Poissonin yhtälö ja Greenin funktio

Koko: px
Aloita esitys sivulta:

Download "Poissonin yhtälö ja Greenin funktio"

Transkriptio

1 Poissonin yhtälö ja Greenin funktio Ipa Puustinen Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 209

2

3 Tiivistelmä: Ipa Puustinen, Poissonin yhtälö ja Greenin funktio (engl. Poisson equation and Green's function), matematiikan pro gradu -tutkielma, 38 s., Jyväskylän yliopisto, Matematiikan ja tilastotieteen laitos, kevät 209. Tämän tutkielman tarkoituksena on muodostaa ratkaisufunktiot Laplacen ja Poissonin yhtälöille avaruudessa R n ja sen avoimen osajoukon tapauksessa. Laplacen yhtälön avulla voidaan määritellä muun muassa harmoniset funktiot, joita etsittävät ratkaisufunktiotkin tulevat olemaan. Siten tutkielman aluksi tutkitaan harmonisia funktioita ja osoitetaan niitä koskevien lauseiden avulla, että tiettyjen dierentiaaliyhtälöiden ratkaisut ovat yksikäsitteisiä. Tämän jälkeen ryhdytään tutkimaan Laplacen ja Poissonin yhtälöitä ensiksi koko avaruudessa. Avoin osajoukko asettaa puolestaan uusia vaatimuksia ratkaisufunktioille, sillä joukon reunalla niiden on toteutettava eräitä ehtoja. Tätä varten määritellään ensiksi korjausfunktio tietyn dierentiaaliyhtälön ratkaisuna ja sitä hyödyntäen määritellään Greenin funktio. Yleisen avoimen osajoukon tapauksessa varsinkin korjausfunktiolle on hyvinkin vaikea saada yksikäsitteistä esitysmuotoa eikä sen olemassaolokaan ole aina selvää. Tästä huolimatta esitetään Laplacen ja Poissonin yhtälöiden ratkaisukaavat avoimen osajoukon tapauksessa ja todistetaan ne. Tätä varten joudutaan olettamaan korjausfunktio olemassaolevaksi, eli tutkittava joukko on oltava suotuisa. Korjausfunktio on kuitenkin hyvin keskeisessä roolissa Greenin funktion muodostamisessa ja siten myös ratkaisufunktioiden esittämisessä. Tästä syystä tutkielman lopussa käsitellään kaksi joukkoa, joissa korjausfunktiolle löydetään konkreettinen esitys: yksikköpallo ja puoliavaruus. Lopuksi esitetään vielä ratkaisufunktiot näissä joukoissa mahdollisimman konkreettisessa muodossa. i

4 Sisältö Johdanto Luku. Esitietoja 3 Luku 2. Harmonisista funktioista 5 Luku 3. Laplacen ja Poissonin yhtälöt avaruudessa R n Laplacen yhtälö Poissonin yhtälö 5 Luku 4. Laplacen ja Poissonin yhtälöt avoimessa joukossa Greenin funktio Dirichletin ongelma Laplacen yhtälölle Dirichletin ongelma Poissonin yhtälölle 28 Luku 5. Greenin funktio erityistapauksissa Greenin funktio yksikköpallossa Greenin funktio puoliavaruudessa 34 Liite A. Merkintöjä 37 Kirjallisuutta 38 ii

5 Johdanto Pierre-Simon Laplace (749827) oli ranskalainen matemaatikko ja fyysikko, joka oli keskeisessä roolissa matemaattisen fysiikan kehityksessä, missä fysiikan ongelmia pyritään ratkaisemaan matemaattisin keinoin. Laplace tutki muun muuassa kappaleen sähköistä potentiaalienergiaa ja osoittikin sen toteuttavan tietyn osittaisdierentiaaliyhtälön, joka nykyisin tunnetaan Laplacen yhtälönä. Laplacen yhtälö esiintyy monessa eri fysiikan osa-alueessa, kuten lämmönjohtavuudessa ja sähkömagnetismissa. Esimerkiksi sähkömagnetismi rakentuu neljän Maxwellin yhtälön pohjalle, joista toinen yhtälö tunnetaan Gaussin lakina magnetismille. Tämä laki sanoo, että magneettikenttä toteuttaa Laplacen yhtälön, katso [3, s. 37]. Tavallinen fysikaalinen tulkinta Laplacen yhtälölle on, että jonkin suureen kokonaisvuo sileän pinnan läpi on nolla. Matemaattisesti kyse on siitä, että n 2 f = 0 x i x i i= tutkittavalle funktiolle f. Tästä voidaankin yleistää tilanne, jossa osittaisderivaattojen summa ei olekaan nolla. Tätä yleistystä kutsutaan Poissonin yhtälöksi ja se on saanut nimensä ranskalaiselta Siméon Denis Poissonilta (78840). Fysiikassa Poissonin yhtälö liittää esimerkiksi varaustiheyden ja kappaleen sähköisen potentiaalin yhteen, mikä saadaan Maxwellin. yhtälöstä [3, s. 37] pienellä sijoituksella. Tämän tutkielman tarkoituksena on tutustua harmonisten funktioiden ominaisuuksiin sekä Greenin funktioon. Lisäksi tarkoitus on ratkaista näiden avulla Laplacen ja Poissonin dierentiaaliyhtälöt avoimessa joukossa. Tavoitteena on myös saada muotoiltua konkreettiset ratkaisukaavat Dirichletin ongelmaan sekä Laplacen, että Poissonin yhtälöille käyttäen Greenin funktiota. Luvuissa ja 2 esitellään tarvittavia tuloksia, joista erityisesti Luku on kooste tuloksista, joita ei todisteta, kuten vektorianalyysistä tutut Greenin lauseet. Lisäksi liitteeseen A on kerätty tutkielmassa usein esiintyviä merkintöjä. Luku 2 käsittelee harmonisia funktioita ja siinä määritellään harmoniset funktiot ensin Laplacen yhtälön avulla, kuten ne yleensä fysiikassa määritellään, ja sitten vahvempien matemaattisten tulosten kuten keskiarvoperiaatteen avulla. Sen jälkeen todistetaan harmonisille funktioille maksimi- ja minimiperiaate, joita käyttämällä voidaan todistaa luvuissa 3, 4 ja 5 tutkittavien osittaisdierentiaaliyhtälöiden yksikäsitteisyys. Tällä haetaan tasapainoa lukujen välille, sillä osa lukujen 3 ja 4 laskuista on hyvinkin teknisiä, joten lukukokemuksen helpottamiseksi yksikäsitteisyystarkastelu tehdään jo luvussa 2. Luvussa 3 määritetään ensiksi Laplacen yhtälö avaruuteen R n ja todistetaan, että sille on olemassa konkreettinen ratkaisufunktio Φ. Tämän jälkeen tehdään Laplacen yhtälölle yleistys, jolloin päädytään Poissonin yhtälöön ja luonnollisesti sen ratkaisufunktioon lisäksi muotoillaan ratkaisufunktiolle kaava funktion Φ avulla. Luvussa 4

6 2 JOHDANTO rajoitutaan avaruuden R n avoimeen osajoukkoon ja tutkitaan, miten edellisen luvun ratkaisufunktiot muuttuvat. Osajoukko asettaa ratkaisufunktiolle vaatimuksia joukon reunalla ja tätä varten määritellään Greenin funktio. Yleisimmät tavat kvantioida vaatimukset reunalla ovat Neumannin ja Dirichletin ongelmat, joista tässä tutkielmassa käytetään Dirichletin ongelmaa. Muodostetaan uudet ratkaisufunktiot ensin Laplacen ja sitten Poissonin yhtälöiden Dirichletin ongelmille Greenin funktion avulla Luvussa 5 valitaan tutkittaviksi joukoiksi avaruuden R n yksikköpallo ja ylempi puoliavaruus. Lasketaan näille joukoille Greenin funktiot ja sen jälkeen annetaan ratkaisufunktiot mahdollisimman konkreettisessa muodossa hyödyntäen Luvun 4 tuloksia. Tutkielman pääasiallisena lähteenä on käytetty Lawrence C. Evansin kirjaa [ ] sekä Juha Kinnusen tekemiä luentomuistiinpanoja [2] samasta kirjasta.

7 LUKU Esitietoja Tässä kappaleessa esitellään hyödyllisiä tuloksia, joita ei kuitenkaan todisteta, vaan ne oletetaan tunnetuiksi tuloksiksi. Lauseiden muotoilussa on käytetty Evansin kirjan [] liitettä C. Määritelmä.. Olkoon R n avoin joukko ja k N. Tällöin sanotaan että on C k -säännöllinen, jos jokaiselle pisteelle x 0 on olemassa r > 0, C k -funktio γ : R n R ja koordinaatisto siten, että tarvittaessa koordinaatistoa pyörittämällä pätee (.) B(x 0, r) = x B(x 0, r) x n > γ(x, x 2,..., x n )} Määritelmä.2. Oletetaan, että on C -säännöllinen ja x. Määritellään tällöin reunan yksikkönormaaliksi pisteessä x joukosta poispäin osoittava yksikkövektori ν(x), joka on kohtisuorassa pisteeseen x liittyvään tangenttitasoon nähden. Funktion u C () normaaliderivaatta pisteessä x on (.2) kaikilla x. u (x) = ν(x) u(x) Huomautus.3. Olkoon B(x 0, r) jokin avoin pallo avaruudessa R n ja olkoon x B(x 0, r). Tällöin reunan yksikkönormaali ν on muotoa (.3) ν(x) = x x 0 r kaikilla x. Tällöin erityisesti ν(x) =. Määritelmä.4. Olkoon C Olkoon f C () ja olkoon ν yksikkönormaali joukolle. Tällöin funktion f normaaliderivaatta on (.4) kaikille x. Esitellään seuraavaksi Greenin lauseet: f (x) = f(x) ν(x) Lause.5. Olkoon avoin joukko siten, että sen reuna on C -säännöllinen ja olkoon u, v C 2 (). Tällöin pätee: u (.5) u(x) dx = (σ) ds(σ) v (.6) v(x) u(x) dx = u(x) v(x) dx + (σ)u(σ) ds(σ) 3

8 4. ESITIETOJA (.7) (u(x) v(x) v(x) u(x)) dx = Määritellään seuraavaksi keskiarvointegraali: ( u(σ) v ) (σ) v(σ) u (σ) ds(σ) Määritelmä.6. Olkoon f C(R n ) ja R > 0 Tällöin S( B(0, R)) on pallon B(0, R) reunan mitta ja se voidaan esittää muodossa (.8) S( B(0, R)) = ds(σ) = nα(n)r n B(0,R) ja edelleen voidaan määritellä keskiarvointegraali (.9) f(σ) ds(σ) = B(0,R) S( B(0, R)) B(0,R) f(σ) ds(σ).

