Koska Box Jenkins-malleja on käsitelty kurssilla Mat Ennustaminen ja aikasarjaanalyysi, ei työohjeessa esitellä ARIMA-mallien perusasioita.

Koko: px
Aloita esitys sivulta:

Download "Koska Box Jenkins-malleja on käsitelty kurssilla Mat-2.3128 Ennustaminen ja aikasarjaanalyysi, ei työohjeessa esitellä ARIMA-mallien perusasioita."

Transkriptio

1 Mat Systeemianalyysilaboratorio I Laboratoriotyö 2: Aikasarja-analyysi Aikasarja on joukko peräkkäisiä, toisistaan riippuvia havaintoja. Aikasarja-analyysin tavoitteena on kuvata, selittää, ennustaa ja mahdollisesti ohjata aikasarjan tuottanutta prosessia. Ehkä suosituin lähestymistapa aikasarja-analyysiin on Box-Jenkins -menetelmä, jossa tarkastellaan erästä lineaaristen stokastisten mallien luokkaa. Työssä rakennetaan kyseisellä menetelmällä sähkön kulutukselle malli. Mallilla ennustetaan seuraavan vuorokauden sähkön kulutusta. Sähkön hankinta optimoidaan ennusteeseen perustuen. 1 Box-Jenkins-malleista Koska Box Jenkins-malleja on käsitelty kurssilla Mat Ennustaminen ja aikasarjaanalyysi, ei työohjeessa esitellä ARIMA-mallien perusasioita. 1.1 SARIMA-mallit Mikäli datassa on kausivaihteluja, siirrytään Seasonal ARIMA- eli SARIMA-malleihin. Kausivaihteluita sisältävässä mallissa käytetään kausivaihtelun pituisen viiveen päästä otettuja suureen ja kohinan arvoja selittämään tämänhetkistä suureen arvoa. ARIMA-malli voidaan ymmärtää kausivaihtelumallin erikoistapaukseksi, jossa kausivaihtelun pituus on yksi. Käytetään ARIMA(p,d,q)-mallille seuraavaa notaatiota: Φ p (B) d z t = Θ q (B)a t, (1) missä z t on mallitettava suure, a t on valkoista kohinaa, viiveoperaattori Bz t = z t 1, = (1 B) ja polynomit Φ p (B) = (1 φ 1,1 B φ 1,2 B 2... φ 1,p B p ) ja Θ q (B) = (1 θ 1,1 B θ 1,2 B 2... θ 1,q B q ) sisältävät mallin parametrit. Data määrää kertaluvut p, d ja q. Yleensä d = 1. Käytännössä mallin AR- ja MA-osiin otetaan tilastollisesti merkitsevät parametrit, ellei ole erityistä syytä muuhun. On tietysti mahdollista, että jokin parametreistä p,d tai q on nolla, jolloin aito ARIMA-malli redusoituu ARMA-, ARI- tai IMA-malliksi. Mikäli kausivaihtelun pituus on s, käytetään ARIMA(P,D,Q)-mallia Φ P (B s ) D s z t = Θ Q (B s )a t, (2) missä viiveoperaattori B s z t = z t s, operaattori s = (1 B s ) ja polynomit Φ P (B s ) = (1 φ s,1 B s φ s,2 B 2s... φ s,p B Ps ) ja Θ Q (B s ) = (1 θ s,1 B s θ s,2 B 2s... θ s,q B Qs ) sisältävät mallin parametrit. On syytä huomata, että varsinkin jos viive s on pitkä datan kokonaispituuteen nähden, ei edes ole mahdollista käyttää kertaluvuille P, D ja Q suuria

2 arvoja, vaan käytännössä usein P=D=Q=1. Voi myös käydä niin, että P tai Q saa arvon nolla, jos viiveen s päässä olevat suureen tai kohinan arvot eivät ole merkittäviä selittäjiä. Jos datassa on useita kausivaihteluita, päädytään multiplikatiiviseen ARIMA(p,d,q) x (P,D,Q)-malliin eli kausivaihtelut jaksoilla 1 ja s johtavat malliin Φ p (B)Φ P (B s ) d D s z t = Θ q (B)Θ Q (B s )a t (3) missä merkinnät kuten edellä. Tässäkin on mahdollista, että jokin tai jotkin parametreistä p, d, q, P ja Q ovat nollia ja usein d=1 ja P ja Q ovat pieniä, ainakin jos viive on pitkä. Yleisesti kausivaihtelu viiveillä s 1, s 2,..., s i, johtaa multiplikatiiviseen malliin jossa on differoinnit viiveillä s 1, s 2,..., s i, AR-osassa polynomit Φ p1 (B s 1 ), Φ p2 (B s 2 ),..., Φ pi (B s i ) ja MA-osassa polynomit Θ q1 (B s 1 ), Θ q2 (B s 2 ),..., Θ qi (B s i ). Esimerkiksi seuraavassa mallissa on kaksi kausivaihtelua, viikkovaihtelu ja vuosivaihtelu, (1 φ 7,1 B 7 φ 7,2 B 14 φ 7,3 B 21 ) z t = (1 θ 7,1 B 7 θ 7,2 B 14 )a t. (4) Siis s 1 =7, p 1 =3, d 1 =1, q 1 =2, s 2 =365, p 2 =0, d 2 =1, q 2 = Mallien identifiointi Tarkasteltavan ilmiön kuvaamiseen käytettävän SARIMA-mallien luokan valinnan jälkeen tehtävänä on määrittää mahdollisten kausivaihteluiden pituudet ja kertaluvut sekä kertaluvut p, d ja q. Lineaarisesti kasvava tai vähenevä trendi poistetaan differoimalla aikasarjaa. Käytännössä differointien kanssa on kuitenkin syytä olla varovainen, sillä signaali kohina-suhde saattaa differoitaessa olennaisesti heikentyä, varsinkin kohinaisessa datassa. Mikäli kuitenkin AR(1)-parametrin φ 1 estimaatti mallissa (1 φ 1 B)z t = a(t) on hyvin lähellä ykköstä (> 0.9), differointia voidaan yleensä pitää perusteltuna. Kausivaihtelun tunnistamisessa käytetään hyväksi a priori -tietämystä mallitettavasta prosessista. Usein esiintyviä jaksoja ovat vuorokausivaihtelu, viikkovaihtelu ja vuosivaihtelu. Kausivaihtelumallien käyttöä on harkittava erityisen huolellisesti silloin, kun kausivaihtelun pituus on suuri aikasarjan pituuteen nähden, sillä differointi pitkällä viiveellä syö dataa. Myös s -operaation järkevyyttä voi testata sovittamalla dataan vastaava (1 φ s B s )-malli ja katsomalla kuinka lähellä parametrin φ s estimaatti on ykköstä. Matemaattisista identifioinnin apuvälineistä tärkeimmät ovat autokorrelaatio, osittaisautokorrelaatio ja käänteinen autokorrelaatio. Ne kaikki kuvaavat suureen korrelaatioominaisuuksia itsensä suhteen eripituisilla viiveillä. Autokorrelaatio r k on suureen kovarianssi itsensä kanssa viiveellä k jaettuna r 0 :lla eli varianssilla: r k = E[(z t µ)(z t+k µ)] (5) σz 2 Vaimeneva autokorrelaatio viittaa AR-osaan ja yksittäiset piikit MA-osaan. Jos yksittäisiä, vaimenevia piikkejä esiintyy viiveen s välein, kysymys on luultavasti kausivaihtelusta.

