A H I J =

Lisätiedot

Putki- ja energiaremontti Koulutustilaisuus 15.2.2012 Harjalämmönsiirtimet lämmöntalteenotossa Tomi Anttila

Putki- ja energiaremontti Koulutustilaisuus 15.2.2012 Harjalämmönsiirtimet lämmöntalteenotossa Tomi Anttila Lämmöntalteenoton asiantuntija Putki- ja energiaremontti Koulutustilaisuus 15.2.2012 Harjalämmönsiirtimet lämmöntalteenotossa Tomi Anttila Oy Hydrocell Ltd perustettiin vuonna 1993 Toimipaikka Järvenpäässä

Lisätiedot

PRA - Mittaus- ja säätömoduuli PRA. Mittaus- ja säätömoduuli. Tuotemallit

PRA - Mittaus- ja säätömoduuli PRA. Mittaus- ja säätömoduuli. Tuotemallit PRA Mittaus- ja säätömoduuli Ilman tilavuusvirran mittaukseen ja säätöön tarkoitettu laite. Manuaalinen säätö ilman työkaluja Virtaussuuttimien käyttöön perustuva suuri mittaustarkkuus. Virtauksen säätökartion

Lisätiedot

SISÄILMAN LAADUN PARANTAMINEN KÄYTTÄMÄLLÄ SIIRTOILMAA Uusia ratkaisuja

SISÄILMAN LAADUN PARANTAMINEN KÄYTTÄMÄLLÄ SIIRTOILMAA Uusia ratkaisuja SISÄILMAN LAADUN PARANTAMINEN KÄYTTÄMÄLLÄ SIIRTOILMAA Uusia ratkaisuja Timo Kalema, Ari-Pekka Lassila ja Maxime Viot Tampereen teknillinen yliopisto Kone- ja tuotantotekniikan laitos Tutkimus RYM-SHOK

Lisätiedot

IV-SELVITYS KORSON PÄIVÄKOTI MERIKOTKANTIE 8, 01450 VANTAA

IV-SELVITYS KORSON PÄIVÄKOTI MERIKOTKANTIE 8, 01450 VANTAA 14.9.2012 IV-SELVITYS KORSON PÄIVÄKOTI MERIKOTKANTIE 8, 01450 VANTAA DELETE TUTKIMUS OY, HELSINKI Mikko Mäkinen p. 040 584 46 88 mikko.makinen@delete.fi SISÄLTÖ 1 YLEISTÄ... 3 1.1 TILAAJA... 3 1.2 KOHDETIEDOT...

Lisätiedot

Taloudellinen tehonsäätö ilmaverhoissa

Taloudellinen tehonsäätö ilmaverhoissa Taloudellinen tehonsäätö ilmaverhoissa Ilmaverhot erottavat sisäilman ulkoilmasta liiketiloissa ja toimistorakennuksissa. Erottuminen saavutetaan minimoimalla luonnollinen lämpövuoto ja lämmittämällä sisään

Lisätiedot

TUTKIMUSSELOSTUS. Työ 2696-3 22.5.2014

TUTKIMUSSELOSTUS. Työ 2696-3 22.5.2014 Työ 2696-3 22.5.2014 TUTKIMUSSELOSTUS Tuloilmaikkunan virtaustekniset ominaisuudet: Savukokeet, lämpötilaseuranta ja tuloilman virtaus ikkunavälissä ilman venttiiliä, ilmanohjaimia ja suodattimia Insinööritoimisto

Lisätiedot

Radon Pirkanmaalla, uudisrakentamisen radontorjunta ja radonkorjaukset

Radon Pirkanmaalla, uudisrakentamisen radontorjunta ja radonkorjaukset Tampereen Messu- ja Urheilukeskus Tiedotustilaisuus 11.2. 2011 Radon Pirkanmaalla, uudisrakentamisen radontorjunta ja radonkorjaukset Hannu Arvela 1 Radon on radioaktiivinen kaasu syntyy jatkuvasti kaikessa