9 LUKU 2 Harmonisista funktioista Tässä luvussa käsitellään harmonista funktiota u koskevia ominaisuuksia. Luku perustuu Evansin kirjan [] lukuun Määritellään harmoniset funktiot u Laplacen operaattorin avulla: Määritelmä 2.. Olkoon avaruuden R n avoin osajoukko ja u C 2 (). Funktio u on harmoninen jos se toteuttaa Laplacen yhtälön n 2 u (2.) u(x) = (x) = 0, kaikilla x. x i x i i= Havainnollistetaan tätä määritelmää seuraavalla esimerkillä: Esimerkki 2.2. Olkoon f : R 2 R, f(x, y) = x 2 y 2. Tällöin funktio f(x, y) on harmoninen koska f(x, y) = 2 f x x (x, y) + 2 f (x, y) = 2 2 = 0. y y Seuraavaksi osoitetaan, että harmoniset funktiot voidaan karakterisoida niin sanotun keskiarvoperiaatteen avulla. Lause 2.3. Olkoon avaruuden R n avoin osajoukko ja u C 2 (). Funktio u on harmoninen, jos ja vain jos (2.2) u(x) = u(σ) ds(σ) = u(y) dy B(x,ε) jokaiselle x ja ε > 0 siten, että B(x, ε). Todistus. Olkoon x. Olkoon ε > 0 siten, että B(x, ε). Tällöin siis on oltava ε < d(x, ). Oletetaan ensiksi, että u on harmoninen ja sitten asetetaan ϕ(ε) := u(σ) ds(σ) = u(x + εs) ds(s), B(0,) missä jälkimmäinen yhtäsuuruus saadaan muuttujanvaihdolla σ = x + εs, josta s = σ x. Tällöin funktion ϕ derivaataksi muuttujan ε suhteen saadaan integrointi- ja ε derivointijärjestystä vaihtamalla dϕ dε (ε) = u(x + εs) s ds(σ). B(0,) Tällöin tekemällä muuttujanvaihto takaisin saadaan u(x + εs) s ds(σ) = u(σ) σ x B(0,) ε 5 ds(σ).

10 6 2. HARMONISISTA FUNKTIOISTA Tällöin Määritelmän.4 nojalla saadaan: u(σ) σ x ds(σ) = ε u (σ) ds(σ). Palautetaan tämä keskiarvointegraali takaisin tavalliseksi integraaliksi Määritelmän.6 avulla, jotta siihen voidaan soveltaa Greenin ensimmäistä Lausetta (.5): u (σ) ds(σ) = u (σ) ds(σ). S( B(x, ε)) Tähän voidaan käyttää Greenin ensimmäistä lausetta (.5) jolloin u (2.3) S( B(x, ε)) (σ) ds(σ) = u(x) dx. S( B(x, ε)) B(x,ε) Käyttämällä vasta nyt oletusta, että u toteuttaa Laplacen yhtälön, saadaan u(x) dx = 0. S( B(x, ε)) B(x,ε) Siispä funktion ϕ derivaatta on nolla. Tällöin funktio ϕ on vakio ja siten funktion u jatkuvuuden nojalla ϕ(ε) = lim ϕ(t) = lim u(σ) ds(σ) = u(x), t 0 t 0 B(x,t) kaikilla ε < d(x, ). Lisäksi napakoordinaattien avulla saadaan ε ( ) (2.4) u(y) dy = u(σ) ds(σ) dr. B(x,ε) 0 B(x,r) Toisaalta Määritelmän.6 avulla saadaan (2.5) u(σ) ds(σ) = S( B(x, r)) u(σ) ds(σ) = S( B(x, r))ϕ(r), B(x,r) B(x,r) jolloin sijoittamalla yhtälö (2.5) yhtälöön (2.4) saadaan ε ( ) ε u(σ) ds(σ) dr = S( B(x, r))ϕ(r) dr 0 B(x,r) 0 = u(x) ε 0 nα(n)r n dr = u(x)α(n)ε n. Tällöin Määritelmän.6 nojalla saadaan u(x) = u(y) dy = u(y) dy. α(n)ε n B(x,ε) B(x,ε) Täten toinen suunta on todistettu. Todistetaan seuraavaksi toinen suunta, eli oletetaan nyt, että u toteuttaa ehdon u(x) = u(σ) ds(σ) = u(y) dy B(x,ε) kaikilla x ja ε < d(x, ). Tällöin funktiolle ϕ pätee ϕ(ε) = u(σ) ds(σ) = u(x)

11 2. HARMONISISTA FUNKTIOISTA 7 kaikilla x ja ε < d(x, ). Täten funktio ϕ on siis vakio ja sen derivaatta on nolla. Oletetaan, että on olemassa piste x, jolle u(x) 0. Voidaan olettaa, että u(x) > 0, koska toinen tapaus saadaan vastaavasti. Koska u C 2 (), on olemassa pallo B(x, ε) siten, että u(y) > 0 kaikilla y B(x, ε). Todistuksen aiemmassa osassa saatiin kaava (2.3), jonka johtamisessa ei tarvittu oletusta Laplacen yhtälön toteutumisesta. Muuttamalla tämä tulos tavalliseksi integraaliksi saadaan 0 = d dε ϕ(ε) = C u(y) dy, B(x,ε) jollekin vakiolle C > 0. Nyt kuitenkin pätee u > 0 kaikilla y B(x, ε), jolloin saadaan 0 = C u(y) dy > 0. B(x,ε) Tämä on kuitenkin ristiriita, joten on oltava u(x) = 0 kaikilla x ja siten u on harmoninen Määritelmän 2. nojalla. Seuraava lause tunnetaan harmonisten funktioiden maksimiperiaatteena: Lause 2.4. Olkoon u C 2 () C() harmoninen avoimessa ja rajoitetussa joukossa. Tällöin pätee (2.6) max u = max u ja lisäksi jos on yhtenäinen ja on olemassa piste x 0 siten, että u(x 0 ) = max u, niin tällöin funktio u on vakio joukossa. Todistus. Todistetaan ensiksi jälkimmäinen väite. Oletuksen nojalla on olemassa piste x 0 siten, että u(x 0 ) = M := max u. Valitaan 0 < ε < d(x 0, ) jolloin Lauseen 2.3 nojalla saadaan M = u(x 0 ) = u(y) dy. B(x 0,ε) Koska funktio u on jatkuva ja M on sen maksimi, niin yhtäsuuruus tulee kysymykseen vain silloin kun u saa arvon M kaikissa pallon B(x 0, ε) pisteissä eli u(x) = M kaikilla x B(x 0, ε). Olkoon y. Koska joukko on oletuksen nojalla yhtenäinen ja avoin, niin on olemassa polku γ : [0, ] siten, että γ(0) = x 0 ja γ() = y. Määritellään seuraavaksi luku t 0 siten, että (2.7) t 0 = sup t [0, ] : u(γ(t)) = M}. Erityisesti joukko T = t [0, ] : u(γ(t)) = M} on epätyhjä, sillä luku t = 0 kuuluu joukkoon T. Lisäksi T on rajoitettu, joten joukon supremum on olemassa. Tutkitaan seuraavaksi kolme mahdollista arvoa luvulle t 0 : Jos t 0 = 0, niin pisteen γ(t 0 ) = x 0 ympäristössä on oltava pisteitä, joissa funktio u saa lukua M aidosti pienemmän arvon. Tämä on kuitenkin ristiriidassa tiedon u(x) = M kaikilla x B(x 0, ε) kanssa. Tutkitaan seuraavaksi tapaus 0 < t 0 <. Tällöin pisteen u(γ(t 0 ))

12 8 2. HARMONISISTA FUNKTIOISTA missä tahansa ympäristössä on pisteitä, joissa funktio u saa arvon, joka ei ole M. Tutkitaan seuraavaksi pistettä γ(t 0 ). Koska joukko on yhtenäinen, niin toistamalla samat laskut kuin todistuksen alussa pisteelle x 0 saadaan pisteelle γ(t 0 ) vastaava ympäristö kuin pisteelle x 0. Tällöin supremumin määritelmän ja yhdistetyn funktion u γ jatkuvuuden nojalla u(γ(t 0 )) = M, jolloin pätee u(x) = M, kaikilla x B(γ(t 0 ), d(γ(t 0 ), )). Tämä on ristiriita, sillä tässäkin pallossa pitäisi olla piste, jossa funktion u arvo ei ole M. Siispä on oltava t 0 =, ja siten polun γ ja funktion u jatkuvuuksien nojalla u(y) = u(γ(t 0 )) = M. Tällöin kaikilla y pätee u(y) = M ja funktio u on siten vakio joukossa. Lisäksi funktio u C(), joten tästä seuraa u(y) = M kaikilla y, jolloin funktio on vakio joukossa. Todistetaan vielä ensimmäinen väite: Olkoon x 0 siten, että u(x 0 ) = sup u(y). y Piste x 0 voidaan valita tällä tavalla, koska joukko on rajoitettu ja funktio u on jatkuva joukon sulkeumassa jolloin funktio saa suurimman arvonsa jossakin joukon pisteessä. Tästä seuraa, että supremum saavutetaan ja u(x 0 ) = max u(y) = M. y Jos x 0, niin tällöin väite on selvä. Jos x 0, niin jaetaan joukko epätyhjiin yhtenäisiin avoimiin osajoukkoihin i, i =, 2, 3... siten, että i j =. Voidaan olettaa, että x 0. Edellisen kohdan nojalla saadaan, että tällöin funktio u on vakio joukossa. Erityisesti on olemassa piste y siten, että u(y) = M = max y u(y). Toisaalta i, jolloin on olemassa piste y siten, että u(y) = M. Tästä seuraa max u(y) = M = max u(y). y y Siten funktion maksimi joukon sulkeumassa on sen maksimi joukon reunalla. Vastaava tulos on myös olemassa harmonisen funktion minimille: Lause 2.5. Olkoon u C 2 () C() harmoninen avoimessa ja rajoitetussa joukossa. Tällöin pätee (2.8) min u = min u ja lisäksi jos on yhtenäinen ja on olemassa piste x 0 siten, että u(x 0 ) = min u, niin tällöin funktio u on vakio joukossa. Todistus. Koska funktion u minimi on funktion u maksimi niin käyttämällä maksimiperiaatetta funktioon u saadaan max u = max u,

13 2. HARMONISISTA FUNKTIOISTA 9 mistä ensimmäinen väite seuraa. Vastaavasti toinen väite saadaan maksimiperiaatteen avulla sillä u(x 0 ) = max u. Tällöin Lauseen 2.4 nojalla u on vakio koko joukossa. Esitetään seuraavaksi funktio, joka voitaisiin osoittaa ei-harmoniseksi kuten Esimerkki 2.2, mutta käytetään tällä kertaa Lausetta 2.5, jolloin saadaan esimerkki kyseisen lauseen soveltamisesta: Esimerkki 2.6. Olkoon f : R 2 R, f(x, y) = x 2 + y 2. Tutkitaan tätä funktiota avaruuden R 2 yksikköpallossa B(0, ). Tällöin funktiolla f on globaali minimi origossa min f = f(0) = 0 B(0,) kun taas funktion f arvo yksikköpallon reunalla on aina, joten erityisesti min f =. B(0,) Kuitenkin Lauseen 2.5 nojalla nämä minimit ovat yhtäsuuret harmonisille funktioille, joten tutkittava funktio f ei voi olla harmoninen yksikköpallossa. Toki tämä olisi myös helppo osoittaa suoraan laskemalla. Maksimi- ja miniperiaatteiden avulla voidaan osoittaa tärkeä yksikäsitteisyystulos. Lause 2.7. Olkoon g C( ) ja f C(). Tällöin on olemassa korkeintaan yksi ratkaisufunktio u C 2 () C(), joka toteuttaa reuna-arvo-ongelman: u(x) = f(x) kaikilla x (2.9) u(x) = g(x) kaikilla x. Todistus. Oletetaan, että funktiot u ja ũ ovat reuna-arvo-ongelman (2.9) ratkaisuja. Asetetaan v := (u ũ). Tällöin v = (u ũ) = u ũ = f + f = 0 joukossa. Vastaavasti reunalla pätee v = u ũ = g g = 0. Käytetään Lausetta 2.4, jonka nojalla max v 0. Vastaavasti Lauseen 2.5 nojalla saadaan min u 0. Tästä seuraa, että v = 0 joukossa, mikä tarkoittaa, että u = ũ joukossa. Täten reuna-arvo-ongelman (2.9) ratkaisu on yksikäsitteinen.

14 LUKU 3 Laplacen ja Poissonin yhtälöt avaruudessa R n Tässä luvussa käsitellään Laplacen ja Poissonin yhtälöiden ratkaisufunktioiden olemassaoloa yleisessä avaruudessa R n. Luku pohjautuu Evansin kirjan [] lukuun Laplacen yhtälö Palautetaan ensiksi mieleen Laplacen yhtälö ja esitellään sille perusratkaisu. Määritelmä 3.. Olkoon avaruuden R n avoin osajoukko ja u : R jatkuva funktio siten, että u C 2 () C(). Tällöin Laplacen yhtälöksi joukossa kutsutaan osittaisdierentiaaliyhtälöä n 2 u (3.) u(x) = (x) = 0 x i x i kaikilla x. i= Määritelmä 3.2. Laplacen yhtälön perusratkaisu on Φ : R n \ 0} R, log x, kun n = 2 2π (3.2) Φ(x) =, kun n 3 n(n 2)α(n) x n 2 kaikilla x R n \ 0}. Tarkistetaan seuraavaksi, että perusratkaisu todella on Laplacen yhtälön ratkaisu. Lause 3.3. Määritelmän 3.2 perusratkaisu toteuttaa Laplacen yhtälön (3.3) Φ(x) = 0 kaikilla x R n \ 0}. Todistus. Olkoon x R n \ 0} ja merkitään τ(x) = x = x 2 + x x 2 n. Lasketaan funktion τ derivaatta muuttujan x i, i, 2,..., n, } suhteen: τ x i (x) = 2 x 2 + x x 2 n 2x i = 2 x 2 + x x 2 n 0 (x2 + x x 2 n) x i = x i x.

15 3.. LAPLACEN YHTÄLÖ Jaetaan todistus kahteen osaan n 3 ja n = 2, joista todistetaan ensin tapaus n 3. Olkoon f(t) = ja kirjoitetaan yhdistetty funktio f τ, jolloin saadaan n(n 2)α(n) t n 2 (f τ)(x) = f(τ(x)) = = Φ(x), n(n 2)α(n) x n 2 kaikilla x R n \ 0}. Lasketaan seuraavaksi funktion Φ ensimmäinen derivaatta muuttujan x i suhteen. Yhdistetyn funktion derivointisäännöllä saadaan Φ (x) = f (τ(x)) τ(x) = x i x i 2 n xi n(n 2)α(n) x n x = x i nα(n) x. n Lasketaan seuraavaksi tämän derivaatta muuttujan x i suhteen, joka saadaan osamäärän derivointisäännöllä 2 Φ (x) = ( ) x i = x n x i nx i x n 2 x i x i x i nα(n) x n nα(n) x 2n = x n nx 2 i x n 2. nα(n) x 2n Nyt laskemalla nämä toisen kertaluvun osittaisderivaatat yhteen eri muuttujien x i suhteen saadaan laplacen operaattori. Täten n ( ) 2 Φ Φ(x) = (x) = n x n nx 2 i x n 2 x i= i x i nα(n) x 2n i= n x n (n x n 2 n i= x2 i ) = nα(n) = nα(n) = x 2n nα(n) 0 = 0. x 2n n x n n x n x 2n = nα(n) n x n (n x n 2 x 2 ) x 2n Siispä tapauksessa n 3 Φ toteuttaa laplacen yhtälön kaikilla x R n \ 0}. Tapaus n = 2 todistetaan täsmälleen samalla tavalla, mutta käyttäen vain tasoon määriteltyä perusratkaisua Φ. Yksityiskohdat sivutetaan. Edelleen osoitetaan, että Laplacen yhtälön perusratkaisu Φ on lokaalisti Lebesgue integroituva, toisin sanoen sen itseisarvon integraali yli pallojen B(0, R), R > 0, on äärellinen. Lemma 3.4. Φ on lokaalisti Lebesgue-integroituva. Lisäksi R 2 ( log R + ), kun n = 2 4 (3.4) Φ(x) dx =, kun n 3. kaikilla R > 0. B(0,R) R 2 2(n 2) Todistus. Jaetaan integroituvuustarkastelu kahteen osaan n 3 ja n = 2. Olkoon R > 0 ja tutkitaan tapaus n 3, jolloin Φ(x) =. Laajennetaan n(n 2)α(n) x n 2 integroimisalueeksi karakteristisen funktion avulla koko R n : B(0,R) n(n 2)α(n) x dx = X n 2 B(0,R) (x) dx. n(n 2)α(n) R x n n 2

16 2 3. LAPLACEN JA POISSONIN YHTÄLÖT AVARUUDESSA R n Täten integraali voidaan muuttaa napakordinaatteihin X B(0,r) (σ) ds(σ) dr. n(n 2)α(n) σ n 2 0 B(0,r) voidaan tuoda sisemmästä integraa- Pallon B(0, r) reunalla pätee σ = r, joten lista ulos: n(n 2)α(n) 0 σ n 2 X r n 2 B(0,R) (σ) ds(σ) dr. B(0,r) Huomataan, että kun r < R, niin B(0, r) B(0, R), jossa karakteristinen funktio saa arvon, muutoin arvo ja siten sisempi integraali on nolla. Käyttämällä Määritelmää.6 saadaan X n(n 2)α(n) r n 2 B(0,R) (σ) ds(σ) dr = 0 n(n 2)α(n) R 0 B(0,r) S( B(0, r)) dr, rn 2 missä rajoitus r < R on huomioitu integraalin rajoissa. Tästä edelleen laskemalla saadaan R n(n 2)α(n) 0 r n 2 nα(n)rn dr = R R 2 r dr = n 2 0 2(n 2) <. Siispä integraali on äärellinen tapauksessa n 3. Tästä saadaan, että Φ on lokaalisti Lebesgue-integroituva. Tapaus n = 2 todistetaan vastaavasti jakamalla integroitava alue funktion Φ ominaisuuksien mukaan. Yksityiskohdat sivuutetaan. Osoitetaan seuraavaksi hyödyllinen arvio integraaleille, joissa Laplacen yhtälön perusratkaisu Φ esiintyy. Lemma 3.5. Olkoon Φ kuten Määritelmässä 3.2 ja 0 < ε. Tällöin seuraavat 2 arviot ovat voimassa: Cε 2 log ε, kun n = 2 (3.5) Φ(y) g(y) dy Cε 2, kun n 3 kaikilla g C 0 (R n ). (3.6) B(0,ε) Φ(σ) g(σ) ds(σ) Cε log ε, kun n = 2 Cε, kun n 3. kaikilla g C 0(R n ). Lisäksi huomautetaan, että kaavoissa (3.5) ja (3.6) vakio C riippuu funktiosta g. Todistus. Tutkitaan ensiksi arviota (3.5). Olkoon x, y R n. Käytetään ensiksi kolmioepäyhtälöä ja sen jälkeen koska g C0(R 2 n ), niin g(y) voidaan tuoda integraalista ulos ottamalla siitä supremum yli integroitavan joukon: (3.7) Φ(y) g(y) dy sup g(y) Φ(y) dy. y R n B(0,ε) B(0,ε)

17 3.. LAPLACEN YHTÄLÖ 3 Lemman 3.4 nojalla Φ on lokaalisti integroituva kun n 3. Soveltamalla tätä tulosta ja valitsemalla R = ε yhtälössä (3.4) saadaan ε 2 Φ(y) dy = 2(n 2). Valitaan B(0,ε) c = sup y R g(y) n. 2(n 2) Jos puolestaan n = 2, niin Lemman 3.4 nojalla (3.8) Φ(x) dx = ε 2 ( log ε + 4 ). B(0,R) Toisaalta oletuksen nojalla saadaan log ε log log ε 2 log. 2 Käytetään tätä arviota sieventämään saatua tulosta (3.8) jolloin saadaan Valitaan nyt ε 2 ( log ε + 4 ) ε2 ( log ε + log ε 4 log ) = 4 log + ε2 2 4 log log ε. 2 2 C = sup y R n g(y) (4 log 2 + ) 4 log 2. Sijoittamalla nämä saadut tulokset tutkittavaan integraaliin (3.7) saadaan cε 2 log ε, kun n = 2 sup g(y) Φ(y) dy y R n Cε 2, kun n 3, B(0,ε) jossa siis vakiot c ja C määrättiin aiemmin. Täten siis cε 2 log ε, kun n = 2 Φ(y) g(y) dy Cε 2, kun n 3. B(0,ε) Arvio (3.6) todistetaan lähes vastaavasti. Käyttämällä Määritelmää.4 saadaan Φ(σ) g(σ) ds(σ) Φ(σ) g(σ) ν(σ) ds(σ). Integraalia voidaan vielä arvioida CauchySchwarzin epäyhtälöllä, jolloin saadaan Φ(σ) g(σ) ν(σ) ds(σ) Φ(σ) g(σ) ν(σ) ds(σ). Nyt koska funktio g C0(R n ), niin sen gradientti on jatkuva ja kompaktikantajainen. Erityisesti gradientin g normi on rajoitettu avaruudessa R n. Tällöin normista g voidaan ottaa supremum, joka on äärellinen, ja tuoda se integraalista ulos. Lisäksi ν(σ) =, koska ν on yksikkönormaali, joten päädytään epäyhtälöön Φ(σ) g(σ) ν(σ) ds(σ) sup g(σ) Φ(σ) ds(σ). σ R n

18 4 3. LAPLACEN JA POISSONIN YHTÄLÖT AVARUUDESSA R n Havaitaan, että Φ on radiaalinen, eli pintaintegraali on helpompi laskea napakoordinaateissa. Kuitenkin Φ riippuu vain etäisyydestä x, joka on pallon B(0, ε) pinnalla x = ε. Täten Φ on vakio pinnalla, joten se voidaan tuoda integraalista ulos jättäen: (3.9) Φ(σ) ds(σ) = Φ(εê) ds(σ), missä ê R n on mikä tahansa yksikkövektori. Määritelmien.6 ja 3.2 nojalla tämä jäljelle jäänyt integraali antaa ε log ε kun n = 2 Φ(εê) ds(σ) = Φ(εê) S( B(0, ε)) ε kun n 3. n 2 Tällöin valitsemalla taas vakiot c ja C ja yhdistämällä tämä arvioon (3.9) saadaan cε log ε kun n = 2 Φ(σ) g(σ) ν(σ) ds(σ) Cε kun n 3. Siispä väitetyt arviot pitävät paikkaansa. Muotoillaan seuraavaksi kaksi lemmaa liittyen Laplacen yhtälön perusratkaisuun. Lemma 3.6. Olkoon Φ kuten määritelmässä 3.2 ja ν(y) joukon R n \B(0, ε) reunan ulospäin osoittava yksikkönormaali ν(y) = y = y. Olkoon myös ε > 0. Tällöin y ε saadaan Φ(y) (3.0) = nα(n)ε n kaikilla y B(0, ε). Todistus. Jaetaan todistus tapauksiin n = 2 ja n 3 ja tutkitaan ensiksi tapaus n = 2: = Φ(y) ν(y) = log y ν(y) Φ(y) = 2π y y y ( y y 2π ) = 2π y = 2α(2)ε kaikilla y B(0, ε). Tutkitaan seuraavaksi tapaus n 3: Φ(y) kaikilla y B(0, ε). = Φ(y) ν(y) = 2 n n(n 2)α(n) y n y ν(y) = y nα(n) y y n y = nα(n) y n = nα(n)ε n Lemma 3.7. Olkoon f C(R n ) ja Φ kuten Määritelmässä 3.2. Olkoon ε > 0 ja x R n sekä ν joukon B(0, ε) reunan ulospäin osoittava yksikkönormaali. Tällöin integraali (3.) lähestyy reaalilukua f(x) kun ε 0. Φ(σ) f(x σ) ds(σ)

19 3.2. POISSONIN YHTÄLÖ 5 Todistus. Olkoon x R n. Nimetään tutkittava integraali seuraavasti: Φ(σ) f(x σ) ds(σ) =: R ε. Käytetään Lemmaa 3.6, jolloin integraali R ε voidaan kirjoittaa muodossa Φ(σ) f(x σ) ds(σ) = f(x σ) ds(σ). nα(n)ε n Tästä saadaan Määritelmän.6 nojalla muokattua keskiarvointegraali f(x σ) ds(σ) = f(σ) ds(σ). nα(n)ε n Olkoon δ > 0. Koska f on jatkuva pisteessä x niin tällöin voidaan rajoittaa ε siten, että (3.2) f(x) f(y) < δ kun x y ε Tutkitaan seuraavaksi integraalin R ε ja funktion f(x) erotuksen itseisarvoa: R ε f(x) = f(σ) ds(σ) f(x) = f(σ) ds(σ) f(x) ds(σ) Integraalin lineaarisuuden ja kaavan (3.2) nojalla voidaan arvioida f(σ) ds(σ) f(x) ds(σ) f(σ) f(x) ds(σ) ε. Erityisesti tästä saadaan että R ε f(x) ε. Tämä tarkoittaa sitä, että kun ε 0, niin tutkittava integraali R ε f(x) Poissonin yhtälö Määritelmä 3.8. Olkoon avaruuden R n jokin avoin osajoukko. Lisäksi olkoon u : R C 2 ()-funktio ja olkoon f : R annettu jatkuva funktio. Tällöin Poissonin yhtälöksi joukossa kutsutaan osittaisdierentiaaliyhtälöä (3.3) u(x) = f(x) kaikilla x. Lemma 3.9. Olkoon g C0(R n ) ja x, y R n. Olkoon h 0 siten, että h. Olkoon i n. Tällöin on olemassa R > 0 ja M > 0 siten, että g(x y + he i ) g(x y) h MX B(0,R)(y) kaikilla y R n. Huomattavaa on, että luku R riippuu pisteestä x ja funktiosta g, mutta ei pisteestä y kun taas luku M riippuu pelkästään funktiosta g.

20 6 3. LAPLACEN JA POISSONIN YHTÄLÖT AVARUUDESSA R n Todistus. Olkoon y R n. Olkoon r > 0 siten, että funktion g kantaja kuuluu joukkoon B(0, r). Tästä seuraa erityisesti, että g(x) = 0 kaikilla x R n \ (B(0, r)). Tutkitaan ensiksi tilanne, jossa x y R n \B(0, r +). Tällöin y R n \B(x, r +) ja erityisesti x y+he i R n \B(0, r), koska 0 < h. Tästä seuraa g(x y+he i ) = 0, jolloin saadaan g(x y + he i ) g(x y) h = 0. Jos puolestaan x y B(0, r+), niin tällöin y B(x, r+). Käytetään dierentiaalija integraalilaskennan väliarvolausetta [5, s. 274] funktioon g(x y + he i ) g(x y). Sen nojalla on olemassa piste ξ janasegmentillä, jonka päätepisteet ovat x y ja x y + he i siten, että g(x y + he i ) g(x y) h = g(ξ) he i h X B(x,r+)(y), jossa karakteristinen funktio saadaan ehdosta y B(x, r + ). Tätä voidaan vielä arvioida CauchySchwarzin epäyhtälöllä g(ξ) he i h X B(x,r+)(y) g(ξ) he i X B(x,r+) (y) g(ξ) X B(x,r+) (y). h Nyt näistä arvoista g(ξ) voidaan ottaa supremum yli avaruuden R n, sillä g on oletusten nojalla jatkuva ja kompaktikantajainen funktio avaruudessa R n, joten se on rajoitettu. Täten supremum on äärellinen, jolloin saadaan g(ξ) X B(x,r+) (y) sup ξ R n g(ξ) X B(x,r+) (y). Valitaan M := sup ξ R n g(ξ) <. Edellä osoitetun perusteella saadaan siis g(x y + he i ) g(x y) h MX B(x,r+)(y). Valitaan R = r x.tällöin, jos y B(x, r + ), niin kolmioepäyhtälön nojalla saadaan jolloin siis y = y x + x y x + x r + + x < r x = R, B(x, r + ) B(0, R). Siten X B(x,r+) (y) X B(0,R) (y) ja tästä saadaan g(x y + he i ) g(x y) h MX B(x,r+)(y) MX B(0,R) (y). Osoitetaan seuraavaksi, että Poissonin yhtälölle on olemassa ratkaisu: Lause 3.0. Olkoot f C0(R 2 n ). Tällöin Poissonin yhtälön u = f ratkaisu on (3.4) u(x) = Φ(x y)f(y) dy kaikilla x R n R n ja u toteuttaa seuraavat ehdot:

21 3.2. POISSONIN YHTÄLÖ 7 () u C 2 (R n ) (2) 2 u x i x j (x) = Φ(y) 2 u R n x i x j (x y) dy kaikilla i, j n ja x R n (3) u(x) = f(x) kaikilla x R n Todistus. Olkoon x R n. Tekemällä muuttujanvaihto z = x y saadaan u(x) muokattua sopivammaksi: u(x) = Φ(x y)f(y) dy = Φ(z)f(x z) dz R n R (3.5) n = Φ(y)f(x y) dy. R n Ryhdytään tutkimaan erotusosamäärää pisteessä x. Olkoon h R ja h, i n ja e i = (0, 0,...,,..., 0), jossa on paikassa i. Tällöin u(x + he i ) u(x) = Φ(y) f(x y + he i) f(x y) dy h R h n integraalin lineaarisuuden nojalla. Ryhdytään nyt tutkimaan integroitavaa funktiota ja sitä varten kiinnitetään y R n. Tällöin f(x + he i y) f(x y) h reaalilukujen joukossa, kun h 0. Toisaalta pätee f x i (x y) u u(x + he i ) u(x) (x) = lim x i h 0 h = lim Φ(y) f(x y + he i) f(x y) h 0 R h n Koska x R n ja f C0(R n ), niin integrandille on olemassa Lemman 3.9 nojalla R > 0 ja M > 0 siten, että seuraava arvio pätee: Φ(y)f(x y + he i) f(x y) h Φ(y) MX B(0,R)(y), kaikilla h ja y R n. Edelleen Lemman 3.4 nojalla Φ on lokaalisti integroituva, joten tulo M Φ(y) X B(0,R) (y) on integroituva. Täten voidaan käyttää Lebesguen dominoidun konvergenssin lausetta [4, s. 26] ja viedä raja-arvo interaalin sisälle seuraavasti: u f(x y + he i ) f(x y) (x) = Φ(y) lim dy x i R n h 0 h = Φ(y) f (x y) dy. R x n i Koska f C0(R 2 n ), niin f x i C0(R n ) ja soveltamalla nyt Lemmaa 3.9 ensimmäisiin osittaisderivaattoihin ja käyttämällä dominoidun konvergenssin lausetta kuten yllä, saadaan 2 u 2 f (x) = Φ(y) (x y) dy. x i x j R x n i x j dy.

22 8 3. LAPLACEN JA POISSONIN YHTÄLÖT AVARUUDESSA R n Valitaan seuraavaksi g = 2 u x i x j C 0 (R n ) ja vastaavalla päättelyllä kuten yllä ja käyttämällä dominoidun konvergenssin lausetta nähdään, että u C0(R 2 n ). Todistuksen yksityiskohdat sivuutetaan. Olkoon nyt x R n ja osoitetaan, että u(x) = f(x). Koska Φ(x) ei ole määritelty nollassa, vaan sen arvot lähestyvät ääretöntä, niin eristetään tämä alue pienen epsilon-säteisen pallon sisälle, joten olkoon 0 < ε <. Tällöin kaavan (3.5) nojalla 2 saadaan: u(x) = x Φ(y)f(x y) dy = Φ(y) x f(x y) dy R n R n = Φ(y) x f(x y) dy + Φ(y) x f(x y) dy. Merkitään nyt ja B(0,ε) I ε = J ε = B(0,ε) R n \B(0,ε) R n \B(0,ε) Φ(y) x f(x y) dy Φ(y) x f(x y) dy. Integraalia I ε voidaan nyt arvioida Lemman 3.5 nojalla seuraavasti valitsemalla g(y) = x f(x y), jolloin saadaan Cε 2 log ε kun n = 2 I ε Cε 2 kun n 3. Laskemalla funktion f(x y) toisen kertaluvun derivaattoja muuttujan y suhteen saadaan 2 f(x y) = ( ) f(x y) = ( ) f (x y) = 2 f (x y) y i y i y i y i y i y i y i y i ja vastaavasti laskemalla toisen kertaluvun derivaattoja muuttujan x suhteen saadaan 2 f(x y) = ( ) f(x y) = ( ) f (x y) = 2 f (x y). x i x i x i x i x i x i x i x i Erityisesti saadaan y f(x y) = n i 2 f y i y i (x y) = n i 2 f x i x i (x y) = x f(x y), jolloin käyttämällä Greenin toista kaavaa (.6) joukossa = R n \ B(0, ε) integraaliin J ε valinnoilla u(y) = Φ(y) ja v(y) = f(x y) saadaan muokattua integraalia J ε : J ε = Φ(y) y f(x y) dy = R n \B(0,ε) R n \B(0,ε) Φ(y) y f(x y) dy + f(x σ) Φ(σ) ds(σ).

23 3.2. POISSONIN YHTÄLÖ 9 Tässä ν on joukon R n \ B(0, ε) reunan yksikkönormaali ν = y = y. y ε Määritellään K ε = Φ(y) y f(x y) dy ja L ε = R n \B(0,ε) f(x σ) Φ(σ) ds(σ). Integraalia L ε voidaan arvioida Lemman 3.5 avulla, jolloin saadaan Cε log ε, kun n = 2 L ε Cε, kun n 3. Nyt käytetään Greenin toista kaavaa (.6) integraaliin K ε siten, että v(y) = Φ(y) ja u(y) = f(x y). Tällöin saadaan Φ(σ) K ε = y Φ(y)f(x y) dy f(x σ) ds(σ). R n \B(0,ε) Nyt Lemman 3.3 nojalla y Φ(y) = 0, joten integraali yksinkertaistuu muotoon: Φ(σ) K ε = f(x σ) ds(σ). Tällöin Lemman 3.7 nojalla K ε f(x). Nyt kun muistetaan, että I ε 0 ja L ε 0 kun ε 0, niin saadaan u(x) = I ε + K ε + L ε f(x), kun ε 0. Erityisesti siis havaitaan että u(x) = f(x) kaikilla x R n.

24 LUKU 4 Laplacen ja Poissonin yhtälöt avoimessa joukossa Edellisessä luvussa tutkittiin Poissonin yhtälöä koko avaruudessa R n. Tämä herättää kuitenkin kysymyksen siitä, että entä jos tutkittava joukko ei olekaan koko R n. Tässä luvussa tutkitaan miten Laplacen ja Poissonin yhtälöiden ratkaisut muuttuvat, kun rajoitutaan avoimeen rajoitettuun joukkoon, jossa niille asetetaan reunaehto. Luku pohjautuu Evansin kirjan [] lukuun Greenin funktio Tässä luvussa esitellään Greeniin funktio korjaamaan Laplacen ja Poissonin yhtälöiden ratkaisuja (3.2) ja (3.4). Nämä eivät enää kelpaa, sillä niiden käyttäytymisestä joukon reunalla ei tiedetä mitään. Tätä varten ratkaisuihin on lisättävä elementtejä takaamaan niiden käyttäytyminen hallitusti reunalla. Määritellään tätä varten ensiksi kiinnitetylle x korjausfunktio φ x. Määritelmä 4.. Olkoon R n avoin joukko siten, että on C -säännöllinen. Määritellään korjausfunktio φ x kiintälle x siten, että se toteuttaa reuna-arvoyhtälön φ x (y) = 0, kun y (4.) φ x (y) = Φ(y x), kun y. Tässä vaaditaan, että korjausfunktio on C 2 (), sillä se toteuttaa Laplacen yhtälön tässä joukossa. Vaaditaan lisäksi, että korjausfunktio on C ( ), jotta sen normaaliderivaatta on olemassa joukon reunalla. Tällöin saadaan, että φ x C 2 () C (). Huomautus 4.2. Funktio φ x on jatkuva reunalla, sillä Φ on jatkuva origon ulkopuolella. Erityisesti jos y ja x niin x y 0. Korjausfunktion φ x olemassaolo ei ole Määritelmän 4. tietojen perusteella varmaa. Siispä seuraavissa tarkasteluissa oletetaan, että joukko on valittu siten, että korjausfunktio on olemassa. Tarkemmin korjausfunktion olemassaoloon palataan myöhemmin. Määritellään seuraavaksi tämän korjausfunktion avulla Greenin funktio: Määritelmä 4.3. Olkoon avaruuden R n avoin rajoitettu osajoukko siten, että on C -säännöllinen. Määritellään Greenin funktio G : \(x, x) : x } R joukossa asettamalla (4.2) G(x, y) := Φ(y x) φ x (y) kaikilla x, y ja x y. Tässä φ x on Määritelmän 4. mukainen korjausfunktio. 20

25 4.. GREENIN FUNKTIO 2 Huomautus 4.4. Olkoon G Määritelmän 4.3 mukainen Greenin funktio. Jos x ja y, x y, niin tällöin pätee φ x (y) = Φ(y x). Tästä seuraa G(x, y) = Φ(y x) φ x (y) = Φ(y x) Φ(y x) = 0 kaikilla x ja y, x y. Tulos pätee myös symmetrisesti, sillä vektoreiden x y ja y x normit ovat yhtäsuuret. Tästä saadaan, että jonka seurauksena korjausfunktiolle pätee Φ(x y) = Φ(y x), φ x (y) = φ y (x). Esitellään seuraavaksi Greenin funktiota koskeva symmetriaominaisuus. Lause 4.5. Olkoon G Määritelmän 4.3 mukainen Greenin funktio. Tällöin kaikille x, y, x y, pätee (4.3) G(x, y) = G(y, x). Todistus. Olkoon x, y, x y ja merkitään kaikilla z v(z) := G(x, z), w(z) := G(y, z). Olkoon 0 < ε < min x y /3, d(x, ), d(y, )}, jossa d(x, ) on pisteen x etäisyys joukon reunasta. Tutkitaan integraalia (v(z) w(z) w(z) v(z)) dz. \(B(x,ε) B(y,ε)) Määritelmän 4.3 nojalla v(z) = 0 ja w(z) = 0 kun x, y z. Täten tutkittava integraali on nolla. Soveltamalla tähän Greenin kolmatta lausetta (.7) saadaan 0 = (v(z) w(z) w(z) v(z)) dz = \(B(x,ε) B(y,ε)) (\(B(x,ε) B(y,ε))) ( v(σ) w ) v (σ) (σ)w(σ) Integroitava joukko voidaan purkaa auki seuraavasti: ds(σ). ( \ (B(x, ε) B(y, ε))) = B(x, ε) B(y, ε) Täten integraali voidaan jakaa kolmeen osaan. ( (\B(x,ε) B(y,ε)) ( = v(σ) w ( + v(σ) w ( + B(y,ε) v(σ) w v (σ) ) (σ) v (σ)w(σ) ) (σ)w(σ) (σ) v (σ)w(σ) v(σ) w v (σ) (σ)w(σ) ds(σ) ) ds(σ) ) ds(σ). ds(σ)

26 22 4. LAPLACEN JA POISSONIN YHTÄLÖT AVOIMESSA JOUKOSSA Huomautuksen 4.4 nojalla v(σ), w(σ) = 0 kun σ. Täten ( v(σ) w ) v (σ) (σ)w(σ) ds(σ) = 0. Tästä seuraa, että = B(y,ε) ( v(σ) w ( ) v (σ) + (σ)w(σ) ) v(σ) w v (σ) (σ)w(σ) ds(σ) ds(σ). Nämä integraalit voidaan vielä jakaa kahteen osaan ja tutkitaan ensiksi itseisarvoisesti integraalia v(σ) w (σ) ds(σ). Funktiosta v(σ) voidaan ottaa supremum pallossa B(x, ε), jolloin kolmioepäyhtälöllä saadaan v(σ) w (σ) ds(σ) sup v(σ) w σ B(x,ε) (σ) ds(σ). Arvioidaan jäljelle jäävää integraalia CauchySchwarzin epäyhtälöllä w (σ) ds(σ) w(σ) ν(σ) ds(σ). Käytetään taas tietoa, että ν(σ) = pallon pinnalla. Lisäksi kirjoittamalla funktio w sen määritelmän avulla saadaan w(σ) ν(σ) ds(σ) = σ G(y, σ) ds(σ). Luvun ε määrittelyehdoista ε < min x y /3, d(x, ), d(y, )}, seuraa, että piste y ei ole suljetussa pallossa B(x, ε). Tällöin funktio G(y, σ) on rajoitettu pallossa B(x, ε). Siten se voidaan tuoda integraalin eteen: σ G(y, σ) ds(σ) sup σ G(y, σ) ds(σ) (4.4) sup σ G(y, σ) y B(x,ε) y B(x,ε) ds(σ). Jäljelle jäävän integraalin arvo saadaan Määritelmästä.6, jonka jälkeen valitsemalla C = saadaan seuraava arvio: sup σ G(y, σ) y B(x,ε x) sup σ G(y, σ) nα(n) y B(x,ε x) ds(σ) Cε n.

27 4.. GREENIN FUNKTIO 23 Yhdistämällä tämä arvioon (4.4) saadaan v(σ) w (σ) ds(σ) sup v(σ) Cε n, σ B(x,ε) joka lähestyy nollaa kun ε 0. Tutkitaan sitten toista integraalia v (4.5) (σ)w(σ) ds(σ). Käyttämällä tietoa v(σ) = Φ(σ x) φ x (σ), saadaan integraalia (4.5) muokattua seuraavasti v (σ)w(σ) ds(σ) = Tästä voidaan vielä jakaa kahdeksi integraaliksi (Φ(σ x) φ x (σ)) w(σ) ds(σ) (4.6) Φ(σ x) = (σ)w(σ) ds(σ) (Φ(σ x) φ x (σ)) w(σ) ds(σ). joista tutkitaan ensiksi jäljimmäistä integraalia φ x (σ)w(σ) ds(σ). φ x (σ)w(σ) ds(σ), Käyttämällä Määritelmää.4 voidaan tätä integraalia muokata seuraavasti: φ x (σ)w(σ) ds(σ) = φ x (σ) ν(σ)w(σ) ds(σ). Lisäksi funktio w on jatkuva joukossa B(x, ε), koska piste y ei kuulu tähän suljettuun palloon, vaan on sen ulkopuolella. Sovelletaan CauchySchwarzin epäyhtälöä, jonka jälkeen funktion w supremum voidaan tuoda integraalin eteen φ x (σ) ν(σ)w(σ) ds(σ) sup w(σ) φ x (σ) ds(σ) σ B(x,ε) Huomautetaan, että funktio φ x (σ) on rajoitettu tässä pallossa B(x, ε). Siten se voidaan tuoda integraalin eteen: φ x (σ) ds(σ) sup φ x (σ) ds(σ) sup φ x (σ) σ B(x,ε) σ B(x,ε) ds(σ). Jäljelle jäävän integraalin arvo saadaan Määritelmästä.6, jonka jälkeen valitsemalla C = saadaan seuraava arvio: sup φ x (σ) σ B(x,ε) sup φ x (σ) nα(n) σ B(x,ε) ds(σ) Cε n.

28 24 4. LAPLACEN JA POISSONIN YHTÄLÖT AVOIMESSA JOUKOSSA Yhdistämällä tämä arvio edelliseen saadaan φ x (σ) w(σ) ds(σ) sup w(σ) Cε n, σ B(x,ε) joka lähestyy nollaa kun ε 0. Tutkitaan seuraavaksi yhtälön (4.6) ensimmäistä integraalia. Tässä integraalissa normaaliderivaatta ν osoittaa pallon B(x, ε) keskelle, mikä johtaa etumerkin vaihtumiseen. Koska Φ Φ (σ x) = (x σ), niin siirtämällä koordinaatistoa pisteeseen x saadaan Φ (σ x)w(σ) ds(σ) = = Φ (x σ x)w(σ x) ds(σ) Φ ( σ)w(σ x) ds(σ). Tästä perusratkaisun normiriippuvuuden ja kahden muuttuanvaihdon jälkeen Φ Φ ( σ)w(σ x) ds(σ) (σ)w(x σ) ds(σ), jolloin tähän käytetetään Lemmaa 3.7, jolloin raja-arvoksi saadaan Φ lim (σ x)w(σ) ds(σ) = w(x). ε 0 Tekemällä vastaavat arviot pallolle B(y, ε) saadaan siis ( lim v(σ) w ) v (σ) + ε 0 (σ)w(σ) ds(σ) = w(x) ja ( lim v(σ) w ) v (σ) ε 0 B(y,ε) (σ)w(σ) jolloin siis w(x) = v(y). Täten G(y, x) = w(x) = v(y) = G(x, y). ds(σ) = v(y), Siispä Greenin funktio on symmetrinen muuttujiensa suhteen. Osoitetaan tässä välissä yksi hyödyllinen aputulos koskien Greenin funktion käyttäytymistä: Lemma 4.6. Olkoon G Määritelmän 4.3 mukainen Greenin funktio. Olkoon lisäksi u C 2 () C( ). Tällöin pätee: u(σ) G (x, σ) ds(σ) + u(y)φ x (y) dy (4.7) = Φ(σ x) u (σ) ds(σ) u(σ) Φ (σ x) ds(σ).

29 4.. GREENIN FUNKTIO 25 Todistus. Tutkitaan seuraavaa integraalien erotusta: (4.8) Φ(σ x) u (σ) ds(σ) u(σ) Φ (σ x) ds(σ). Käyttämällä Määritelmää 4. saadaan seuraava yhtäsuuruus: u(y)φ x (y) dy = ( φ x (y)u(y) u(y)φ x (y)) dy Tähän voidaan soveltaa Greenin lausetta (.7) jolloin saadaan ( ( φ x (y)u(y) u(y)φ x (y)) dy = u(σ) φ x (σ) φ x(σ) u ) (σ) ds(σ) ( = u(σ) φ ) x (σ) Φ(σ x) u (σ) ds(σ). Tällöin siis 0 = ( u(σ) φ ) x (σ) Φ(σ x) u (σ) ds(σ) + u(y)φ x (y) dy. Tämä yhtäsuuruus voidaan nyt lisätä lausekkeeseen (4.8) muuttamatta sen arvoa, jolloin saadaan: Φ(σ x) u (σ) ds(σ) u(σ) Φ (σ x) ds(σ) = Φ(σ x) u (σ) ds(σ) u(σ) Φ (σ x) ds(σ) ( + u(σ) φ ) x (σ) Φ(σ x) u (σ) ds(σ) + u(y)φ x (y) dy ( = Φ(σ x) u ) (σ) u(σ) Φ (σ x) + u(σ) φ x (σ) Φ(σ x) u (σ) ds(σ) + u(y)φ x (y) dy ( = Φ(σ x) u ( Φ (σ) Φ(σ x) u(σ) u(σ) (σ x) φ )) x (σ) ds(σ) + u(y)φ x (y) dy = u(σ) (Φ(σ x) φ x(σ)) ds(σ) + u(y)φ x (y) dy Tähän voidaan sijoittaa Määritelmän 4.3 mukainen Greenin funktio jolloin saadaan Φ(σ x) u (σ) ds(σ) u(σ) Φ (σ x) ds(σ) = u(σ) G (x, σ) ds(σ) + u(y)φ x (y) dy.

30 26 4. LAPLACEN JA POISSONIN YHTÄLÖT AVOIMESSA JOUKOSSA 4.2. Dirichletin ongelma Laplacen yhtälölle Esitellään tässä kappaleessa Dirichletin ongelma Laplacen yhtälölle. Dirichletin ongelmassa etsittävää funktiota u kontrolloidaan myös joukon reunalla, toisin sanoen dierentiaaliyhtälölle annetaan reunaehtoja: Määritelmä 4.7. Olkoon avaruuden R n avoin ja rajoitettu osajoukko siten, että on C -säännöllinen. Olkoon funktio g jatkuva joukon reunalla. Tällöin Dirichletin ongelmaksi Laplacen yhtälölle joukossa kutsutaan reuna-arvoyhtälöä u(x) = 0 kaikilla x (4.9) u(x) = g(x) kaikilla x, missä tuntematon funktio u C 2 () C() Laplacen yhtälön ratkaisufunktio u voidaan esittää Greenin funktion avulla seuraavasti: Lause 4.8. Olkoon u C 2 () C(), joka toteuttaa yhtälön (4.9). Tällöin u on muotoa (4.0) u(x) = g(σ) G (x, σ) ds(σ) kaikilla x. Todistus. Olkoon x ja olkoon ε > 0 siten, että B(x, 2ε). Olkoon myös y. Tällöin käyttämällä Greenin kolmatta lausetta (.7) seuraavaan integraaliin saadaan (u(y) Φ(y x) Φ(y x) u(y)) dy \B(x,ε) = (\B(x,ε)) (\B(x,ε)) u(σ) Φ (σ x) ds(σ) (\B(x,ε)) Φ(σ x) u (σ) ds(σ). Havaitaan että ( \ B(x, ε)) = B(x, ε). Tällöin edellinen integraali voidaan pilkkoa neljäksi integraaliksi seuraavalla tavalla: u(σ) Φ (σ x) Φ(σ x) u (σ) ds(σ) = (\B(x,ε)) u(σ) Φ (σ x) ds(σ) + Φ(σ x) u (σ) ds(σ) u(σ) Φ (σ x) ds(σ) Φ(σ x) u (σ) ds(σ). Merkitään näitä integraaleja I, I 2, I 3, I 4 vastaavassa järjestyksessä ilman etumerkkejä. Huomataan, että integraalia I 3 voidaan arvioida seuraavasti: Φ(σ x) u (σ) ds(σ) Φ(σ x) u(σ) ν(σ) ds(σ). Tästä voidaan ottaa funktion u gradientin supremum, koska gradientti on rajoitettu pallossa B x := B(x, d(x, )/2) jolloin supremum on äärellinen. Käyttämällä lisäksi

31 4.2. DIRICHLETIN ONGELMA LAPLACEN YHTÄLÖLLE 27 Lemmaa 3.5 ja tietoa, että ν(σ) = pallon pinnalla saadaan Φ(σ x) u(σ) ν(σ) ds(σ) sup u(σ) σ B x sup σ Bx u(σ) Cε log ε, kun n = 2 sup σ Bx u(σ) Cε, kun n 3, Φ(σ x) ds(σ) joillekin vakioille C. Tästä seuraa se, että kun ε 0, niin integraali I 3 lähestyy nollaa. Havaitaan, että integraali I on Lemman 3.7 mukainen, jolloin siitä saadaan u(σ) Φ (σ x) ds(σ) u(x), kun ε 0. Näistä saadaan, että kun ε 0, niin (4.) lim ε 0 \B(x,ε) = u(x) + I 2 I 4 (u(y) Φ(y x) Φ(y x) u(y)) dy = lim ε 0 I + I 2 lim ε 0 I 3 I 4 Nyt muistetaan, että Φ on Laplacen yhtälön perusratkaisu, jolloin Φ(y x) = 0 kaikille y x. Lisäksi oletuksen nojalla u toteuttaa Laplacen yhtälön joukossa, joten u(y) = 0. Tällöin siis 0 = lim (u(y) Φ(y x) Φ(y x) u(y)) dy = u(x) I 4 + I 2. ε 0 \B(x,ε) Termejä siirtämällä saadaan u(x) = I 4 I 2 = Φ(σ x) u (σ) ds(σ) u(σ) Φ (σ x) ds(σ). Käyttämällä Lemmaa 4.6 ja oletusta, että u toteuttaa Dirichletin ongelman Laplacen yhtälölle eli u(x) = g(x) joukon reunalla ja u(x) = 0 kaikilla x, niin saadaan u(x) = g(σ) G (x, σ) ds(σ). Siispä funktio u, joka toteuttaa Dirichletin ongelman Laplacen yhtälölle 4.7 on haluttua muotoa. Huomautus 4.9. Jos yhtälössä (4.9) reuna-arvot määrittelevä funktio g(x) = 0 kaikilla x, niin tällöin myös ratkaisufunktio u on nollafunktio sillä u(x) = g(σ) G (x, σ) ds(σ) = 0 G (x, σ) ds(σ) = 0 kaikilla x.

32 28 4. LAPLACEN JA POISSONIN YHTÄLÖT AVOIMESSA JOUKOSSA 4.3. Dirichletin ongelma Poissonin yhtälölle Yleistetään edellisessä luvussa käsitelty Dirichletin ongelma koskemaan myös Poissonin yhtälöä, joka on Laplacen yhtälön yleistys. Määritelmä 4.0. Olkoon avaruuden R n jokin avoin ja rajoitettu osajoukko siten, että on C -säännöllinen. Olkoon f : R annettu C 2 () C()-funktio ja g jatkuva joukon reunalla. Tällöin Dirichletin ongelmaksi Poissonin yhtälölle joukossa kutsutaan osittaisdierentiaaliyhtälöä u(x) = f(x) kaikilla x (4.2) u(x) = g(x) kaikilla x, jollekin funktiolle u C 2 () C() Esitellään seuraavaksi ratkaisufunktio u, joka on yhtälön (4.2) ratkaisu. Tässä hyödynnetään vastaavaa ratkaisufunktiota Dirichletin ongelmalle Laplacen yhtälölle: Lause 4.. Olkoon u C 2 () C(), joka toteuttaa Määritelmän 4.0. Tällöin u on muotoa (4.3) u(x) = g(σ) G (x, σ) ds(σ) + f(y)g(x, y) dy kaikilla x. Todistus. Olkoon x ja olkoon ε > 0 siten, että B(x, 2ε). Olkoon myös y. Hyödynnetään nyt yhtälöä (4.), jossa siis (u(y) Φ(y x) Φ(y x) u(y)) dy = u(x) I 4 + I 2, lim ε 0 \B(x,ε) jossa integraalit I 2 ja I 4 ovat I 2 = u(σ) Φ (σ x) ds(σ) I 4 = Φ(σ x) u (σ) ds(σ). Käytetään tietoa, että Φ on Laplacen yhtälön perusratkaisu, jolloin Φ(y x) = 0 kaikille y x. Termejä siirtämällä saadaan u(x) = I 4 I 2 Φ(y x) u(y) dy = Φ(σ x) u (σ) ds(σ) u(σ) Φ (σ x) ds(σ) Φ(y x) u(y) dy. Tähän voidaan nyt käyttää Lemmaa 4.6, jolloin saadaan u(x) = u(σ) G (x, σ) ds(σ) Φ(y x) u(y) dy + u(y)φ x (y) dy.

33 4.3. DIRICHLETIN ONGELMA POISSONIN YHTÄLÖLLE 29 Tästä yhdistämällä integraalit yli joukon saadaan u(x) = u(σ) G (x, σ) ds(σ) (Φ(y x) u(y) u(y)φ x (y)) dy = u(σ) G (x, σ) ds(σ) u(y) (Φ(y x) φ x (y)) dy. Sijoitetaan tähän Määritelmän 4.3 mukainen Greenin funktio ja käytetään funktion u oletuksia u(x) = g(x) joukon reunalla ja u(x) = f(x) joukossa. Täten u(x) = g(σ) G (x, σ) ds(σ) + f(y)g(x, y) dy. Siispä funktio u, joka toteuttaa reuna-arvo-ongelman 4.0 on haluttua muotoa.

34 LUKU 5 Greenin funktio erityistapauksissa Tässä luvussa määritetään Greenin funktiot puoliavaruudessa ja yksikköpallossa. Esitetään tämän jälkeen konkreettiset ratkaisukaavat Poissonin yhtälölle. Luku pohjautuu Evansin kirjan [] lukuun ja lisäksi Juha Kinnusen tekemään luentomonisteeseen [2]. 5.. Greenin funktio yksikköpallossa Tutkitaan tässä kappaleessa Greenin funktiota yksikköpallossa B(0, ) R n. Tehdään tämä heijastusmenetelmän avulla, jossa siis ongelmalliset pisteet heijastetaan pois tutkittavasta alueesta. Tätä varten määritellään pisteen x heijastus: Määritelmä 5.. Olkoon x B(0, ), x 0. Tällöin sen heijastus joukosta B(0, ) on (5.) ˆx = x x 2. Erityisesti pätee, että ˆx / B(0, ) kaikilla x B(0, ). Oletetaan jatkossa, että n 3, sillä tapaus n = 2 on analoginen. Osoitetaan seuraavaksi, että korjausfunktio voidaan määritellä myös origoon, huolimatta sen ongelmallisuudesta. Lemma 5.2. Olkoon y B(0, )\0} ja olkoon Φ Laplacen yhtälön perusratkaisu. Tällöin (5.2) lim Φ( x (y ˆx)) = x 0 n(n 2)α(n). Todistus. Olkoon y B(0, )\0}. Muokataan funktiota Φ( x (y ˆx)) käyttäen hyväksi kaavaa (5.) jolloin saadaan Φ( x (y ˆx)) = Φ( x (y x x )) = Φ( x y x 2 x ). Tutkitaan seuraavaksi tämän raja-arvoa kun x 0. Käyttäen tietoa x x = saadaan lim Φ( x (y ˆx)) = lim Φ( x y x x 0 x 0 x ) = lim x 0 Esitellään seuraavaksi kaksi lemmaa. = n(n 2)α(n) n(n 2)α(n) = n(n 2)α(n). 30 x y x x n 2

35 5.. GREENIN FUNKTIO YKSIKKÖPALLOSSA 3 Lemma 5.3. Olkoon x B(0, ), x 0 ja olkoon ˆx pisteen x heijastus. Tällöin funktio Φ( x (y ˆx)) on harmoninen avoimessa joukossa B(0, ) muuttujan y suhteen. Todistus. Olkoon x B(0, ), x 0 ja y B(0, ). Nyt Määritelmän 5. nojalla ˆx / B(0, ). Erityisesti siis y ˆx, mistä seuraa y ˆx 0. Tällöin on oltava myös x (y ˆx) 0, sillä x 0, mistä saadaan Lauseen 3.3 nojalla n ( ) 2 2 Φ ( x (y ˆx)) Φ( x (y ˆx)) = ( x (y ˆx)) y i= i y i y i n ( ) 2 Φ = ( x (y ˆx)) x 2 y i y i i= = x 2 n i= 2 Φ y i y i ( x (y ˆx)) = x 2 Φ( x (y ˆx)) = 0. Tällöin Määritelmän 2. nojalla tarkasteltava funktio on harmoninen. Seuraava lemma on hyödyllinen tehtäessä tarkasteluita yksikköpallon reunalla. Lemma 5.4. Olkoon x B(0, ), x 0 ja ˆx sen heijastus. Olkoon lisäksi y B(0, ). Tällöin pätee (5.3) x y ˆx = y x. Todistus. Olkoon x B(0, ), x 0 ja ˆx Määritelmän 5. mukainen heijastus. Olkoon lisäksi y B(0, ), jolloin y y = y 2 =. Tällöin (( x 2 y ˆx 2 = x 2 y x ) ( y x )) x 2 x ( 2 = x 2 y y + x x x 2 x 2x y ) 2 x ( 2 = x 2 + x 2x y ) 2 x 2 = x 2 + 2x y = (y x) (y x) = y x 2. Koska vektorin normi on positiivinen, niin ottamalla tästä neliöjuuri saadaan haluttu yhtäsuuruus. Määritellään seuraavaksi korjausfunktio yksikköpallolle, joka on määritelty koko yksikköpallossa käyttäen hyväksi Lemmaa 5.2. Lause 5.5. Olkoon x B(0, ), x 0 ja ˆx sen heijastus. Olkoon Φ Laplacen yhtälön perusratkaisu. Tällöin korjausfunktio yksikköpallolle on n(n 2)α(n) (5.4) φ x (y) =, kun x = 0 Φ( x (y ˆx)), muutoin.

36 32 5. GREENIN FUNKTIO ERITYISTAPAUKSISSA kaikilla y B(0, ). Lisäksi φ x toteuttaa korjausfunktiolle asetetun reuna-arvoyhtälön (5.5) kaikilla x B(0, ). φ x (y) = 0, kun y B(0, ) φ x (y) = Φ(y x), kun y B(0, ). Todistus. Tutkitaan ensiksi tapausta y B(0, ). Lemman 5.3 nojalla korjausfunktio φ x (y) on harmoninen joukossa B(0, ), kunhan x 0, jolloin se toteuttaa Laplacen yhtälön. Tapaus x = 0 ohitetaan, sillä se johtaa teknisiin, muttei olennaisiin yksityiskohtiin. Reunan tapauksessa käytetään Lemmaa 5.4, jonka nojalla φ x (y) = Φ( x (y ˆx)) = Φ(y x), kun y B(0, ). Siten korjausfunktio on hyvin määritelty ja kelpaa yksikköpallon korjausfunktioksi yksikköpallossa. Täten Greenin funktio voidaan määritellä joukkoon B(0, ) korjausfunktion avulla seuraavasti: Lause 5.6. Olkoon x, y B(0, ). Tällöin Greenin funktio avaruuden R n yksikköpallolle B(0, ) on muotoa (5.6) G(x, y) = Φ(y x) φ x (y) kaikilla x y. Todistus. Koska yksikköpallo on rajoitettu ja sen reuna on C -säännöllinen ja korjausfunktio (5.4) on tutkittavan joukon korjausfunktio, niin kaava (5.6) on yksikköpallon Greenin funktio. Lemma 5.7. Olkoon G yksikköpallon Greenin funktio ja ν yksikköpallosta ulospäin osoittava normaalivektori. Tällöin Greenin funktion normaaliderivaatta muuttujan y suhteen on (5.7) G (x, y) = nα(n) x 2 y x, n kaikilla x B(0, ), y B(0, ), x y. Todistus. Olkoon x B(0, ), x 0 ja y B(0, ). Tällöin Määritelmän.4 ja Huomatuksen.3 nojalla voidaan kirjoittaa (5.8) G (x, y) = y yg(x, y) ν(y) = y G(x, y) y.

37 5.. GREENIN FUNKTIO YKSIKKÖPALLOSSA 33 Lasketaan seuraavaksi Greenin funktion osittaisderivaatat y G(x, y) käyttäen Lemmaa 5.4: G (x, y) = Φ (y x) (Φ( x (y ˆx))) y j y j y j = nα(n) = nα(n) = nα(n) ( y j x j y x n y x x (y j ˆx j ) x y ˆx ( ) n yj x j y x x 2 y j x j n y x ( n ) yj x j y x x 2 y j x j = x 2 n y x n nα(n) y x y j, n ) x y ˆx x kaikilla j =,..., n. Muodostamalla näistä osittaisderivaatoista gradienttivektori saadaan (5.9) y G(x, y) = x 2 nα(n) y x y, n ja sijoittamalla tämä yhtälöön (5.8) sekä käyttämällä tietoa y y = y 2 = pallon pinnalla saadaan (5.0) dg (x, y) = dν nα(n) x 2 y x y y n y = x 2 nα(n) y x. n Seuraavaksi voidaan esitellä Laplacen ja Poissonin yhtälöiden konkreettiset ratkaisufunktiot Lauseiden 4.8 ja 4. mukaisesti yksikköpallolle. Tutkitaan ensiksi reunaarvo-ongelmaa (4.7) ja esitellään sille ratkaisufunktio. Lause 5.8. Olkoon B(0, ) avaruuden R n yksikköpallo. Olkoon funktio g jatkuva yksikköpallon reunalla ja u C 2 (B(0, )) C(B(0, )). Tällöin ratkaisufunktio reunaarvoyhtälölle u(x) = 0 kaikilla x B(0, ) (5.) u(x) = g(x) kaikilla x B(0, ), on muotoa (5.2) u(x) = x 2 nα(n) kaikilla x B(0, ). B(0,) g(σ) σ x n ds(σ) Todistus. Koska yksikköpallo on rajoitettu ja yhtälö (5.2) on Lauseen 4.8 mukainen, niin sen nojalla funktio u todellakin on reuna-arvoyhtälön (5.) ratkaisu. Ratkaisu saadaan haluttuun muotoon käyttämällä Lemmaa 5.7. Tutkitaan seuraavaksi millainen on vastaava ratkaisukaava Poissonin yhtälölle. Lause 5.9. Olkoon B(0, ) avaruuden R n yksikköpallo. Olkoon funktio g jatkuva yksikköpallon reunalla ja funktio u C 2 (B(0, )) C(B(0, )). Tällöin ratkaisufunktio

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä

11. Poissonin yhtälö Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä . Poissonin yhtälö.. Perusratkaisu. Laplacen yhtälöön liittyvää epähomogeenista osittaisdifferentiaaliyhtälöä u = f kutsutaan Poissonin yhtälöksi ja siihen liittyvvää reuna-arvotehtävää { u = f :ssa, ja

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1 1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1). HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

Ratkaisuehdotus 2. kurssikokeeseen

Ratkaisuehdotus 2. kurssikokeeseen Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin.

Ratkaisu: (i) Joukko A X on avoin jos kaikilla x A on olemassa r > 0 siten että B(x, r) A. Joukko B X on suljettu jos komplementti B c on avoin. Matematiikan ja tilastotieteen laitos Topologia I 1. kurssikoe 26.2.2013 Malliratkaisut ja tehtävien tarkastamiset Tehtävät 1 ja 2 Henrik Wirzenius Tehtävät 3 ja 4 Teemu Saksala Jos sinulla on kysyttävää

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Derivaattaluvut ja Dini derivaatat

Derivaattaluvut ja Dini derivaatat Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo

Lisätiedot

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

4.3 Moniulotteinen Riemannin integraali

4.3 Moniulotteinen Riemannin integraali 4.3 Moniulotteinen Riemannin integraali Tässä luvussa opitaan miten integroidaan usean muuttujan reaaliarvoista tai vektoriarvoista funktiota, millaisten joukkojen yli jatkuvaa funktiota voi integroida,

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7 MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

MATEMATIIKAN JA TILASTOTIETEEN LAITOS f ( n JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS n Harjoitusten 8 ratkaisut Topologiset vektoriavaruudet 2010 8.1. Olkoon P n = {f : K K p on enintään asteen n 1 polynomi} varustettuna

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1 FUNKTIONAALIANALYYSIN PERUSKURSSI 115 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

Poistumislause Kandidaatintutkielma

Poistumislause Kandidaatintutkielma Poistumislause Kandidaatintutkielma Mikko Nikkilä 013618832 26. helmikuuta 2011 Sisältö 1 Johdanto................................... 2 2 Olemassaolon ja yksikäsitteisyyden historiaa............ 3 3 Esitietoja..................................

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali

JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

1 Supremum ja infimum

1 Supremum ja infimum Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Derivaatta: funktion approksimaatio lineaarikuvauksella. Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2 MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13 Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

802320A LINEAARIALGEBRA OSA II

802320A LINEAARIALGEBRA OSA II 802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16 MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo. Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

puolitasossa R 2 x e x2 /(4t). 4πt

puolitasossa R 2 x e x2 /(4t). 4πt 8. Lämmönjohtumisyhtälö II 8.1. Lämpöydin. Tarkastellaan lämmönjohtumisyhtälöä reaaliakselilla, t.s. pyritään ratkaisemaan alkuarvotehtävä u (8.1) t u 2 u puolitasossa R 2 x 2 + R (, ), u(x, ) f(x) kaikille

Lisätiedot

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on

Lisätiedot