3 Osittaisautokorrelaatiot saadaan autokorrelaatioista ratkaisemalla ns. Yule-Walkerin yhtälöt ( Pindyck & Rubinfeld 3. painos (PR3) kaava (16.46) sivulla 484, 4. painos (PR4) kaavat ja 17.40, s. 531.). Osittaisautokorrelaatio viiveellä p kuvaa sitä, kuinka p ajanhetkeä taaksepäin oleva suureen arvo selittää tämänhetkistä suureen arvoa, kun muiden viiveiden selittävä osuus on poistettu. Selvästi nollasta poikkeavat osittaisautokorrelaatiot viiveeseen p 1 asti viittaavat siihen, että AR-osan kertaluku on ainakin p 1. Yksittäiset nollasta poikkeavat osittaisautokorrelaatiot puolestaan voivat liittyä kausivaihteluun ja johtaa multiplikatiiviseen malliin. Käänteinen autokorrelaatio on nk. duaalimallin autokorrelaatio. Alkuperäiselle primaalimallille Φ(B)w t = Θ(B)a t voidaan siis muodostaa duaalimalli Θ(B)z t = Φ(B)a t, jonka autokorrelaatiofunktioita tarkastellaan. Jos primaalimalli on puhdas AR(p)-prosessi, duaalimalli on puhdas MA-prosessi eli käänteiseesä autokorrelaatiofunktiossa nähdään yksittäinen piikki viiveellä p. Jos taas primaalimalli on puhdas MA-prosessi, duaalimalli on puhdas AR-prosessi ja käänteiset autokorrelaatiot vaimenevat. Jos primaalissa on mukana sekä AR- että MA-osa, myös duaalimalli on aito ARMA-malli, jonka käänteiseen autokorrelaatioon ilmestyvät sekä AR-osan generoimat yksittäiset piikit että MA-osan vaimenevat piikit. Duaalimallia on käsitelty esim. SAS-manuaalin sivulla Mallin diagnostiset tarkistukset Mallin testaus on olennainen osa mallitusprosessia. Mallin käyttötarkoitus vaikuttaa siihen, millainen testaus on järkevää. Jos mallia on tarkoitus käyttää ennustamiseen tutkitaan ex post ja mahdollisuuksien mukaan myös ex ante -ennustuksien hyvyyttä. Mallin hyvyyden arvioimiseen voidaan käyttää myös erilaisia tilastollisia testejä. On syytä aina tarkistaa, onko mallin generoima kohina riittävän satunnaista ja korreloimatonta. Residuaalien autokorrelaatiofunktion visuaalinen tarkastelu kertoo kohinan valkoisuudesta. Lisäksi käytetään nk. Portmanteau-testiä sen testaamiseksi, ovatko kohinan autokorrelaatiot riittävällä tarkkuudella nollia. (testisuure on esitetty PR3:n kaavassa (17.16)sivulla 505 ja PR4:n kaavassa (18.16) sivulla 555. Portmanteau-testissä lasketaan testisuureen arvoja eri K:lla.) 1.4 Aikasarjamallin rakentaminen Box-Jenkinsin menetelmällä 1. Identifioidaan kertaluvut. 2. Estimoidaan parametrit. 3. Suoritetaan diagnostiset tarkistukset. Jos malli ei ole hyvä, palataan kohtaan Käytetään mallia ennustamiseen, säätöön jne. Jos malli ei ole hyvä, palataan kohtaan 1 tai harkitaan jonkin muun malliluokan tai menetelmän käyttöönottoa.