Lisätiedot

Kaikki kaatopaikalle vai saadaanko IV-kuntoon? ILMANVAIHTOJÄRJESTELMÄN YLEISARVIOINTI. Harri Ripatti

Kaikki kaatopaikalle vai saadaanko IV-kuntoon? ILMANVAIHTOJÄRJESTELMÄN YLEISARVIOINTI. Harri Ripatti Kaikki kaatopaikalle vai saadaanko IV-kuntoon? ILMANVAIHTOJÄRJESTELMÄN YLEISARVIOINTI Harri Ripatti TAVOITTEET Täyttääkö IV-järjestelmä nykyiselle tai tulevalle käytölle asetetut tavoitteet Sisäilmasto,

Lisätiedot

SunAIR RW 130 EC-LT ja RW 150 EC-LT

SunAIR RW 130 EC-LT ja RW 150 EC-LT SunAIR RW 130 EC-LT ja RW 150 EC-LT LÄMMÖNTALTEENOTTOLAITTEET Vuosihyötysuhde parasta A-luokkaa SunAIR RW 130 EC-LT SunAIR RW 150 EC-LT sisäkuva Elektroninen säädin (E) Kun ominaisuudet ratkaisevat AirWise

Lisätiedot

Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin

Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin Naavatar - järjestelmällä säästöjä kerrostalojen ja muiden kiinteistöjen lämmityskuluihin Hydrocell Oy Energiansäästön, lämmönsiirron ja lämmöntalteenoton asiantuntija www.hydrocell.fi NAAVATAR järjestelmä

Lisätiedot

IV-SELVITYS PÄHKINÄNSÄRKIJÄN PÄIVÄKOTI PÄHKINÄTIE 2, 01710 VANTAA

IV-SELVITYS PÄHKINÄNSÄRKIJÄN PÄIVÄKOTI PÄHKINÄTIE 2, 01710 VANTAA 10.7.2012 IV-SELVITYS PÄHKINÄNSÄRKIJÄN PÄIVÄKOTI PÄHKINÄTIE 2, 01710 VANTAA DELETE TUTKIMUS OY, HELSINKI Mikko Mäkinen p. 040 584 46 88 mikko.makinen@delete.fi SISÄLTÖ 1 YLEISTÄ... 3 1.1 TILAAJA... 3 1.2

Lisätiedot

Poistoilmalämpöpumput EX35S EX50S EX65S

Poistoilmalämpöpumput EX35S EX50S EX65S Poistoilmalämpöpumput EX35S EX50S EX65S Huolella suunniteltu Suunnittelun tavoitteet: Korkea COP (hyötysuhde) Hiljainen käyntiääni Tyylikäs ulkonäkö Selkeä ja yksinkertainen käyttöliittymä Enemmän lämmintä

Lisätiedot

YLEISILMANVAIHDON JAKSOTTAISEN KÄYTÖN VAIKUTUKSET RAKENNUSTEN PAINE-EROIHIN JA SISÄILMAN LAATUUN

YLEISILMANVAIHDON JAKSOTTAISEN KÄYTÖN VAIKUTUKSET RAKENNUSTEN PAINE-EROIHIN JA SISÄILMAN LAATUUN YLEISILMANVAIHDON JAKSOTTAISEN KÄYTÖN VAIKUTUKSET RAKENNUSTEN PAINE-EROIHIN JA SISÄILMAN LAATUUN Vesa Asikainen (Envimetria Oy) Pertti Pasanen (Itä-Suomen yliopisto, ympäristötieteen laitos) Helmi Kokotti

Lisätiedot

SWEGON HOME SOLUTIONS

SWEGON HOME SOLUTIONS ÄLYKÄSTÄ ILMANVAIHTOA IHMISILLE JA KODILLE TAKAA RAIKKKAAN JA TERVEELLISEN SISÄILMAN Ilmanlaadulla on valtavan suuri merkitys hyvinvoinnillemme. Se vaikuttaa yleiseen jaksamiseen ja terveyteemme. Huono