4 2 Yrityksen sähkön hankinta Sähkömarkkinoiden vapautuminen on pohjoismaissa edennyt nopeammin kuin missään muissa maassa. Norjassa kaikki sähkönkäyttäjät ovat voineet valita sähköntoimittajansa vuodesta 1991 lähtien. Ruotsissa ja Suomessa sähkömarkkinat avautuivat vuosien 1995 ja 1996 aikana. Tällä hetkellä jokainen suomalainen ja ruotsalainen voi valita sähköntoimittajansa. Ehtona on kuitenkin, että asiakkaalle on asennettu tunneittaiset sähkön kulutukset rekisteröivä mittalaite. Tällaiset tuntikeruulaitteet ovat vielä suhteellisen kalliita (n mk). Jos asiakkaan sähkölasku on suhteellisen pieni, ei sähkön myyjien kilpailuttamisella aikaansaatu kustannussäästö ole riittävän suuri korvaamaan kalliin keruulaitteen hankintakuluja. Jotta kaikki sähkön käyttäjät voisivat kilpailuttaa energian hankintansa, käytetään pienten sähkönkäyttäjien sähkökaupassa ns. tyyppikulutuskäyriä, jolloin kalliilta mittari-investoinnilta vältytään. Ennen sähkömarkkinoiden vapautumista asiakas ei voinut optimoida sähkön hankintaansa. Nykyään monet suuret sähkön käyttäjät hankkivat sähkönsä useista eri lähteistä. Vapailla markkinoilla yrityksille on entistä tärkeämpää kyetä ennustamaan sähkön kysyntä ja tuleva hintakehitys. Riskejä minimoidaan erilaisilla sopimuksilla. Laboratoriotyön kohdassa 3.23 esitellään tyypillisiä sähkökaupan sopimuksia. Suomalaisilla sähkömarkkinoilla energiaa voidaan ostaa suomalaisesta sähköpörssi ELEX:stä, pohjoismaisesta sähköpörssi NordPool:ista, riippumattomilta sähkömeklareilta ja pienemmistä markkinapaikoista (esim. Voimatori Oy). Useimmat yritykset asioivat suoraan sähköpörssi ELEX:ssä, mutta sen sijaan NordPoolissa varsinkin pienemmät yritykset käyvät kauppaa meklarien välityksellä. Jokaisen sähkön käyttäjän (asiakas, sähkön myyjä, verkkoyhtiö jne.) pitää ilmoittaa viranomaisille taho, joka viime kädessä vastaa omilla resursseillaan kunkin sähkön käyttötunnin kysynnän ja tarjonnan tasapainosta. Kunkin asiakkaan ennakkohankintojen ja käyttötuntien toteutuneen kulutuksen välisen erotuksen toimittaa asiakkaalle hänen valitsemansa ns. avoin toimittaja, joka yleensä on sähkön myyntiyhtiö. Sähkön myyntiyhtiöiden taseesta vastaavaa sähköntuottajaa kutsutaan nimellä säätövastaava. Suomen kokonaissähkötaseen tasapainottamiseen tarvittavan säätösähkön markkinapaikkana on Suomen Kantaverkko Oy. Myös Kantaverkossa hintataso määräytyy kysynnän ja tarjonnan mukaan siten, että kukin tuottaja tai markkinaosapuoli, jolla on ylimääräistä kapasiteettia tarjoaa kantaverkolle tuotantoresurssejaan erilaisina kokonaisuuksina sopimaksi katsomallaan hinnalla ja Kantaverkko Oy hankkii sähköä aina halvimmista lähteistä. 3 Laboratoriotyö Tässä työssä käytetään aikasarjamallinnusta erään yrityksen sähkönkulutuksen mallintamiseen. Muodostetulla mallilla ennustetaan seuraavan vuorokauden kulutus ja ennusteeseen perustuen optimoidaan sähkönhankinta.

5 3.1 Esiselostustehtävä Tarkastellaan prosesseja (i) w t = (1 θb)(1 ΘB s )a t, s 3 (ii) (1 ΦB s )w t = (1 θb)(1 ΘB s )a t, s 3 missä w t = s z t. Millä viiveen k arvoilla prosessin autokorrelaatiofunktio r k = γ k /γ 0, missä γ k = E[w t w t+k ] saa nollasta poikkeavia arvoja? Perustele vastauksesi tarkastelemalla autokovarianssin γ k lauseketta. Piirrä autokorrelaatiofunktiot, kun s=24, θ = 0.8, Θ = 0.3, Φ = 0.5. Esiselostustehtävän ymmärtäminen on avuksi varsinaista työtä tehdessä, mutta voit kuitenkin aloittaa varsinaisen työn tekemisen yhtä aikaa esiselostustehtävän kanssa. Katso kurssin kotisivuilta, milloin esiselostustehtävä pitää viimeistään palauttaa. 3.2 Työtehtävät 1. Analysoi marras-joulukuulta 1997 mitattua yrityksen sähkönkulutusdataa. Päämääränäsi on löytää yrityksen sähkönkulutukselle hyvä SARIMAX-malli (SARIMAX = Seasonal ARIMA with external variable), missä mahdollisena ulkoisena selittäjänä on lämpötila. Tarkastele alkuperäistä aikasarjaa ja sen autokorrelaatio-, ristikorrelaatio- ja muita funktioita. Tutki aikasarjan stationaarisuutta ja kausivaihteluita. Esitä perustelut valitsemillesi differoinnille ja kausivaihteluiden pituuksille. Tutki differoidun aikasarjan korrelaatiofunktioita. Valitse AR- ja MA-osien kertaluvut käyttäen apuna korrelaatiofunktioita. Kokeile erilaisia vaihtoehtoja ja mieti syitä mallien ennustuskyvyn hyvyyteen. Perustele kaikissa vaiheissa tekemäsi ratkaisut. Koska lämpötilasignaali on jatkuvasti herättävä noin kertalukua yksi, lämpötilariippuvuus mallitetaan lineaarisena αt ulko. Pohdi kuitenkin, vaikuttaako ulkolämpötila viiveellä ja mistä mahdollinen viive voi johtua. Tutki, onko aikasarja oleellisesti nollakeskiarvoista vai tarvitaanko vakiotermi. Vertaa mallin antamia ex post -ennusteita toteutuneeseen kulutukseen. Analysoi poikkeamia ja tarkastele keskivirhettä. Käytä diagnostisia testejä (t-testi, χ 2 -testi) sekä korrelaatiofunktioita sen selvittämiseen, ovatko residuaalit valkoista kohinaa eli onko kaikki datan informaatio saatu mallitettua. 2. Tee valitsemallasi mallilla ennuste havaintojen jälkeisen vuorokauden (pe ) sähkön kulutukselle. Kukin pari palauttaa ennustamansa sähkönkulutuksen ja sen 95 % luottamusvälit Excel-tiedostona (ennexx.xls, missä XX on työparin numero) sähköpostitse assistentille. Assistentti vertaa kunkin ryhmän ennustamaa sähkönkulutusta toteutuneeseen kulutukseen sekä laskemalla neliöllisen virheen että graafisesti. Kuvat ennustetusta versus todellisesta sähkönkulutuksesta ja lasketut neliövirheet ilmestyvät kurssin

6 www-sivulle. Tässä malli perustuu usean viikon ehjään (ei puuttuvia havaintoja) dataan, mikä käytännössä on harvinaista, ja mallilla ennustetaan yksi vuorokausi eteenpäin. Mitä olisi otettava huomioon, jos mallilla haluttaisiin ennustaa pidemmälle tulevaisuuteen? Mihin olisi erityisesti kiinnitettävä huomiota, jos haluttaisiin ennustaa sähkönkulutusta lauantaille ? Esitä ehdotuksesi siitä, millaisia vaihtoehtoisia lähestymistapoja voitaisiin soveltaa sähkönkulutuksen ennustamiseen. 3. Laadi strategia kyseisen yrityksen sähköenergianhankinnalle klo Olet siis yrityksesi energiajohtaja. Eletään torstaita Kello on tasan 12 ja olet juuri palannut ruokatunniltasi Eteläranta 10:stä. Koska sähköpörssi sulkeutuu klo 16, seuraavan päivän sähkönhankintastrategia on ilmoitettava kaikille sähkömarkkinaosapuolille seuraavan neljän tunnin kuluessa. Sinun on hankittava kullekin sähkön käyttötunnille tarvittava määrä sähköä mahdollisimman halpaan hintaan. Yrityksesi toimitusjohtaja on sitonut henkilökohtaiset optiosi vuoden energiahankinnan onnistumiseen. Useissa sopimuksissa erotetaan päiväaika ja yöaika. Päiväaika käsittää (arkisin ma-pe) tunnit ja loppu on yöaikaa. Kaikissa hinnoissa on mukana siirtokustannukset eli tarvitsemasi sähkö toimitetaan mainittuun hintaan Suomen kantaverkkoon. Yrityksesi on mukana sähköpörssi ELEX:ssä, josta voit aina hankkia tarvitsemasi määrän sähköä. Huomaat ELEX:n päätteeltä, että seuraavana päivänä ELEX:ssä käydään paljon pieniä kauppoja ja hintatasosta ollaan yksimielisiä. Niinpä ELEX:n tunneittaiset hinnat voidaan olettaa jo kiinteiksi, kunhan myynti/ostotehosi ovat alle 100 MW tunnissa. Taulukossa 1 on esitetty ELEX:n tunneittaiset sähkön hinnat. Ostettaessa hintoihin on lisättävä ELEX:n välityspreemio, joka on 0,02 p/kwh. ELEX:iin myytäessä hinnoista on vähennettävä sama preemio.

7 Aikaleima Hinta [p/kwh] , , , , , , , , , , , , , , , , , , , , , , , ,4 Taulukko 1. ELEX:in tuntihinnat Yrityksesi käy kauppaa pohjoismaisessa NordPoolissa meklarin välityksellä. Meklari tarjoaa sinulle seuraavaksi päiväksi blokkituotetta, jossa ostat kunakin päivän tuntina määrän x p (t) ja kunakin yön tuntina määrän x y (t). (Huomaa, että päivätunnit Norjan aikaa klo vastaavat Suomen ajassa tunteja klo ) Päivähinta on 260 NOK/MWh ja yöhinta 169 NOK/MWh. Maksimissaan voit ostaa 50 MWh kunakin tuntina, joten maksimaalinen päiväosto on 750 MWh ja maksimaalinen yöosto on 450 MWh. Meklari ei osta sinulta sähköä. Mikäli päädyt ostamaan meklarilta sähköä, yrityksesi on maksettava sähkön hinnan lisäksi meklarisopimuksen sopimuspreemio, joka on kiinteät NOK riippumatta ostamasi sähkön määrästä. Dow Jones:n energiapäätteeltä saat NOK/FIM kurssin 1 NOK = FIM. Yrityksesi on suojannut Pohjoismaiset kassavirtansa ostamalla joukon OM:n valuuttajohdannaisia, joten Norjan kaupoissa ei ole valuuttariskiä. Yritykselläsi on myös kiinteä sopimus sähkönmyyntiyhtiö SVK:n kanssa. SVK:n sopimukseen on neuvoteltu seuraavat hinnat ja määrät. Perushintaa sovelletaan, kun ostat vähemmän kuin 40 MWh tunnissa. 40 MWh:n ylimenevästä osasta maksat huippuhintaa. Maksimaalinen ostoteho 70 MW tunnissa. Yöllä perushinta on 11,6 p/kwh ja huippuhinta 12,0 p/kwh. Päivällä perushinta on 20,0 p/kwh ja huippuhinta 20,3 p/kwh. Optimoi sähkönhankintasi Excelin Solverilla tai muulla vastaavalla optimointityökalulla.

8 Kun olet optimoinut hankintasi vastaamaan ennustamaasi kysyntää, täytä tunneittaiset ELEX:n ostosi ja myyntisi sekä tunneittaiset ostosi meklarilta ja SVK:ltä. Ilmoitus tehdään sähkömarkkinoiden ennakkoilmoituslomakkeella (Excel-pohja edixx.xls). Lähetä tiedosto sähköpostitse assistentille, joka välittää tiedot avoimelle toimittajallesi. Ennakkohankintasi ja kunkin käyttötunnin toteutuneen kulutuksesi välisen erotuksen tasaajaksi olet valinnut Assivoima Oy:n. Jos olet hankkinut sähköä enemmän kuin yrityksesi tarvitsee , Assivoima Oy ostaa ylimääräisen sähkön takaisin päiväaikaan hintaan ELEX:n tuntihinta - 4% ja yöaikaan hintaan ELEX:n tuntihinta - 3%. Vastaavasti jos olet hankkinut sähköä liian vähän, Assivoima Oy myy sinulle sähköä päiväaikaan hintaan ELEX:n tuntihinta + 5% ja yöaikaan hintaa ELEX:n tuntihinta + 4%. Jos et määräaikaan mennessä tilaa sähköä muilta toimittajilta, joudut maksamaan sähköstäsi yllämainitut hinnat. Avoimelta toimittajalta ostettava sähkö on siis kalliimpaa kuin etukäteen tilattu sähkö, mutta toisaalta saat keskimäärin ostohintaa huonomman hinnan myydessäsi ylijäävää sähköä eli joudut punnitsemaan vastakkain toisaalta sitä, että etukäteen ostamasi sähkö ei riitä ja toisaalta sitä, että olet etukäteen hankkinut liikaa sähköä, joista kummastakin koituu ylimääräisiä kustannuksia. Pohdi, millaista riskiasennetta valitsemasi sähkönhankintastrategia kuvastaa. Assistentti laskee kunkin työparin sähkönhankintastrategian kustannukset, kun otetaan huomioon, että sähköä on hankittava toteutuneen kulutuksen verran. Puuttuva sähkö siis ostetaan kantaverkosta ja ylijäävä sähkö myydään kantaverkkoon. Kunkin ryhmän strategian sähkönhankintakustannukset ilmestyvät kurssin www-sivulle. 3.3 Työselostus Jokainen ryhmä palauttaa esitehtävän ratkaisun ja työselostuksen kirjallisena SAL-käytävällä olevaan lokerikkoon sekä sähkönkulutuksen ennusteen (ennexx.xls) ja sähkönhankintastrategian (edixx.xls) sähköpostitse assistentille. Työselostuksen tulee sisältää vähintään: 1. kansilehti 2. sisällysluettelo 3. johdanto 4. aikasarjan analyysi aikasarjan ja sen korrelaatiofunktioiden analyysi perustelut differoinneille perustelut mallin parametrien valinnoille selostus siitä, millaisia malleja kokeilitte, mitä jätitte pois ja mihin lopulta päädyitte