Lisätiedot

Kiinteistötekniikkaratkaisut

Kiinteistötekniikkaratkaisut Kiinteistötekniikkaratkaisut SmartFinn AUTOMAATIO SmartFinn Automaatio on aidosti helppokäyttöinen järjestelmä, joka tarjoaa kaikki automaatiotoiminnot yhden yhteisen käyttöliittymän kautta. Kattavat asuntokohtaiset

Lisätiedot

Vapaasti tuulettuvan radonputkiston vaikutus sisäilman radonpitoisuuteen

Vapaasti tuulettuvan radonputkiston vaikutus sisäilman radonpitoisuuteen Vapaasti tuulettuvan radonputkiston vaikutus sisäilman radonpitoisuuteen kenttätutkimuksia Olli Holmgren ja Hannu Arvela Säteilyturvakeskus i i 13.3.2013, 3 Helsinki Esitelmän sisältö Yleistä radonista

Lisätiedot

IV-kuntotutkimus. Itä-Hakkilan päiväkoti, keskitalo 01.02.2012. Keskustie 1 01260 Vantaa

IV-kuntotutkimus. Itä-Hakkilan päiväkoti, keskitalo 01.02.2012. Keskustie 1 01260 Vantaa 01.02.2012 IV-kuntotutkimus Itä-Hakkilan päiväkoti, keskitalo Keskustie 1 01260 Vantaa HELSINKI: posti@asb.fi keskus: 0207 311 140, faksi: 0207 311 145 0207 311 140, faksi: 0207 311 145 www.asb.fi TAMPERE:

Lisätiedot

Pyöreä hajotin avoimeen asennukseen

Pyöreä hajotin avoimeen asennukseen LÖV-R Pyöreä hajotin avoimeen asennukseen Mallisuojattu LÖV-rei'itys Soveltuu erinomaisesti jäähdytetylle ilmalle Säädettävä aukon korkeus Laatikko tiivistetty Ecoson-vaimennusmateriaalilla Saatavana korkean

Lisätiedot

ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11.

ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11. ENERGIATEHOKAAN TALON LÄMMITYSRATKAISUT PEP Promotion of European Passive Houses Intelligent Energy Europe seminaari 23.11.26 Espoo Mikko Saari, VTT 24.11.26 1 Energiatehokas kerrostalo kuluttaa 7 % vähemmän

Lisätiedot

ECO 90 EC-LT ja ECO 130 EC-LT

ECO 90 EC-LT ja ECO 130 EC-LT ECO 90 EC-LT ja ECO 130 EC-LT LÄMMÖNTALTEENOTTOLAITTEET ECO 90 EC-LT ECO130 EC-LT Elektroninen säädin (E) Kun ominaisuudet ratkaisevat AirWise Oy on merkittävä ilmanvaihtolaitteiden valmistaja sekä Suomen

Lisätiedot

Ohjeen aihe: Ilman jako huonetilassa, päätelaitteet ja niiden kunto, siirtoilmareitit

Ohjeen aihe: Ilman jako huonetilassa, päätelaitteet ja niiden kunto, siirtoilmareitit Päätelaitteiden kuntotutkimusohje 16.1.2014 1 (7) IV-kuntotutkimus Ohjeen aihe: Ilman jako huonetilassa, päätelaitteet ja niiden kunto, siirtoilmareitit Tämä IV-kuntotutkimusohje koskee huonetilassa tai

Lisätiedot

Alternative Solutions. Alternative - WRG Energiaa säästävä ilmanvaihto- & lämmöntalteenottolaite

Alternative Solutions. Alternative - WRG Energiaa säästävä ilmanvaihto- & lämmöntalteenottolaite Alternative - WRG Energiaa säästävä ilmanvaihto- & SÄÄSTÄÄ ENERGIAA lämmöntalteenottolaite HYVÄ SISÄILMA Ihminen hengittää vuorokaudessa noin 10 000 litraa ilmaa Ilmassa olevat pienhiukkaset ovat todistetusti

Lisätiedot

TIETOKARTOITUS - TALOTEKNIIKKA

TIETOKARTOITUS - TALOTEKNIIKKA TIETOKARTOITUS - TALOTEKNIIKKA Jari Palonen Aalto yliopiston Teknillinen korkeakoulu, Energiatekniikan laitos 9.6.2011 TALOTEKNIIKAN MAHDOLLISUUDET ENERGIANSÄÄSTÖ > 50 % lämmönkulutuksesta ASUMISVIIHTYISYYS

Lisätiedot

LISÄERISTÄMINEN. VAIKUTUKSET Rakenteen rakennusfysikaaliseen toimintaan? Rakennuksen ilmatiiviyteen? Energiankulutukseen? Viihtyvyyteen?

LISÄERISTÄMINEN. VAIKUTUKSET Rakenteen rakennusfysikaaliseen toimintaan? Rakennuksen ilmatiiviyteen? Energiankulutukseen? Viihtyvyyteen? Hankesuunnittelu Suunnittelu Toteutus Seuranta Tiiviysmittaus Ilmavuotojen paikannus Rakenneavaukset Materiaalivalinnat Rakennusfysik. Suun. Ilmanvaihto Työmenetelmät Tiiviysmittaus Puhdas työmaa Tiiviysmittaus

Lisätiedot

valmistaa ilmanvaihtokoneita Parmair Eximus JrS

valmistaa ilmanvaihtokoneita Parmair Eximus JrS Parmair Eximus JrS Parmair Eximus JrS Air Wise Oy valmistaa ilmanvaihtokoneita Parmair Eximus JrS Sertifikaatti Nro C333/05 1 (2) Parmair Eximus JrS on tarkoitettu käytettäväksi asunnon ilmanvaihtokoneena

Lisätiedot

SAP Flexi Multi Split

SAP Flexi Multi Split PB097:0705 SAP Flexi Multi Split Ilmastointilaite lämmitykseen ja jäähdytykseen Vietämme paljon aikaamme sisätiloissa. Hyvä sisäilma on meille ensiarvoisen tärkeää. Puhdas, oikeanlämpöinen ilma on tärkeä

Lisätiedot

Energy recovery ventilation for modern passive houses. Timo Luukkainen 2009-03-28

Energy recovery ventilation for modern passive houses. Timo Luukkainen 2009-03-28 Energy recovery ventilation for modern passive houses Timo Luukkainen 2009-03-28 Enervent solutions for passive houses 2009 Järjestelmät passiivitaloihin Passiivitalo on termospullo. Ilman koneellista

Lisätiedot

Pyörrehajotin. Malli VD 2/8/FI/3. säädettävä, asennuskorkeus 3,80 m. Maahantuoja Oy Teknocalor Ab Puh 09 825 4600 Telefax 09 826 151

Pyörrehajotin. Malli VD 2/8/FI/3. säädettävä, asennuskorkeus 3,80 m. Maahantuoja Oy Teknocalor Ab Puh 09 825 4600 Telefax 09 826 151 2/8/FI/3 Pyörrehajotin Malli VD säädettävä, asennuskorkeus 3,80 m Maahantuoja Oy Teknocalor Ab Puh 09 825 4600 Telefax 09 826 151 Sinikellonkuja 4 e-mail teknocalor@teknocalor.fi 01300 Vantaa www.teknocalor.fi

Lisätiedot

ILMANKÄSITTELYKONEET. tekninen esite. Pienet pakettikoneet 0,15-1,5 m3/s

ILMANKÄSITTELYKONEET. tekninen esite. Pienet pakettikoneet 0,15-1,5 m3/s ILMANKÄSITTELYKONEET tekninen esite Pienet pakettikoneet 0,15-1,5 m3/s Kesair ilmankäsittelykoneet on tarkoitettu liike- toimisto päiväkoti ym. muiden julkisten rakennusten ilmanvaihtokoneeksi Koneet on

Lisätiedot

CDH/CLH. CleanZone Mikrosuodattimella varustettu kattohajotin puhdastiloihin. Pikavalintataulukko

CDH/CLH. CleanZone Mikrosuodattimella varustettu kattohajotin puhdastiloihin. Pikavalintataulukko CleanZone Mikrosuodattimella varustettu kattohajotin puhdastiloihin.lyhyesti Vaaka- tai pystysuora kanavaliitäntä Geeli- tai kumitiivisteellä varustettu mikrosuodatin H14 Polttomaalattu sisäpuolelta Mittausyhde

Lisätiedot

ERISTETTY IPO-kanavapuhallin Omakoti-, rivi- ja kerrostalot, teollisuus Hiljainen Helppo huoltaa Portaattomasti säädettävä Paloeristetty Hyvä hyötysuhde Laaja valikoima www.ilto.fi Kanavapuhaltimien uusi

Lisätiedot

Radonkorjausmenetelmien tehokkuus Kyselytutkimus

Radonkorjausmenetelmien tehokkuus Kyselytutkimus Radonkorjausmenetelmien tehokkuus Kyselytutkimus Olli Holmgren, Tuomas Valmari, Päivi Kurttio Säteilyturvakeskus 11.3.2015, Helsinki Esitelmän sisältö Yleistä radonista Esiintyminen, mittaukset, lähteet,

Lisätiedot

ILTO Comfort CE5 ENEMMÄN KUIN LÄMPÖPUMPPU AINUTLAATUINEN UUTUUS LÄMPÖPUMPPU JA ILMANVAIHDON LÄMMÖN- TALTEENOTTOLAITE YHDESSÄ MERKITTÄVÄSTI PIENEMMÄLLÄ INVESTOINNILLA MAALÄMPÖPUMPUN VEROISTA TEHOA LÄMPIMÄN

Lisätiedot

PERUSKORJAUSSELVITYKSIÄ, ILMANVAIHDON SELVITYSTYÖ

PERUSKORJAUSSELVITYKSIÄ, ILMANVAIHDON SELVITYSTYÖ 4.6.2013 1(4) Pelimannin ala-aste ja päiväkoti Pelimannintie 16 Helsinki PERUSKORJAUSSELVITYKSIÄ, ILMANVAIHDON SELVITYSTYÖ 1. TEHTÄVÄ Tarkoituksena oli selvittää ilmanvaihtolaitteiden mahdolliset mineraalivillalähteet

Lisätiedot

Tuoteluettelo Korvausilman lämmittimet Siirtoilmapuhallin

Tuoteluettelo Korvausilman lämmittimet Siirtoilmapuhallin Tuoteluettelo Korvausilman lämmittimet Siirtoilmapuhallin Mobair yrityksenä LVI-Suunnittelu Juha Tourunen Oy perustettiin Halikkoon 1989. Varsin pian yrityksen perustamisen jälkeen syntyi myös Mobair-tuoteidea.

Lisätiedot

Näytesivut. Kaukolämmityksen automaatio. 5.1 Kaukolämmityskiinteistön lämmönjako

Näytesivut. Kaukolämmityksen automaatio. 5.1 Kaukolämmityskiinteistön lämmönjako 5 Kaukolämmityksen automaatio 5.1 Kaukolämmityskiinteistön lämmönjako Kaukolämmityksen toiminta perustuu keskitettyyn lämpimän veden tuottamiseen kaukolämpölaitoksella. Sieltä lämmin vesi pumpataan kaukolämpöputkistoa

Lisätiedot

ECO-järjestelmä: Ilmanvaihdon lämmöntalteenotto kerrostalossa ja saneerauskohteissa 1 2008-11-24

ECO-järjestelmä: Ilmanvaihdon lämmöntalteenotto kerrostalossa ja saneerauskohteissa 1 2008-11-24 ECO-järjestelmä: Ilmanvaihdon lämmöntalteenotto kerrostalossa ja saneerauskohteissa 1 2008-11-24 ECO-järjestelmän taustaa: ECO järjestelmää lähdettiin kehittämään 2004, tarkoituksena saada pelkällä poistojärjestelmällä

Lisätiedot

StudioLine puhallinpatterit

StudioLine puhallinpatterit StudioLine puhallinpatterit StudioLine TM puhallinpatteriperhe Uuden sukupolven innovatiiviset puhallinpatterit StudioLine TM on Chiller Oy:n on kehittämä ensiluokkainen puhallinpatteriperhe. Laitteiden

Lisätiedot

KOULUN ILMANVAIHTO. Tarvittava materiaali: Paperiarkkeja, tiedonkeruulomake (liitteenä). Tarvittavat taidot: Kirjoitustaito

KOULUN ILMANVAIHTO. Tarvittava materiaali: Paperiarkkeja, tiedonkeruulomake (liitteenä). Tarvittavat taidot: Kirjoitustaito KOULUN ILMANVAIHTO Tavoitteet: Oppilaat tiedostavat ikkunoiden vaikutuksen koulun energiatehokkuuteen/ energiankulutukseen. Ikkunoilla on suuri vaikutus siihen, miten koulussa lämmitetään ja miten ilmanvaihto

Lisätiedot

Taloyhtiön energiansäästö

Taloyhtiön energiansäästö Taloyhtiön energiansäästö Hallitusforum 19.03.2011 Messukeskus, Helsinki Petri Pylsy, Kiinteistöliitto Suomen Kiinteistöliitto ry Mitä rakennusten energiatehokkuus on Energiatehokkuus paranee, kun Pienemmällä

Lisätiedot

Tuloilmalämmitin. Tuloilmalämmitin 1000. Vallox. Vallox. Ohje. Tuloilmalämmitin. Tuloilmalämmitin 1000. Malli. Ohje. Voimassa alkaen.

Tuloilmalämmitin. Tuloilmalämmitin 1000. Vallox. Vallox. Ohje. Tuloilmalämmitin. Tuloilmalämmitin 1000. Malli. Ohje. Voimassa alkaen. Ohje Malli Tyyppi : 2352 : 2353 Ohje 1.09.629 FIN Voimassa alkaen 1.7.2015 Päivitetty 1.7.2015... 2... 5 TUOIMAÄMMITIN VAOX TUOIMAÄMMITIN Poistoilmajärjestelmän aiheuttaman alipaineen vaikutuksesta ulkoa

Lisätiedot

Kotimaiset, energiatehokkaat. Fair-80 ja -120 ec. ilmanvaihtokoneet

Kotimaiset, energiatehokkaat. Fair-80 ja -120 ec. ilmanvaihtokoneet Kotimaiset, energiatehokkaat Fair-8 ja -12 ec ilmanvaihtokoneet Fair-8 ja -12 ec -ilmanvaihtokoneet Miksi tinkiä terveellisistä olosuhteista omassa kodissa? Energiansäästöä raikkaasta sisäilmasta tinkimättä

Lisätiedot

DPG. Piennopeuslaite pienille ilmavirroille

DPG. Piennopeuslaite pienille ilmavirroille Piennopeuslaite pienille ilmavirroille Kuvassa erikoismalli, vakiomalli mustaksi maalattu Lyhyesti Lattianrajaan asennettava tuloilmalaite esim. teattereihin Kiinteä hajotuskuvio Yksinkertainen asennus

Lisätiedot

Toimintakokeet toteutus ja dokumentointi Janne Nevala LVI-Sasto Oy

Toimintakokeet toteutus ja dokumentointi Janne Nevala LVI-Sasto Oy Toimintakokeet toteutus ja dokumentointi Janne Nevala LVI-Sasto Oy Toimintakokeita tehdään mm. seuraaville LVIA-järjestelmille: 1. Käyttövesiverkosto 2. Lämmitysjärjestelmä 3. Ilmanvaihto 4. Rakennusautomaatio

Lisätiedot

Ilmalämpöpumput (ILP)

Ilmalämpöpumput (ILP) Ilmalämpöpumput (ILP) 1 TOIMINTA Lämmönlähteenä ulkoilma Yleensä yksi sisäja ulkoyksikkö Lämmittää sisäilmaa huonejärjestelyn vaikutus suuri 2 1 ULKO- JA SISÄYKSIKKÖ Ulkoyksikkö kierrättää lävitseen ulkoilmaa

Lisätiedot

Rakennusten energiatehokkuus. Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy

Rakennusten energiatehokkuus. Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy Rakennusten energiatehokkuus Tulikivi Oyj 8.6.2011 Helsinki Mikko Saari VTT Expert Services Oy 6.6.2011 2 Mitä on rakennusten energiatehokkuus Mitä saadaan (= hyvä talo) Energiatehokkuus = ----------------------------------------------

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Tarjolla tänään Ilmanvaihdon parantaminen Lämpöpumppuratkaisuja Märkätilojen vesikiertoinen

Lisätiedot

SunAIR 450 e Smart. SunAIR 550 e Smart

SunAIR 450 e Smart. SunAIR 550 e Smart SunAIR Smart mallit SunAIR 450 e Smart Rivi- ja omakotitaloihin. Automaattinen kiertoilma, paineentasaus, talvi- ja kesäohitusautomatiikka, tasaa lämmön ja ilmanpainen kesät talvet, jakaa tulisijan lämmön

Lisätiedot

Terveellinen sisäilma: Puhdasta ilmaa sairaalaympäristössä. Veli Koskinen 1.4.2014 KYAMK

Terveellinen sisäilma: Puhdasta ilmaa sairaalaympäristössä. Veli Koskinen 1.4.2014 KYAMK Terveellinen sisäilma: Puhdasta ilmaa sairaalaympäristössä Veli Koskinen 1.4.2014 KYAMK Halton Group pähkinänkuoressa Perustettu vuonna 1969 Perheyritys Liikevaihto 2013 170 M Toimintaa 24 maassa Toimiala:

Lisätiedot

IV-kuntotutkimus. Jokiuoman päiväkoti 23.3.2012. Vihertie 16 01710 Vantaa. HELSINKI: posti@asb.fi keskus: 0207 311 140, faksi: 0207 311 145

IV-kuntotutkimus. Jokiuoman päiväkoti 23.3.2012. Vihertie 16 01710 Vantaa. HELSINKI: posti@asb.fi keskus: 0207 311 140, faksi: 0207 311 145 23.3.2012 IV-kuntotutkimus Jokiuoman päiväkoti Vihertie 16 01710 Vantaa HELSINKI: posti@asb.fi keskus: 0207 311 140, faksi: 0207 311 145 0207 311 140, faksi: 0207 311 145 www.asb.fi TAMPERE: asb-yhtiot@asb.fi

Lisätiedot

Oy IV-Special Ab 03.03.2011. IV-kuntotutkimus. Kiirunatien päiväkoti. Kiirunatie 3 01450 VANTAA

Oy IV-Special Ab 03.03.2011. IV-kuntotutkimus. Kiirunatien päiväkoti. Kiirunatie 3 01450 VANTAA Oy IV-Special Ab 03.03.2011 IV-kuntotutkimus Kiirunatien päiväkoti Kiirunatie 3 01450 VANTAA www.asb.fi Helsinki email: posti@asb.fi Tampere email: asb-yhtiot@asb.fi PÄÄKONTTORI: Konalankuja 4, 00390 Helsinki

Lisätiedot

ASENNUSOHJE VPM120, VPM240 JA VPM 360

ASENNUSOHJE VPM120, VPM240 JA VPM 360 ASENNUSOHJE Sivu 1 / 5 ASENNUSOHJE VPM120, VPM240 JA VPM 360 YLEISTÄ Varmista, että seuraavat dokumentit ovat konetoimituksen mukana: asennusohje (tämä dokumentti) CTS 600 ohjausjärjestelmän käyttöohje

Lisätiedot

Rakennuksen painesuhteiden ja rakenneliittymien tiiveyden merkitys sisäilman laatuun

Rakennuksen painesuhteiden ja rakenneliittymien tiiveyden merkitys sisäilman laatuun Rakennuksen painesuhteiden ja rakenneliittymien tiiveyden merkitys sisäilman laatuun Sisäilma-asiantuntija Saija Korpi WWW.AINS.FI Syvennytään ensin hiukan mikrobiologiaan Lähtökohta: Tavanomaisia mikrobimääriä

Lisätiedot

Esimerkkejä energiatehokkaista korjausratkaisuista

Esimerkkejä energiatehokkaista korjausratkaisuista Esimerkkejä energiatehokkaista korjausratkaisuista DI Petri Pylsy, Suomen Kiinteistöliitto Tee parannus!-aluekiertue Järvenpää 24.11.2009 Tarjolla tänään Energiatehokkaita korjausratkaisuja: Ulkorakenteiden

Lisätiedot

lindab we simplify construction Akustiset ratkaisut Äänenvaimentimet

lindab we simplify construction Akustiset ratkaisut Äänenvaimentimet lindab we simplify construction Akustiset ratkaisut Äänenvaimentimet Akustiset ratkaisut Pitääkö hiljaisuuden olla ylellisyyttä? Nykyisessä ympäristössä on melua ja häiriötekijöitä enemmän kuin koskaan

Lisätiedot

Ilmasta lämpöä. Vaihda vanha ilmalämmityskoneesi energiatehokkaaseen Lämpö Iiwariin. www.niemi-kari.fi

Ilmasta lämpöä. Vaihda vanha ilmalämmityskoneesi energiatehokkaaseen Lämpö Iiwariin. www.niemi-kari.fi Ilmasta lämpöä Vaihda vanha ilmalämmityskoneesi energiatehokkaaseen Lämpö Iiwariin. www.niemi-kari.fi Lämpö Iiwari ilmalämmitysjärjestelmä Energiatehokas Lämpö Iiwari voidaan asentaa lähes kaikkien vanhojen

Lisätiedot

IV-kuntotutkimus. Lämmöntalteenoton kuntotutkimusohje 16.1.2014 1 (9) Ohjeen aihe: Lämmöntalteenottolaitteet

IV-kuntotutkimus. Lämmöntalteenoton kuntotutkimusohje 16.1.2014 1 (9) Ohjeen aihe: Lämmöntalteenottolaitteet Lämmöntalteenoton kuntotutkimusohje 16.1.2014 1 (9) IV-kuntotutkimus Ohjeen aihe: Lämmöntalteenottolaitteet Tämä IV-kuntotutkimusohje koskee ilmanvaihdon lämmöntalteenottolaitteita. Näitä ovat lämmöntalteenoton

Lisätiedot

ECo-huippuimuri Edistyksellinen ja energiaa säästävä tasavirtamoottorillinen huippuimuri

ECo-huippuimuri Edistyksellinen ja energiaa säästävä tasavirtamoottorillinen huippuimuri ECo-huippuimuri Edistyksellinen ja energiaa säästävä tasavirtamoottorillinen huippuimuri Taattua VILPE laatua: 1 v. väritakuu 2 v. tekninen takuu 2 v. takuu sähköosille VILPE ECo-huippuimuri VILPE ECo

Lisätiedot

Halton Zen Corner ZCO - syrjäyttävä tuloilmalaite

Halton Zen Corner ZCO - syrjäyttävä tuloilmalaite Halton Zen Corner ZCO - syrjäyttävä tuloilmalaite Laaja ilmavirran säätöalue Tasainen ilmavirran virtauskuvio saadaan aikaan pienillä rei'illä, jotka muodostavat optimaaliset virtausolosuhteet hajottimen

Lisätiedot

IV-kuntotutkimus. Ilmanvaihtokoneen kuntotutkimusohje 16.1.2014 1 (5) Ohjeen aihe: Ilmanvaihtokoneet ja niihin liittyvät komponentit

IV-kuntotutkimus. Ilmanvaihtokoneen kuntotutkimusohje 16.1.2014 1 (5) Ohjeen aihe: Ilmanvaihtokoneet ja niihin liittyvät komponentit Ilmanvaihtokoneen kuntotutkimusohje 16.1.2014 1 (5) IV-kuntotutkimus Ohjeen aihe: Ilmanvaihtokoneet ja niihin liittyvät komponentit Tämä IV-kuntotutkimusohje koskee ilmanvaihtokoneita ja niihin liittyviä

Lisätiedot