9 diagnostisen testauksen suorittaminen valitulle mallille ja perustelut sille, miksi valittu malli on parempi kuin muut kuvia, jotka tukevat tekemiänne ratkaisuja seuraavan vuorokauden ennustettu kulutus 5. sähkönhankintasuunnitelma ja selvitys siitä, miten kyseiseen suunnitelmaan on päädytty sekä perustelut, miksi ratkaisu on optimaalinen 6. kommentit ja parannusehdotukset 7. liitteet oleelliset kuvat ja muut oleelliset SAS-tulostukset (ellei halua upottaa tekstin joukkoon) SAS-ohjelman listaus/listaukset, josta käy ilmi ryhmän itse tekemä osuus 3.4 Käytännön järjestelyt Kurssin aikataulu ja käytäännön järjestelyt on esitelty kurssin www-sivuilla. Sivuilla ilmoitetaan myös kaikista aikataulu- ym. viime hetken muutoksista ja annetaan tarvittaessa vinkkejä työn vaikeimpiin osiin. Käy tarkistamassa sivut säännöllisesti! Materiaali Työohjekansion voi lainata SAL-käytävältä kopiointia varten. Kansio on tarkoitettu pikalainaan. Kansion sisältö: Box & Jenkins -pruju (Seasonal Models) SAS-manuaalin ARIMA-osuus Ruusunen, J., Tietokonetuettu aikasarja-analyysi, Systeemianalyysin laboratorio, Teknillinen korkeakoulu, raportti B6, 1985, (prujuversio kansiossa) Lisämateriaali, josta voi olla hyötyä: Pindyck & Rubinfeld, erityisesti luku 19 Mat Ennustaminen ja aikasarja-analyysi -kurssin laskuharjoitukset ja luentomonisteet SAS-oppaat www:ssä Tietokone, ohjelmistot ja tiedostot SAS on monipuolinen tilastollisen analyysin ohjelmisto. Tässä työssä käytetään SAS/ETCohjelmapaketin ARIMA-aliohjelmaa. SAS-ohjelma pyörii CSC:n corona.csc.fi-tietokoneessa. Kullakin työparilla on oma käyttäjätunnus coronaan.

10 Tiedostot Sähkönkulutuksen mallitukseen kukin pari tarvitsee tiedostot sahko08.sas ja nov08.dat. Ennustus kirjataan tiedostoon ennexx.xls ja sähkönhankintastrategia tiedostoon edixx-.xls, jotka palautetaan sähköpostitse. Kaikki em. tiedostot löytyvät kurssin www-sivulta. Tiedostossa nov08.dat on 816 sähkönkulutusmittausta aikajaksolta ja 840 ulkolämpötilaa aikajaksolta Tarkoituksena on siis ennustaa sähkönkulutus pe , jonka lämpötilatiedot löytyvät tiedostosta. Tiedot ovat tiedostossa riveittäin järjestyksessä sähkönkulutus ja lämpötila. Havainnot ovat tunnin välein. Tiedostossa sahko08.sas on mallin rakentamisessa tarvittavan SAS-ohjelman pohja, jolla käsitellään kulutustietoja ja piirretään kuvia. Voit muunnella pohjaa tarpeen mukaan. Osa komennoista on pantu kommentteihin, joita merkitään SAS:issa seuraavasti: /* tämä on kommentti */. Poista käskyjä kommenteista jos ja kun tarvitset niitä. Huomaa, että kommentit eivät voi olla sisäkkäin. Excel-tiedostoissa enne.xls ja edi.xls on kummassakin keltainen ruutu, johon kukin työpari täydentää työparin numeron kahdella numerolla, siis pari 3 kirjoittaa 03. Enne.xlstiedostoon täydennetään myös parin nimet ja opintokirjan numerot. Tiedostot tallennetaan nimillä ennexx.xls ja edixx.xls, jossa XX on parin nimi. EnneXX.xls-tiedostoon täydennetään parin ennuste luottamusväleineen ja edixx.xls-tiedostoon sähkönhankintastrategia. SAS-ohjelmia voi editoida käyttämällä SAS:in program editoria. Useimpien ihmisten mielestä näppärämpi tapa on käyttää Emacsia. Editorin Locals-valikosta löytyvä Submitkomento ajaa ohjelman. SAS-ohjelmiston käytössä voi turvautua erilliseen ohjeeseen sekä SAS:in omaan hypertext-helppiin. Tekstitulostukset saa tallennettua File-valikon Savekäskyllä. Kuvat saa talletettua käyttämällä File-valikon Export-käskyä. On myös mahdollista käyttää xv:tä (kuvankaappausohjelma) tai tallettaa kuvat SAS-manuaalin kuvaamalla tavalla, mutta Export-komennolla saat talletettua kuvan suoraan sen kokoisena kuin se näkyy ruudulla, joten Export-komento lienee kätevin. Corona on CSC:n tietokone eikä se tunne koulun printtereitä, joten tulostettavat tiedostot täytyy siirtää ftp:llä työasemaan ja tulostaa sieltä lpr -komennolla. SAS-ikkunoita ei suljeta Close Window-komennolla, vaan ohjelmasta poistutaan valitsemalla Exit File-valikosta. SAS-ohjelma koostuu tietojen luvusta ja niiden käsittelystä. Luettu data ryhmitellään muuttujiksi, joista jokaisesta on useita havaintoja. Muuttujat ryhmitellään edelleen joukoiksi (Data set). Jos esimerkiksi on mitattu sähkönkulutus ja lämpötila tunnin välein vuoden ajalta, saadaan kolme muuttujaa: Aika (=mittaushetki), Sahko (=sähkön kulutus) ja Lampo (=mitattu lämpötila). Yhdessä nämä kolme muuttujaa muodostavat joukon nimeltä Kulutus. Kun muuttujat on määritelty ja luettu muistiin, niitä käsitellään aliohjelmilla (PROC), joista tässä työssä käytetään ARIMA-aliohjelmaa ja SAS-GRAPH:in piirtorutiineja. ARIMA-aliohjelmalla voi mallittaa ja ennustaa aikasarjoja. Myös kausivaihtelua sisältävät mallit (seasonal models) ovat mahdollisia. ARIMA-aliohjelma voisi näyttää vaikka tällaiselta: PROC ARIMA DATA=kulutus;

11 IDENTIFY VAR=sahko(1) CROSSCORR=lampo(1) NLAG=170 OUTCOV=cors NOPRINT; ESTIMATE P=(1)(168) Q=(1,2) NOCONSTANT INPUT=(36$lampo) MAXIT = 600; FORECAST BACK=24 LEAD=24 id=h OUT=ennus; RUN; Tässä siis estimoidaan mallin (1 φ 1 B)(1 φ 168 B 168 ) 1 sahko t = α 1 1 lampo t 36 + (1 θ 1 B θ 2 B 2 )a t parametrit ja ennustetaan viimeiset 24 havaintoa. Katso ARIMA-manuaalin sivulta 100 SAS-ohjelman käyttämä notaatio aikasarjamallille. ARIMA-ohjelmassa on kolme käskyä: IDENTIFY, ESTIMATE ja FORECAST, joiden on esiinnyttävä aina tässä järjestyksessä. IDENTIFY-käskyllä (s. 110 SAS-manuaalissa) differoidaan aikasarja ja lasketaan autokorrelaatiot, käänteiset autokorrelaatiot ja osittaisautokorrelaatiot. IDENTIFY-käskyyn liittyviä optioita: VAR=sahko(1) määrittelee käsiteltävän muuttujan ja differoinnit eli tässä differoidaan muuttujaa sahko yhden jaksolla kerran NLAG kertoo kuinka pitkällä viiveellä korrelaatiofunktiot lasketaan CROSSCORR kertoo minkä (ulkoisen) muuttujan kanssa ristikorrelaatiot lasketaan NOPRINT estää korrelaatiofunktioiden tulostumisen OUTCOV-joukko cors sisältää muuttujat LAG = viiveen arvot CORR = auto- ja ristikorrelaatiot INVCORR = käänteiset autokorrelaatiot PARTCORR = osittaisautokorrelaatiot ESTIMATE-käsky (s. 103 SAS-manuaalissa) määrittää halutun ARMA-mallin, jota sovelletaan (differoituun) aikasarjaan. ESTIMATE-käskyn parametreistä P määrittää ARosan ja Q MA-osan parametrit. ESTIMATE-käskyyn voidaan lisätä ulkoinen muuttuja INPUT-optiolla. Huomaa ero seuraavien merkintöjen välillä P=2 AR-malli (1 Φ 1 B Φ 2 B 2 )z t P=(2) AR-malli (1 Φ 2 B 2 )z t Q=(1,24) MA-malli (1 θ 1 B θ 24 B 24 )a t

12 Q=(1)(24) MA-malli (1 θ 1 B)(1 θ 24 B 24 )a t Jaksottaiset mallit voi siis esittää varsin helposti ja yksinkertaisesti. Määrittely IDENTIFY VAR = sahko(1,1,24) ESTIMATE Q=(1,2)(24) vastaa ARIMA(0,1,1)x(0,2,2)-mallia muuttujalle sahko. FORECAST-käskyllä (s. 108 SAS-manuaalissa) ennustetaan mallia käyttäen aikasarjaa eteenpäin halutusta kohdasta. Määre BACK kertoo kuinka monta havaintoa aikasarjan lopusta taaksepäin halutaan ennusteen alkavan. LEAD kertoo, montako havaintoa ennustetaan. BACK-optiolla tehdään siis ex post -ennusteita ja ellei BACK-optiota määritellä saadaan ex ante -ennuste. Esimerkissä tuotetaan aikasarjan lopusta alkava 24 tunnin pituinen ennuste. OUT-optiolla määritellyssä Ennus -nimisessä muuttujajoukossa on muuttujat FORECAST =ennustetut arvot sahko = oikeat arvot RESIDUAL = oikean ja ennustetun arvon erotukset L95 ja U95 = ennusteen 95 % luottamusvälit SAS näyttää eri korrelaatiofunktioiden numeeriset arvot ja luottamusvälit, estimoidut parametrit, niiden hajonnat ja t-arvot ja keskinäisen korrelaation, pyydetyn ennusteen sekä χ 2 -testisuureen residuaalien valkoisuuden testaamiseksi.

Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi

Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi MS-C2132 Systeemianalyysilaboratorio I Laboratoriotyö 2: Sähkönkulutuksen ennustaminen ja hankinnan optimointi Aikasarja on joukko peräkkäisiä, toisistaan riippuvia havaintoja. Aikasarja-analyysin tavoitteena

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Auringonpilkkujen jaksollisuus

Auringonpilkkujen jaksollisuus Mat-2.108 Sovelletun matematiikan erikoistyöt 16.1.2004 Auringonpilkkujen jaksollisuus Teknillinen korkeakoulu Systeemianalyysin laboratorio Keijo Jaakola 51624B 1 1. Johdanto...3 2. Aikasarjamalleja...3

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Ilkka Mellin Aikasarja-analyysi ARMA-mallit

Ilkka Mellin Aikasarja-analyysi ARMA-mallit Ilkka Mellin Aikasarja-analyysi ARMA-mallit TKK (c) Ilkka Mellin (007) 1 ARMA-mallit >> ARMA-mallit ja niiden ominaisuudet ARMA-mallien auto- ja osittaisautokorrelaatiofunktiot ARMA-mallien spektri ARMA-mallien

Lisätiedot

Säätösähkömarkkinat uusien haasteiden edessä

Säätösähkömarkkinat uusien haasteiden edessä 1 Säätösähkömarkkinat uusien haasteiden edessä Johtaja Reima Päivinen, Fingrid Oyj Sähkömarkkinapäivä 21.4.2009 2 Mitä on säätösähkö? Vuorokauden sisäiset kulutuksen muutokset Vastuu: Markkinatoimijat

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Aikasarja-analyysiä taloudellisilla aineistoilla

Aikasarja-analyysiä taloudellisilla aineistoilla Aikasarja-analyysiä taloudellisilla aineistoilla Leena Kalliovirta, Luonnonvarakeskus Leena.kalliovirta@luke.fi Kurssi Tilastotiede tutuksi HY matematiikan ja tilastotieteen laitos 1 Leena Kalliovirta

Lisätiedot

Luku 3 Sähkömarkkinat

Luku 3 Sähkömarkkinat Luku 3 Sähkömarkkinat Asko J. Vuorinen Ekoenergo Oy Pohjana: Energiankäyttäjän käsikirja 2013 Energiankäyttäjän käsikirja 2013, helmikuu 2013 1 Sisältö Sähkön tarjonta Sähkön kysyntä Pullonkaulat Hintavaihtelut

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto

Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa Tapio Nummi Tampereen yliopisto Runkokäyrän ennustaminen Jotta runko voitaisiin katkaista optimaalisesti pitäisi koko runko mitata etukäteen. Käytännössä

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

STOKASTISET PROSESSIT

STOKASTISET PROSESSIT TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

Teknillinen korkeakoulu T-76.115 Tietojenkäsittelyopin ohjelmatyö. Testitapaukset - Koordinaattieditori

Teknillinen korkeakoulu T-76.115 Tietojenkäsittelyopin ohjelmatyö. Testitapaukset - Koordinaattieditori Testitapaukset - Koordinaattieditori Sisällysluettelo 1. Johdanto...3 2. Testattava järjestelmä...4 3. Toiminnallisuuden testitapaukset...5 3.1 Uuden projektin avaaminen...5 3.2 vaa olemassaoleva projekti...6

Lisätiedot

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

ASENNUS- JA KÄYTTÖOHJE

ASENNUS- JA KÄYTTÖOHJE ASENNUS- JA KÄYTTÖOHJE YKSIKKÖHINTA SOPIMUKSEN TOTEUTUNEET MÄÄRÄT-SOVELLUS CMPRO5 VERSIO 2.8 PÄIVITETTY HEINÄKUU 2010 COPYRIGHT 2010 ARTEMIS FINLAND OY. ALL RIGHTS RESERVED. KÄYTTÖOHJE SIVU 2 (12) SISÄLLYSLUETTELO

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 2016 Laskuharjoitus 5, Kotitehtävien palautus laskuharjoitusten

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

VINKKEJÄ CV-NETIN KÄYTTÖÖN. www.te-palvelut.fi

VINKKEJÄ CV-NETIN KÄYTTÖÖN. www.te-palvelut.fi VINKKEJÄ CV-NETIN KÄYTTÖÖN www.te-palvelut.fi TE-toimiston verkkoasiointiin pääset kirjautumaan www.te-palvelut.fi Oma asiointi Henkilöasiakas Kirjaudu sisään verkkopankkitunnuksilla ja hyväksy käyttöehdot

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

Sisäänkirjaus Uloskirjaus. Yritystieto

Sisäänkirjaus Uloskirjaus. Yritystieto Sisäänkirjaus Uloskirjaus Yritystieto Kustannusarvio PartSmart Siirrä PartSmart tiedosto Näytä PartSmart ostoslistat Lataa PartSmartHinnasto Tuotteet Lisävarusteet SNOW ATV PWC Öljytuotteet Öljyt, Snow

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Energiapeili-raportointipalvelu. Käyttöohje

Energiapeili-raportointipalvelu. Käyttöohje Energiapeili-raportointipalvelu Käyttöohje Tervetuloa Vantaan Energian Energiapeili-raportointipalveluun! Rekisteröidy palveluun Kirjaudu palveluun Henkilökohtaisten tietojen hallinta Salasanan vaihto

Lisätiedot

PÄÄSTÖKAUPAN VAIKUTUS SÄHKÖMARKKINAAN 2005-2009

PÄÄSTÖKAUPAN VAIKUTUS SÄHKÖMARKKINAAN 2005-2009 PÄÄSTÖKAUPAN VAIKUTUS SÄHKÖMARKKINAAN 25-29 /MWh 8 7 6 5 4 3 2 1 25 26 27 28 29 hiililauhteen rajakustannushinta sis CO2 hiililauhteen rajakustannushinta Sähkön Spot-markkinahinta (sys) 5.3.21 Yhteenveto

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

Nspire CAS - koulutus Ohjelmiston käytön alkeet Pekka Vienonen

Nspire CAS - koulutus Ohjelmiston käytön alkeet Pekka Vienonen Nspire CAS - koulutus Ohjelmiston käytön alkeet 3.12.2014 Pekka Vienonen Ohjelman käynnistys ja käyttöympäristö Käynnistyksen yhteydessä Tervetuloa-ikkunassa on mahdollisuus valita suoraan uudessa asiakirjassa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen

Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.

Lisätiedot

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i.

1.9 Harjoituksia. Frekvenssijakaumien harjoituksia. MAB5: Tilastotieteen lähtökohdat. a) Kaikki aakkoset b) Kirjaimet L, E, M, C, B, A ja i. MAB5: Tilastotieteen lähtökohdat 1.9 Harjoituksia 1.1 Ulkolämpömittari näytti eilen 10 C ja tänään 20 C. Onko tänään kaksi kertaa niin kylmä kuin eilen? Miksi tai miksi ei? 1.2 Minkä luokkien muuttujia

Lisätiedot

15 askelta kohti. Parempia kyselyitä ja tutkimuksia

15 askelta kohti. Parempia kyselyitä ja tutkimuksia 15 askelta kohti Parempia kyselyitä ja tutkimuksia Onnittelut! Lataamalla Webropol-tutkimusoppaan olet ottanut ensimmäisen askeleen kohti entistä parempien kyselyiden ja tutkimusten tekoa. Tämä opas tarjoaa

Lisätiedot

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

OP-eTraderin käyttöopas

OP-eTraderin käyttöopas OP-eTraderin käyttöopas Tämä käyttöopas on lyhennetty versio virallisesta englanninkielisestä käyttöoppaasta, joka löytyy etrader - sovelluksen Help-valikosta tai painamalla sovelluksessa F1 -näppäintä.

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila.

Koesuunnitelma. Tuntemattoman kappaleen materiaalin määritys. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt. Janne Mattila. Kon c3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma Tuntemattoman kappaleen materiaalin määritys Janne Mattila Teemu Koitto Lari Pelanne Sisällysluettelo 1. Tutkimusongelma ja tutkimuksen

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Tämän lisäksi listataan ranskalaisin viivoin järjestelmän tarjoama toiminnallisuus:

Tämän lisäksi listataan ranskalaisin viivoin järjestelmän tarjoama toiminnallisuus: Dokumentaatio, osa 1 Tehtävämäärittely Kirjoitetaan lyhyt kuvaus toteutettavasta ohjelmasta. Kuvaus tarkentuu myöhemmin, aluksi dokumentoidaan vain ideat, joiden pohjalta työtä lähdetään tekemään. Kuvaus

Lisätiedot

Epävarmuuden hallinta bootstrap-menetelmillä

Epävarmuuden hallinta bootstrap-menetelmillä 1/17 Epävarmuuden hallinta bootstrap-menetelmillä Esimerkkinä taloudellinen arviointi Jaakko Nevalainen Tampereen yliopisto Metodifestivaalit 2015 2/17 Sisältö 1 Johdanto 2 Tavanomainen bootstrap Bootstrap-menettelyn

Lisätiedot

SUUNTA TOIMINNAN JA ARVIOINNIN SUUNNITTELUN TYÖKALU

SUUNTA TOIMINNAN JA ARVIOINNIN SUUNNITTELUN TYÖKALU 1 SUUNTA TOIMINNAN JA ARVIOINNIN SUUNNITTELUN TYÖKALU Suunta on työkalu, jota käytetään suunnittelun ja arvioinnin apuna. Se on käyttökelpoinen kaikille, jotka ovat vastuussa jonkun projektin, toiminnon,

Lisätiedot

Opetusmateriaali. Tutkimustehtävien tekeminen

Opetusmateriaali. Tutkimustehtävien tekeminen Opetusmateriaali Tämän opetusmateriaalin tarkoituksena on opettaa kiihtyvyyttä mallintamisen avulla. Toisena tarkoituksena on hyödyntää pikkuautoa ja lego-ukkoa fysiikkaan liittyvän ahdistuksen vähentämiseksi.

Lisätiedot

Y ja

Y ja 1 Funktiot ja raja-arvot Y100 27.10.2008 ja 29.10.2008 Aki Hagelin aki.hagelin@helsinki.fi Department of Psychology / Cognitive Science University of Helsinki 2 Funktiot (Lue Häsä & Kortesharju sivut 4-9)

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 15.3.2010 T-106.1208 Ohjelmoinnin perusteet Y 15.3.2010 1 / 56 Tiedostoista: tietojen tallentaminen ohjelman suorituskertojen välillä Monissa sovelluksissa ohjelman

Lisätiedot

TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto

TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.

Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit. Autokovarianssi: (kun τ 0) Γ t (τ) = E[(X t µ t )(X t τ µ t τ )] ( ) ( = E[ φ k ε t k φ j ε t τ j )] = = j=0 φ j+k E[ε t k ε t τ j ] k,j=0 φ j+k σ 2 δ k,τ+j k,j=0 = σ 2 φ j+k δ k,τ+j = = k,j=0 φ τ+2j I

Lisätiedot

Batch means -menetelmä

Batch means -menetelmä S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Lataa strategiset työkalut

Lataa strategiset työkalut Lataa strategiset työkalut Joiden avulla saavutat taloudellisen riippumattomuuden. Mitä sinä tekisit, jos pystyisit rakentamaan jopa 4.000,00 kuukaudessa tuottavan tulovirran? Entä miten pitkään olet valmis

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla

Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla Ari Nikula Metsäntutkimuslaitos Rovaniemen toimintayksikkö Ari.Nikula@metla.fi / Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest

Lisätiedot

Toimittajan laskusta maksun kirjaukseen

Toimittajan laskusta maksun kirjaukseen 1 Toimittajan laskusta maksun kirjaukseen Johdanto Maksujen kirjaaminen Odoo ssa on selväpiirteinen toimenpide, ja sen avulla voi myös seurata yrityksen tuloksen kehittymistä on-line. Erääntyneiden maksujen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

2. laskuharjoituskierros, vko 5, ratkaisut

2. laskuharjoituskierros, vko 5, ratkaisut 2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,

Lisätiedot

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi

Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa

Lisätiedot

Kaksi tapaa vähentää sähkönkulutuksen hiilidioksidipäästöjä kunnassa. Miten hankintaan uusiutuvalla energialla tuotettua sähköä?

Kaksi tapaa vähentää sähkönkulutuksen hiilidioksidipäästöjä kunnassa. Miten hankintaan uusiutuvalla energialla tuotettua sähköä? Kaksi tapaa vähentää sähkönkulutuksen hiilidioksidipäästöjä kunnassa Miten hankintaan uusiutuvalla energialla tuotettua sähköä? Mitä ovat sähkön alkuperätakuut? EU:ssa käytössä oleva yhtenäinen järjestelmä.

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot