Katsaus uudenaikaisiin energianlähteisiin

Koko: px
Aloita esitys sivulta:

Download "Katsaus uudenaikaisiin energianlähteisiin"

Transkriptio

1 Katsaus uudenaikaisiin energianlähteisiin Pauli Koski Publications 10/2006 Puolustusvoimien Teknillinen Tutkimuslaitos Julkaisuja 24

2 Puolustusvoimien Teknillinen Tutkimuslaitos Julkaisuja 24 Katsaus uudenaikaisiin energianlähteisiin Pauli Koski 12. syyskuuta 2011 RIIHIMÄKI 2011

3 Kansikuva: Sana Sandler, Argonne National Laboratory Kannen Suunnittelu: Pirjo Laurimaa ISBN ISBN (PDF) Puolustusvoimien Teknillinen Tutkimuslaitos ISSN Juvenes Print Oy Tampere 2011

4 Alkusanat Seppo Härköselle sekä erityisesti ohjaajalleni Mikko Moisiolle: kiitos ja anteeksi! Helsinki, 12. heinäkuuta, 2011 Pauli Koski

5 Tiivistelmä Tämän selvityksen tavoitteena on antaa lukijalle yleiskuva kehitteillä olevista vaihtoehtoisista sähköenergian tuotanto- ja varastointimenetelmistä. Raportissa käydään läpi perusteet eri energiantuotanto- ja varastointimuotoihin sekä vertaillaan kilpailevien tekniikoiden ominaisuuksia ja soveltuvuutta eri kohteisiin. Lisäksi selvityksessä esitellään mielenkiintoisia jo käytössä olevia ja potentiaalisia sovelluskohteita sekä pohditaan vaihtoehtoisten energiantuotantomenetelmien tulevaisuuden näkymiä. Asiasanat: vaihtoehtoinen energiantuotanto, energian varastointi, polttokennot, polttoprosessit, energian haalinta, biomekaaninen energia, ydinparisto, aurinkokennot, termosähköinen konversio

6 5 Lyhenteet AEM AFC APU CAES CI CIGS DBFC DDMEFC DEFC DFAFC DHFC DME DMFC DSSC ELDC HCCI Anion exchange membrane Anioninvaihtomembraani Alkaline fuel cell Alkalipolttokenno Auxiliary power unit Apuvoimalaite Compressed air energy storage Paineilmaenergiavarasto Compression ignition Puristussytytys Copper indium gallium selenide Kupari-indium-galliumdiselenidi Direct borohydride acid fuel cell Suoraborohydridipolttokenno Direct dimethylene ether fuel cell Suoradimetyylieetteripolttokenno Direct ethanol fuel cell Suoraetanolipolttokenno Direct formic acid fuel cell Suorametaanihappopolttokenno Direct hydrazine acid fuel cell Suorahydratsiinipolttokenno Dimethylene ether Dimetyylieetteri Direct methanol fuel cell Suorametanolipolttokenno Dye-sensitized solar cell Väriaineherkisteinen aurinkokenno Electric double-layer capacitor Superkondensaattori Homogeneous charge compression ignition Homogeeninen puristussytytys

7 6 HT-PEMFC IT-SOFC LFFC MCFC MEA MEMS MHFC PAFC PBI PBIFC PCFC PCM PEM PEMEC PEMFC PSZT High temperature polymer electrolyte membrane fuel cell Korkean lämpötilan polymeerielektrolyyttipolttokenno Intermediate temperature solid oxide fuel cell Keskilämpötilan kiinteäoksidipolttokenno Laminar flow fuel cell Mikrofluidistinen polttokenno Molten carbonate fuel cell Sulakarbonaattipolttokenno Membrane electrode assembly Elektrodielektrolyyttiasennelma Microelectromechanical system Mikrosähkömekaaninen järjestelmä Metal hydride acid fuel cell Metallihydridipolttokenno Phosphoric acid fuel cell Fosforihappopolttokenno Polybenzimidasole Polybentsimidasoli Polybenzimidasole fuel cell Polybentsimidasolipolttokenno Proton ceramic fuel cell Keraaminen protoninvaihtopolttokenno Phase change material Faasimuutosmateriaali Polymer electrolyte membrane Proton exchange membrane Polymeerielektrolyytti Polymer electrolyte membrane electrolyzer cell Polymeerielektrolyyttielektrolyyseri Polymer electrolyte membrane fuel cell Proton exchange membrane fuel cell Polymeerielektrolyyttipolttokenno Lead stannate zirconate titanate Lyijyzirkonaattistannaattititanaatti

8 7 PTFE RMFC RTG SAFC SI SMES SOEC SOFC SSCAES TPV UAV UGV ULSD URFC UUV YSZ Polytetrafluoroethylene Polytetrafluoroetyleeni Reformed methanol fuel cell Reformerimetanolipolttokenno Radioisotope thermoelectric generator Termosähköinen radiatiivinen generaattori Solid acid fuel cell Kiinteähappopolttokenno Spark ignition Kipinäsytytys Superconducting magnetic energy storage Suprajohtava magneettinen energiavarasto Solid oxide electrolyzer cell Kiinteäoksidielektrolyyseri Solid oxide fuel cell Kiinteäoksidipolttokenno Small scale compressed air energy storage Pienikokoinen paineilmaenergiavarasto Thermophotovoltaic Termovalosähköinen Unmanned aerial vehicle Miehittämätön lentoalus Unmanned ground vehicle Miehittämätön maa-alus Ultralow sulphur diesel Rikkipuhdistettu diesel Unitized regenerative fuel fell Yksiköity regeneratiivinen polttokenno Unmanned underwater vehicle Miehittämätön sukellusalus Yttria-stabilized zirconia Yttrium-stabiloitu zirkonium

9 8 SISÄLTÖ Sisältö 1 Johdanto 10 2 Energian tuotanto Polttoprosessit Turbiinit Mäntämoottorit Polttimet Polttokennot Polymeerielektrolyyttipolttokennot Alkalipolttokennot Korkean lämpötilan polttokennot Lämpöenergia sähköksi Lämpövoimakoneet Termosähköiset materiaalit Pyrosähköiset materiaalit Termovalosähköinen konversio Kineettinen energia Biomekaaninen energia Virtausenergia Sähkömagneettinen säteily Radiotaajuisen energian talteenotto Aurinkoenergia Biologiset energianlähteet Biopolttokennot Kasvien aineenvaihdunta Radiatiivinen hajoaminen Termosähköinen konversio Ei-terminen konversio Energian varastointi Kemiallinen varastointi Vety Hiilivedyt Kemialliset hydridit Sähkökemiallinen varastointi Lyijyakku Nikkeliakut Litium-ioniakut Sulasuola-akut Virtausakut

10 SISÄLTÖ Regeneratiiviset polttokennot Sähkömagneettinen varastointi Kondensaattorit Suprajohtava magneettinen varastointi Lämmön varastointi Lämpökapasiteettivarastot Faasimuutosmateriaalit Kineettinen varastointi Potentiaalienergian varastointi Paineilmavarastointi Veden potentiaalivarastointi Sovellukset Sensorien tehonlähteet Yksittäisen sotilaan energianhallinta Miehittämättömät alukset Ajoneuvot ja kuljetuskalusto Stationääriset tehonlähteet Yhteenveto ja johtopäätökset Tehonlähteet ja varastointitekniikat Sovellukset ja järjestelmät Infrastruktuuri ja logistiikka Viitteet 74

11 1 Johdanto 1990-luvulta lähtien tietoisuus energiantuotannon synnyttämien päästöjen vaikutuksista on noussut huimaa vauhtia ja pyrkimys uusien vaihtoehtojen kartoittamiseen on johtanut energia-alan renessanssiin. Ympäristöystävällisiä energiantuotantotekniikoita on tutkittu jo kauan, mutta niille ei ole aiemmin nähty mitään konkreettista tarvetta. Fossiilisten polttoaineiden hupeneminen ja uhka hyvinvoinnin romahtamisesta on saanut vaihtoehtoisten energiatekniikoiden kehitykseen vauhtia ja eri tutkimusorganisaatiot ovat kehitelleet ja visioineet mitä moninaisimpia mahdollisuuksia tulevaisuuden energiatuotantoskenaarioista. Myös puolustussektorin on syytä pysyä mukana tulevassa energiainfrastruktuurin muutoksessa, sillä sotilasteknologian ei ole järkevä jäädä riippuvaiseksi hupenevista fossiilisista energiavaroista. Energiantuotantoperustan muuttaminen on kallista, mutta samalla on mahdollista adaptoida mukaan vielä tuntemattomampia ja potentiaalisesti hyvinkin suorituskykyisiä energiantuotantotekniikoita, jotka olisivat ilman muutostarvetta jääneet kokonaan kartoittamatta. Tulevissa sovelluksissa mukana kuljetettavien elektronisten laitteiden lukumäärä ja suurempi tehonkulutus muodostuvat haasteeksi nykyisille sähköntuotantotavoille. Uusista energiantuotantomenetelmistä on löytynyt potentiaalisia, energiatiheydeltään perinteiset akut päihittäviä vaihtoehtoja yksittäisen taistelijan ja miehittämättömien alusten sähköenergiantuotantoon. Tämän dokumentin tarkoituksena on antaa lukijalle yleinen käsitys erilaisista vaihtoehtoisista energiantuotantomenetelmistä. Raportti keskittyy enimmäkseen vielä hieman tuntemattomampiin energiantuotantomenetelmiin, jotka ovat vielä kehitysasteella tai vailla mittavaa kaupallista tuotantoa. Teksti on suunnattu aiheeseen tutustumattomalle lukijalle, eikä yksittäisiä teknologioita käsitellä selvityksen laajuuden johdosta pintaa syvemmältä. Kiinnostuksen herätessä kannattaakin kääntyä viitteinä mainitun materiaalin puoleen. Kappaleessa 2 käsitellään olemassa olevien energiantuotanto- ja muunnosteknologioiden perusteet ja käsitellään aiheita tutkimuksen ja tuotekehityksen näkökulmista. Seuraavassa kappaleessa perehdytään energianvarastointitekniikoihin. Kappaleessa 4 käydään läpi vaihtoehtoisten energiatekniikoiden jo käytössä olevia ja potentiaalisia sotilassovelluksia. Yhteenvedossa arvioidaan uusien energiatekniikoiden mahdollisuuksia ja haasteita sekä pohditaan mitä uutta ne tulevat mahdollistamaan lähitulevaisuudessa. 10

12 2 Energian tuotanto Kannettavasta elektroniikasta miehittämättömiin aluksiin, tuotekehityksen päämääränä on ollut laitteiden koon pienentäminen ja toiminta-ajan pidentäminen. Mikrosähkömekaanisilla järjestelmillä (MEMS) on saatu aikaan huomattavia parannuksia kaikilla sovellettavan teknologian osa-alueilla, poislukien tehonlähteet [1]. Laitteiden jatkokehityksen kannalta onkin tärkeää löytää uusia suorituskykyisiä tehonlähteitä nykyisten akkujen ja paristojen energiatiheyden lähestyessä kattoaan. Perinteisten hiilivetyjen (40 MJ/kg) ja vedyn (120 MJ/kg) energiatiheys ylittää moninkertaisesti nykyisten litium-ioniakkujen (<1 MJ/kg) energiatiheyden [2 4]. Jos polttoaineen kemiallinen energia saadaan edes osaksi muunnettua sähköksi, saavutetaan hiilivetyjen gravimetrisilla energiatiheyksillä huima harppaus nykyisiin akkuihin verrattuna. Kemiallisen energian muuntamiseksi sähköksi on perinteisesti käytetty polttomoottoriin yhdistettyä sähkögeneraattoria, mutta viime vuosikymmeninä vahvaksi kilpailijaksi ovat nousseet erityyppisten polttokennojen kavalkadi. Kehityskelpoisia ratkaisuja löytyy myös mikrokokoisten turbiinien ja polttimien saralta [5]. Toinen vaihtoehto energiatehokkuuden parantamiseen on haalia tarvittavaa energiaa käytettävän järjestelmän ympäristöstä (energy scavenging). Hyötykäyttöön voidaan ottaa ihmisen tuottama lämpöenergia (termosähköiset generaattorit), biomekaaninen energia tai jopa ympäristöstä löytyvän kasvillisuuden aineenvaihdunta [6]. Uusiutuvien energiantuotantomenetelmien kova kehitys on vauhdittanut myös aurinkokennoihin ja tuulivoimaan perustuvien energiajärjestelmien kaupallistamista. Erikoissovelluksissa vakiintuneen paikan saavuttaneiden radiatiivisten tehonlähteiden teknologia on myös murroksessa. Radiatiivisten tehonlähteiden korkea energiatiheys ja toimintavarmuus houkuttavat kehittämään nykyisten termosähköisten järjestelmien tilalle yhä pienempiä ei-termiseen muunnokseen perustuvia ydinparistoja [7]. Seuraavissa kappaleissa käydään läpi eri energian tuotanto ja konversiotekniikoita, lähtien kemiallisen energian muuntamisesta polttoprosesseilla ja polttokennoilla (kappaleet 2.1 ja 2.2), jatkaen lämpöenergian (2.3) ja kineettisen energian (2.4) talteenotolla. Lopuksi käydään läpi sähkömagneettisen säteilyn (2.5) avulla tuotettu energia, sekä biologiset (2.6) ja radiatiiviset (2.7) energianlähteet. 11

13 POLTTOPROSESSIT 2.1 Polttoprosessit Pienen skaalan polttoprosessit (mikro- ja mesoskaala) ovat lähiaikoina saaneet osakseen lisääntyvää huomiota, koska niiden on huomattu soveltuvan moniin eri kohteisiin, ei vain sähköenergian, mutta myös lämmön ja mekaanisen energian tuotantoon [8]. Mahdollisiin sovelluskohteisiin kuuluvat sensorit, aktuaattorit, kannettava elektroniikka, robotit, miehittämättömät alukset, lämmityslaitteet. Lisäksi polttoprosessit soveltuvat lämmön ja mekaanisen energian varavoimanlähteeksi ilmastointiin erilaisissa kulku- ja kuljetusvälineissä. Kuten jo edellä mainittiin, konsepti polttoprosessien hyödyntämisestä energiantuotannossa perustuu hiilivetyjen korkeaan energiatiheyteen, joka on jopa kaksi kertalukua korkeampi kuin nykyisellä akkuteknologialla on saavutettavissa. Polttoprosessia hyödyntävät laitteet voidaan jakaa karkeasti kahteen ryhmään: lämpövoimakoneisiin ja polttimiin. Lämpövoimakoneet ovat laitteita jotka muuntavat lämpöenergiaa mekaaniseksi energiaksi. Tähän luokkaan kuuluvat polttomoottorit sekä kaasuturbiinit, joissa polttoaineen kemiallinen energia muunnetaan rotaatioenergiaksi termodynaamisen työkierron avulla. Polttimet taas muuntavat polttoaineen kemiallisen energian mahdollisimman tehokkaasti lämmöksi, josta sitä voidaan hyödyntää muihin tarkoituksiin (ks. kappale 2.3). Isokokoiset turbiinit ja polttomoottorit ovat jo vakiintunutta tekniikkaa, joten todellinen haaste piileekin teknologian skaalautuvuudessa pienempään kokoon, erityisesti kannettavien laitteiden sähköntuotantoon [1, 8]. Ennen valmistustekniikan kehittymistä mikrotason komponenteille ja MEMS-teknologialle, polttoprosessien käyttö pienen skaalan laitteissa oli lähinnä akateemisen mielenkiinnon kohde. Mikroelektromekaanisten laitteiden yleistyminen loi tarpeen pienikokoisille energianlähteille. Seuraavissa kappaleissa perehdytään pienikokoisiin polttoprosessia hyödyntäviin laitteisiin Turbiinit Mikrokokoisten turbiininen kehitys on lähtenyt liikkeelle käytössä olevan teknologian skaalaamisesta pienempään kokoon. Tämä ei kuitenkaan onnistu vain pienentämällä laitteen dimensioita, sillä näin pienessä koossa virtausmekaniikka ja lämmönhallinta joudutaan miettimään kokonaan uudelleen. Vaikka teknologia on vielä kaukana kaupallistamisesta, mikroturbiineista on kuitenkin tehty useita onnistuneita demonstraatioita. Polttoaineena mikroturbiineissa voidaan käyttää kaasumuotoista hiilivetyä tai puhdasta vetyä. Turbiinien käyttämä Brayton-sykli on ylivoimainen verrattuna muihin polttomoottorityökiertoihin, sillä se tarjoaa korkeimman tehotiheyden

14 2.1 POLTTOPROSESSIT 13 Kuva 2.1: Kaaviokuva mikroturbiinin poikkileikkauksesta. Alkuperäiseen rakenteeseen [9] on myöhemmin ehdotettu parannuksia mm. polttokammion osalta [11]. Kuva: MIT OpenCourseWare. ja hyötysuhteen [9]. Lisäksi turbiinit ovat mekaanisesti kestäviä ja lämpötila voidaan pitää laitteen sisällä hyvin tasaisena. Mikroturbiini on sähkön tuottamiseksi kytkettävä sähkögeneraattoriin (ks. kappale 2.4). Tunnetuin kehitteillä oleva mikroturbiinikonsepti on MIT:n MEMSteknologiaan perustuva piipohjainen radiaalikompressoriturbiini. Turbiini on halkaisijaltaan 10 mm ja sen arvioitu sähköteho on noin 20 W [10]. Kuvissa 2.1 ja 2.2 on esitetty poikkileikkaus turbiinin rakenteesta ja lähikuva roottorilavoista. Turbiini koostuu useasta piihin etsatusta kerroksesta, jotka pinotaan päällekkäin kuvan 2.3 mukaisesti. Mikroturbiinista on tarkoitus kehittää suoraan piirilevyyn integroitava tehonlähde. Mikroturbiinin lupaavasta suorituskyvystä huolimatta konseptissa on vielä huomattavia ongelmia ratkaistavana. Riittävän tehontuotannon kannalta turbiiniin on pyörittävä hyvin suurella kierrosnopeudella ( rpm [10]), mikä aiheuttaa ongelmia laakeroinnin kanssa [12]. Toinen ongelma on varsinkin roottorilapojen materiaalin väsyminen korkeissa lämpötiloissa (jopa 1500 C pakokaasulämpötila [9, 10]). Väsyminen voidaan ratkaista käyttämällä piin sijasta piikarbidia, piinitridiä tai alumiinioksidia, mikä toisaalta vaatisi soveltuvien etsausmenetelmien kehitystä [9, 11]. Ongelmia on pystytty ratkaisemaan myös vaihtoehtoisella turbiinirakenteella. Tohokun yliopistossa on demonstroitu mikroturbiini, joka pystyy Braytonsykliin jo rpm kierrosluvuilla käyttölämpötilan pysytellessä C tuntumassa [10].

15 POLTTOPROSESSIT Kuva 2.2: Lähikuva mikroturbiinin roottorilavoista. Kuva: MIT OpenCourseWare. Kuva 2.3: Kaavio kuudesta piikerroksesta koostuvan mikroturbiinin valmistusprosessista. Kuva: MIT OpenCourseWare.

16 2.1 POLTTOPROSESSIT Mäntämoottorit Mäntämoottorit ovat tänä päivänä vakiintunutta teknologiaa ja niitä käytetään erilaisissa kulkuneuvoissa sekä varavoiman tuotannossa. Mäntämoottoriteknologiaa ei ole kuitenkaan kehitetty pienempään kokoluokkaan lähinnä valmistusteknisistä syistä. Kuten jo edellä mainittiin, hiilivetyjen korkea energiatiheys on herättänyt tutkijoiden kiinnostuksen myös mikrokokoisia mäntämoottoreita kohtaan. Mikromäntämoottoreissa fysikaaliset prosessit kuten palaminen, kaasujen kinetiikka ja lämmönvaihto tapahtuvat täysin eri skaalassa kuin täysikokoisissa polttomoottoreissa. Tämän johdosta suunnitteluperiaatteet eroavat radikaalisti suuremmista moottoreista. Mäntämoottorit on perinteisesti jaettu kipinäsytytteisiin (SI, Otto-sykli) ja puristussytytteisiin (CI, Diesel-sykli) moottoreihin. Kipinäsytytteisessä moottorissa osa palamisessa syntyvästä energiasta kuluu kaasuseoksen lämmittämiseen, ja tästä aiheutuva liekin tukahtuminen rajoittaa kipinäsytytteisen moottorin minimidimensioita [1]. Tätä rajoitusta ei kuitenkaan synny, jos käytetään sekä kipinä- että puristussytytteisen tekniikan yhdistelmää, HCCI-sykliä. HCCIsyklissä kokoa rajoittaviksi tekijöiksi muodostuvat kitka ja mäntä-sylinterirajapinnan vuodot [13]. HCCI-syklin soveltuvuutta mikromoottoreihin on demonstroitu 3.0 mm halkaisijan kertalaukaistavalla vapaamännällä n-heptaani/ilmaseoksella [10]. Käytettäessä ferromagneettista vapaamäntää voidaan moottoriin kytkeä induktioon perustuva sähkögeneraattori, jolloin ei tarvita kampiakselia ja erillistä sähkögeneraattoria[10]. Sylinterimoottorien lisäksi Berkeleyn yliopistossa (UCB) on kehitteillä pienikokoinen kiertomäntämoottori (Wankel). Projektin tavoitteena on kehittää MEMS-pohjainen halkaisijaltaan 2.4 mm roottoria käyttävä moottori, joka pystyisi tuottamaan 90 mw tehon [10]. Moottorin suurennosmallia on testattu vety/ilma-seoksella, jolloin saavutettiin 2.7 W teho 9300 rpm kierrosluvulla [14]. Tavoitteena on myös saada moottori toimimaan nestemäisellä hiilivedyllä [14]. Yleisenä ongelmana mäntämoottoreissa on kuitenkin soveltuvan valmistusmateriaalin ja -tekniikan löytäminen. Mäntämoottorien valmistusmateriaaliksi on ehdotettu mm. alumiinioksidia [15].

17 POLTTOPROSESSIT Polttimet Tällä hetkellä kehitteillä on huomattava määrä erityyppisiä mikropolttimia, joita on tarkoitus käyttää joko suoraan pienen skaalan lämmöntuotantoon tai rinnakkain jonkin lämpöenergiaa sähköksi muuntavan tekniikan, esim. termosähköisen generaattorin, kanssa (ks. kappale 2.3). Polttimien hyvänä puolena on kiinteä mekaaninen rakenne. Valitettavasti sähköntuotantoon käytettävien järjestelmien kokonaishyötysuhde jää yleensä alhaiseksi. Pienen koon polttimien ongelmana on myös liekin ylläpitäminen, koska tarvittava lämpö karkaa helposti hukkaan polttimen seinämistä [8]. Palamisen kynnysenergiaa voidaan myös alentaa katalyyteillä (esim. platina tai palladium), jolloin palamista pystytään ylläpitämään alemmassa lämpötilassa [14]. Eniten tutkittu poltintyyppi on ns. spiraalikanavapoltin (Swiss Roll combustor), jossa polttokammiosta erkanee kaksi limittäin kulkevaa spiraalikanavaa, toinen polttoaineen syöttökanava ja toinen pakokaasujen poistokanava [5, 14]. Tämä rakenne mahdollistaa syötettävän polttoaineen esilämmityksen pakokaasusta kanavaseinämän läpi johtuvan lämmön avulla. Stereolitografialla valmistetulla 12.5 mm 12.5 mm 5.0 mm-kokoisella TEG-elementtiin kytketyllä spiraalipolttimella on pystytty 100 mw tehontuotantoon, kokonaishyötysuhteen vaihdellessa 1 5 % välillä, riippuen polttoaineesta [5]. Yalen yliopiston tutkijat ovat raportoineet katalyyttisestä 1000 C lämpötilassa toimivasta polttimesta, jolla on saavutettu jopa 97 % palamishyötysuhde, eli miltei kaikki polttoaineen energia muuttui lämmöksi [5]. Spiraalikanavan lisäksi on esitelty myös vaihtoehtoisia tekniikoita. Polttimissa voidaan käyttää pyörteistä palamista, jolloin liekki saadaan pienessäkin koossa stabiiliksi [2]. Toinen vähemmän tutkittu ja isommassa koossa paljon käytetty tapa on käyttää huokoista poltinkammiota, jolloin pystytään vähentämään lämmön karkaamista ja samalla lämmittämään syötettävää polttoainetta [14].

18 2.2 POLTTOKENNOT 17 Ulkoinen piiri e Polttoaine sisään Ilma sisään H 2 O 2 H + H 2 Ylimääräinen polttoaine PEM Ilma ja vesi ulos O 2 H 2O Virtauskanavalevy KDK Elektrodit KDK Virtauskanavalevy Kuva 2.4: Vetykäyttöisen protoninvaihtopolttokennon rakenne ja toimintaperiaate. Kuva: Pauli Koski [16]. 2.2 Polttokennot Polttokennot ovat sähkökemiallisia laitteita, jotka pystyvät tehokkaasti muuntamaan polttoaineen kemiallisen energian suoraan sähköksi. Polttokennot käyttävät yleensä polttoaineenaan vetyä, hiilivetyjä tai muita sopivia vedynkantajia. Polttokennoille tyypillisiä ominaisuuksia ovat korkea hyötysuhde ja virrantiheys, hiljaisuus, kiinteä rakenne (ei liikkuvia osia), sekä hyvä skaalautuvuus milliwateista satoihin kilowatteihin. Polttokennot eivät myöskään tuota palamisreaktiosta tuttuja ilmansaasteita. Riippuen käytetystä polttoaineesta, polttokennot tuottavat ilmansaasteita hyvin vähän tai eivät ollenkaan. Saasteettomuus yhdessä korkean hyötysuhteen kanssa tekee polttokennoista ympäristöystävällisen tavan tuottaa sähköä, mikä onkin yksi keskeisimpiä motiiveja polttokennojen tutkimus- ja tuotekehitystyössä. Polttokennojen korkea hyötysuhde perustuu sähkökemialliseen hapetus-pelkistysreaktioon polttoaineen ja hapettimen välillä. Toisin kuin polttomoottoreissa, polttokennoissa kemiallinen reaktio tapahtuu kahtena puolireaktiona, kennon kummallakin elektrodilla. Koska kokonaisreaktiossa ei tapahdu palamista, polttokennon hyötysuhde voi ylittää termodynaamisen Carnothyötysuhteen. Kuvassa 2.4 on esitetty vetykäyttöisen protoninvaihtokennon rakenne ja toimintaperiaate. Yksittäisen polttokennon tuottama avoimen piirin jännite on yleensä 0.4 V

19 POLTTOKENNOT Kuva 2.5: Tyypillinen PEM-polttokennosto eli stack. Yksittäiset kennot on puristettu yhteen metallisten päätylevyjen väliin. Kuva: NREL. 1.0 V väliltä [17]. Tästä johtuen yksittäisen kennot nivotaan sarjaan kennostoiksi eli stackeiksi, jollainen on esitetty kuvassa 2.5. Kun polttokennoa aletaan kuormittaa, kennon tuottama jännite laskee avoimen piirin jännitteen alapuolelle. Jännitteen aleneminen johtuu häviömekanismeista, jotka on esitetty tarkemmin kuvassa 2.6. Polttokennojen toimintaan voi perehtyä tarkemmin mm. lähteistä [17 24]. Polttokennotyypit jaotellaan yleensä ryhmiin niiden käyttölämpötilan, polttoaineen tai elektrolyytin mukaan. Seuraavissa kappaleissa käydään läpi yleisesti tunnetuimmat ja teknologialtaan lupaavimmat polttokennotyypit Polymeerielektrolyyttipolttokennot Polymeerielektrolyyttipolttokenno tai protoninvaihtopolttokenno (PEMFC, PEFC) on eri polttokennotyypeistä selvästi tutkituin ja teknologialtaan kypsin. PEM-polttokennot käyttävät polttoaineenaan vetyä ja hapettimena happea, yleensä suoraan ilmasta. Elektrolyyttinä toimii ohut polymeerikalvo, joka on saatu protonijohtavaksi kiinnittämällä PTFE-runkoon sulfonihapporyhmiä. Koska tyypilliset elektrolyyttimembraanit vaativat kostutusta, rajoittaa nestemäisen veden tarve PEM-polttokennon käyttölämpötilan suhteellisen alhaiseksi, yleensä 30 C - 90 C välille. PEM-polttokennot hyviä ominaisuuksia

20 2.2 POLTTOKENNOT E (V) 0,9 0,8 0,7 0,6 0,5 0,4 0,3 Alue I Jännite Tehotiheys Alue II Alue III P (mw/cm 2 ) 0, j (ma/cm 2 ) Kuva 2.6: Esimerkki protoninvaihtopolttokennon nk. polarisaatiokäyrästä (punainen). Kun kennosta aletaan ottaa virtaa, tippuu jännite avoimen piirin jännitteen alapuolelle erilaisten varauksen ja reaktanttien siirrosta aiheutuvien häviöiden johdosta. Kuvaan on merkitty kolme aluetta, joissa kunkin häviömekanismin vaikutus on selvimmin havaittavissa: (I) aktivaatiohäviöt, (II) Ohminen häviö ja (III) aineensiirtohäviöt. Kennon tuottama teho on esitetty kuvaajan oikeanpuoleisella akselilla (vihreä). Kuva: Pauli Koski [16].

21 POLTTOKENNOT ovat nopea käynnistys ja korkea virrantiheys. Membraanin kostuttaminen vaatii kuitenkin huomattavan määrään kennon ulkopuolista lisälaitteistoa. Reformeripolttokennot PEM-kennoissa on höyryreformoinnin avulla mahdollista käyttää polttoaineena myös erilaisia hiilivetyjä. Tyypillisiä reformoinnissa käytettäviä polttoaineita ovat metanoli ja maakaasu, joiden lisäksi on mahdollista käyttää mm. propaania, bensiiniä, dieseliä tai etanolia. Reformerin käytössä on haasteena sen vaatiman korkean lämpötilan ylläpito, varsinkin alhaisen lämpötilan polttokennoissa. Höyryreformointia on kuitenkin onnistuneesti käytetty mm. reformerimetanolipolttokenno (RMFC), joita on kaupallisesti saatavilla [25]. Suorareaktiopolttokennot Reformoinnin lisäksi vetyä sisältäviä polttoaineita on mahdollista käyttää nk. suorareaktiopolttokennoissa, joissa polttoaine syötetään sellaisenaan kennon elektrodille. Suorareaktiopolttokennot eroavat PEMFC:sta lähinnä polttoaineen syötön osalta. Polttoaineena voidaan käyttää nestemäisiä pienimolekyylisiä hiilivetyjä, kuten metanolia, etanolia, eettereitä tai muita orgaanisia yhdisteitä (esim. metaanihappo) [26]. Suorareaktiopolttokennojen käyttölämpötilat ovat yleensä hieman alhaisempia kuin vedyllä toimivien PEM-kennojen. Suorametanolipolttokenno (DMFC) on suorareaktiopolttokennoista lähimpänä kaupallistamista. Polttoaineena DMFC:ssa käytetään metanoli-vesiliuosta. Kemiallisessa reaktiossa anodi vastaanottaa vetyä suoraan metanolimolekyylistä (CH 3 OH), jolloin ei tarvita erillistä reformeria. Kuorman alaisena DMFC pystyy yleensä tuottamaan noin 0.3V 0.5 V jännitettä [19]. DMFC:a käytettään yleensä kannettavissa laitteissa, kuten kameroissa ja tietokoneissa, joiden tehovaatimukset ovat 1 W 1 kw väliltä. DMFC:n ongelmana on metanolin diffuusio elektrolyyttimembraanin läpi ja metanolin hidas hapettuminen anodilla [26]. Suoraetanolipolttokennossa (DEFC) anodille syötetään etanolia (C 2 H 5 OH), joka hapettuu tuottaen hiilidioksidia, protoneja ja elektroneja. DEFC:n tuottama jännite on V väliltä ja tehotiheys huomattavasti DMFC:a matalampi [19, 27]. Suoradimetyylieetteripolttokennossa (DDMEFC) käytetään polttoaineena dimetyylieetteriä (CH 30 CH 3, DME). Polttoaineen DME sisältää paljon enemmän energiaa kuin metanoli, sillä yhdessä hapettumisreaktiossa syntyy metanolin kuuden elektronin sijasta 12 elektronia [27]. DME ei myöskään diffundoidu

22 2.2 POLTTOKENNOT 21 membraanin läpi yhtä helposti ja on turvallisempaa käyttää kuin metanoli. DD- MEFC suorituskyky on samaa luokkaa DMFC:n kanssa [27]. Suorametaanihappopolttokennossa (DFAFC) polttoaineena toimii metaanihappo (HCOOH). Metaanihappo ei tunkeudu polymeerielektrolyytin läpi, joten kennoon voidaan syöttää jopa % liuosta, verrattuna suorametanolipolttokennon noin 6 prosenttiin [19]. DFAFC tuottama jännite on noin 0.55 V, joka on hyvin kaukana teoreettisesta 1.45 V [19] Alkalipolttokennot Alkalipolttokennot (AFC) toimivat noin 100 C lämpötilassa ja niiden hyötysuhde on % luokkaa [19]. Polttoaineena toimii vety ja elektrolyyttinä käytetään veteen liuotettua kaliumhydroksidia (KOH), joka kuljettaa negatiivisia ioneja anodilta katodille [28]. Alkalipolttokennoille on ominaista nopea käynnistyminen. Elektrolyytti on hyvin herkkiä hiilidioksidille, joten kennoon syötettävä ilma on suodatettava ennen käyttöä. Haittapuolena on myös elektrolyytin korrosiivisuus, joka lyhentää käyttöikää. AFC:t ovat ensimmäisiä polttokennoja, jotka laitettiin hyötykäyttöön jo 1900-luvn alussa [28]. Alkalipolttokennoja on käytetty mm. ajoneuvoissa ja avaruussukkuloissa, mutta 1980-luvulla kiinnostus AFC:n lopahti. Uudentyppisten ohutkalvoelektrolyyttien (PEM) kehitys on kuitenkin herättänyt uutta kiinnostusta alkalipolttokennoihin ja aikaisemmin ongelmana olleita heikkouksia yritetään kiertää kehittämällä polymeeripohjaista anioninvaihtomembraania (AEM) [28]. Seuraavaksi esitellään muutamia alkaliseen kennoon (ja AEM:n) perustuvia vaihtoehtoisia polttoaineita käyttäviä kennotyyppejä. Suoraborohydridipolttokenno (DBFC) Suoraborohydridipolttokenno käyttää polttoaineenaan veteen liuotettua natriumborohydridiä (NaBH 4 ), joka alkaalisissa olosuhteissa vapauttaa vetyä ja lopulta hapettuu booraksiksi (NaBO 2 ). DBFC:a käytetään noin 70 C lämpötilassa ja katalyyttinä voidaan käyttää jalometallien sijasta nikkeliä, jolla saavutetaan noin 50 % hyötysuhde [29]. DBFC:n tuottama suhteellisen korkea jännite (1.64 V), hyvä tehotiheys ja matala käyttölämpötila yhdessä natriumborohydridin 10.4 massaprosentin vedynkantokykyyn tekevät siitä lupaavan tehonlähteen kannettaviin laitteisiin [19, 29]. Haittapuolen on kuitenkin borohydridien korkea hinta [19].

23 POLTTOKENNOT Suorahydratsiinipolttokenno (DHFC) Suorahydratsiinipolttokenno käyttää polttoaineenaan hydratsiinia (N 2 H 4 ), jota on tutkittu alkalikennojen polttoaineen jo 1970-luvulta [26]. DHFC on kuitenkin vielä tutkimus- ja kehitysasteella. DHFC:a on kokeiltu sekä kationin- ja anioninvaihtomembraaneilla, joista anioninvaihtokenno todettu huomattavasti paremmin toimivaksi [26]. DHFC:n teoreettinen jännite on 1.56 V [26]. Hydratsiini ei sisällä hiiltä, joten hapettumisessa ei synny hiilidioksidia, eivätkä hiiliyhdisteet pääse myrkyttämään katalyyttejä [26]. Hydratsiini on kuitenkin hyvin myrkyllistä, joten järjestelmien suunnittelu vaati erityistä huolellisuutta. Anioninvaihtomembraaneja on myös hyvin heikosti saatavilla, joten AEM:n kaupallistaminen ja MEA-synteesin kehittäminen on olennainen askel DHFC:n implementoinnissa [26]. Metallihydridipolttokennot MHFC Metallihydridipolttokenno vastaa suurelta osin AFC:a, mutta sen anodi on valmistettu metallihydiridikomposiitista, joka pystyy varaamaan polttoaineena käytettyä vetyä polttokennon sisälle. Täten MHFC on mahdollista ladata kuin akku, jolloin anodille varautuu uudelleen käytettävissä olevaa vetyä. MHFC on tällä hetkellä hyvin varhaisessa kehitysvaiheessa ja tehotiheydet ovat tähän mennessä olleet varsin alhaisia, noin 100 mw/cm 2 luokkaa [30]. Tästä huolimatta MHFC on erittäin mielenkiintoinen huomattavan alhaalle, jopa 20 C ulottuvan toimintalämpötilansa johdosta [30]. Mikrofluidistinen polttokenno Mikrofluidistinen polttokenno (LFFC) on membraaniton laminaariseen virtaukseen perustuva kennotyyppi. LFFC:ssa polttoaine ja oksidantti virtaavat laminaarisesti kanavassa, jolloin kahden nesteen rajapinta muodostaa virtuaalisen ioninvaihtokalvon [31]. Kennon elektrodit on sijoitettu kanavan vastakkaisille seinustoille. Virtaus on mahdollista pitää laminaarisena vain todella pienen skaalan kanavassa, jolloin suurempitehoisissa LFFC-tehonlähteissä on oltava suuri mikrokanavien muodostama verkosto. Polttoaineena LFFC:ssa käytetään vetyä, metanolia, metaanihappoa tai mitä tahansa muuta matalan lämpötilan polttokennoista tuttuja polttoaineita [32]. Virrantiheydet vaihtelevat suuresti, mw välillä, riippuen kennon rakenteesta ja polttoaineesta [32]. LFFC on vasta varhaisessa tutkimusvaiheessa, mutta lupaus membraanittomuudesta ja sen tuomista hyödyistä ajaa tutkimusta kiivaasti eteenpäin.

vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen

vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen DEE-5400 Polttokennot ja vetyteknologia Muut kennotyypit 1 Polttokennot ja vetyteknologia Risto Mikkonen Alkaalipolttokennot Anodi: Katodi: H 4OH 4 H O 4e O e H O 4OH 4 Avaruussovellutukset, ajoneuvokäytöt

Lisätiedot

Energian talteenotto liikkuvassa raskaassa työkoneessa. 20.01.2010 Heinikainen Olli

Energian talteenotto liikkuvassa raskaassa työkoneessa. 20.01.2010 Heinikainen Olli Energian talteenotto liikkuvassa raskaassa työkoneessa 20.01.2010 Heinikainen Olli Esityksen sisältö Yleistä Olemassa olevat sovellukset Kineettisen energian palauttaminen Potentiaalienergian palauttaminen

Lisätiedot

Polttokennolaboratoriotyö

Polttokennolaboratoriotyö Polttokennolaboratoriotyö Polttokennot ovat sähkökemiallisia laitteita, jotka muuntavat polttoaineen kemiallisen energian suoraan sähköksi ja lämmöksi [1]. Ne eivät nimensä mukaisesti kuitenkaan polta

Lisätiedot

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen 6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Kuudennen luennon aihepiirit Tulevaisuuden aurinkokennotyypit: väriaineaurinkokenno Rakenne Toimintaperiaate Kehityskohteet 1 AURINKOKENNOJEN NYKYTUTKIMUS Aurinkokennotutkimuksessa

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Energian tuotanto haasteita ja mahdollisuuksia Pohjois- Suomessa. Pekka Tynjälä Ulla Lassi

Energian tuotanto haasteita ja mahdollisuuksia Pohjois- Suomessa. Pekka Tynjälä Ulla Lassi Energian tuotanto haasteita ja mahdollisuuksia Pohjois- Suomessa Pekka Tynjälä Ulla Lassi Pohjois-Suomen suuralueseminaari 9.6.2009 Johdanto Mahdollisuuksia *Uusiutuvan energian tuotanto (erityisesti metsäbiomassan

Lisätiedot

AS.84-3134 Energiatekniikan automaatio. Polttokennot. Matias Halinen. DI, Tutkija VTT, Polttokennot

AS.84-3134 Energiatekniikan automaatio. Polttokennot. Matias Halinen. DI, Tutkija VTT, Polttokennot AS.84-3134 Energiatekniikan automaatio Polttokennot Matias Halinen DI, Tutkija VTT, Polttokennot AS-84.3134 Energiatekniikan automaatio, Syksy 2007 Sisältö Luento 1 Polttokennot yleisesti Polttokennojen

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Palot ajoneuvoissa Syyt / Riskit / Haasteet

Palot ajoneuvoissa Syyt / Riskit / Haasteet Dafo Brand AB 2009. All rights reserved. Palot ajoneuvoissa Syyt / Riskit / Haasteet Palonsammuttamisessa aika on merkittävä tekijä Nopea reagointi, vähemmän vahinkoa Ympäristönsuojelu, ympäristöarvot

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

Nestemäisillä biopolttoaineilla toimiva mikrokaasuturbiinigeneraattori Vene-ohjelman seminaari 29.9.2011

Nestemäisillä biopolttoaineilla toimiva mikrokaasuturbiinigeneraattori Vene-ohjelman seminaari 29.9.2011 Nestemäisillä biopolttoaineilla toimiva mikrokaasuturbiinigeneraattori Vene-ohjelman seminaari 29.9.2011 Jaakko Larjola Esa Saari Juha Honkatukia Aki Grönman Projektin yhteistyöpartnerit Timo Knuuttila

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Kolmannen luennon aihepiirit Aurinkokennon ja diodin toiminnallinen ero: Puolijohdeaurinkokenno ja diodi ovat molemmat pn-liitoksia. Mietitään aluksi, mikä on toiminnallinen ero näiden

Lisätiedot

Tutkimuksellinen lähestymistapa polttokennojen kemian opetukseen

Tutkimuksellinen lähestymistapa polttokennojen kemian opetukseen Tutkimuksellinen lähestymistapa polttokennojen kemian opetukseen Matleena Ojapalo Pro gradu -tutkielma Ohjaaja: Maija Aksela Kemian opettajankoulutusyksikkö Kemian laitos Helsingin yliopisto 29.10.2010

Lisätiedot

vetyteknologia Viikko 3 1 DEE-54020 Risto Mikkonen

vetyteknologia Viikko 3 1 DEE-54020 Risto Mikkonen DEE-54020 Polttokennot ja vetyteknologia Viikko 3 1 DEE-54020 Risto Mikkonen Polttokennot ja vetyteknologia III periodi Luennot: Risto Mikkonen, SH 311 ti 12-14 SE 201 ke 9-10 SE201 Seminaarityöt: Aki

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

Ekodesign - kestävät materiaali- ja valmistuskonseptit

Ekodesign - kestävät materiaali- ja valmistuskonseptit Ekodesign - kestävät materiaali- ja valmistuskonseptit Lehdistötilaisuus 29.8.2012 Professori, tekn.tri Erja Turunen Tutkimusjohtaja, sovelletut materiaalit Strateginen tutkimus, VTT 2 Kierrätyksen rooli

Lisätiedot

2. Prosessikaavioiden yksityiskohtainen tarkastelu

2. Prosessikaavioiden yksityiskohtainen tarkastelu 2. Prosessikaavioiden yksityiskohtainen tarkastelu 2.1 Reaktorit Teolliset reaktorit voidaan toimintansa perusteella jakaa seuraavasti: panosreaktorit (batch) panosreaktorit (batch) 1 virtausreaktorit

Lisätiedot

HANNA NURMILO VETYPOLTTOKENNON HYÖDYNTÄMINEN LINJA-AUTOSSA

HANNA NURMILO VETYPOLTTOKENNON HYÖDYNTÄMINEN LINJA-AUTOSSA HANNA NURMILO VETYPOLTTOKENNON HYÖDYNTÄMINEN LINJA-AUTOSSA Diplomityö Tarkastaja: Lehtori Risto Mikkonen Tarkastaja ja aihe hyväksytty Tieto- ja sähkötekniikan tiedekuntaneuvoston kokouksessa 6. huhtikuuta

Lisätiedot

Energian tuotanto ja käyttö

Energian tuotanto ja käyttö Energian tuotanto ja käyttö Mitä on energia? lämpöä sähköä liikenteen polttoaineita Mistä energiaa tuotetaan? Suomessa tärkeimpiä energian lähteitä ovat puupolttoaineet, öljy, kivihiili ja ydinvoima Kaukolämpöä

Lisätiedot

Suvilahden energiavarasto / Perttu Lahtinen

Suvilahden energiavarasto / Perttu Lahtinen Suvilahden energiavarasto 24.5.2016 / Perttu Lahtinen Helenin kehitysohjelman tavoitteena on hiilineutraali Helsinki 2050.Tämän saavuttamiseksi kehitämme jatkuvasti uusia teknologioita ja innovaatioita.

Lisätiedot

Harjoitustyö litiumioniakuista

Harjoitustyö litiumioniakuista Harjoitustyö litiumioniakuista Energian varastointi on eräs suurista haasteita uusiutuvan energian käytön lisääntyessä. Keveytensä ansiosta litiumioniakut ovat yleistyneet nopeasti hybridiautojen energiavarastoina.

Lisätiedot

Aalto-yliopisto Kemian tekniikan korkeakoulu Kemian laitos Epäorgaaninen kemia Fysikaalinen kemia Litiumioniakku

Aalto-yliopisto Kemian tekniikan korkeakoulu Kemian laitos Epäorgaaninen kemia Fysikaalinen kemia Litiumioniakku Aalto-yliopisto Kemian tekniikan korkeakoulu Kemian laitos Epäorgaaninen kemia Fysikaalinen kemia Litiumioniakku CHEM-A1400 Tulevaisuuden materiaalit Työstä vastaa Tanja Kallio (tanja.kallio@aalto.fi)

Lisätiedot

Energiaa luonnosta. GE2 Yhteinen maailma

Energiaa luonnosta. GE2 Yhteinen maailma Energiaa luonnosta GE2 Yhteinen maailma Energialuonnonvarat Energialuonnonvaroja ovat muun muassa öljy, maakaasu, kivihiili, ydinvoima, aurinkovoima, tuuli- ja vesivoima. Energialuonnonvarat voidaan jakaa

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

Ratkaisuja hajautettuun energiantuotantoon

Ratkaisuja hajautettuun energiantuotantoon Ratkaisuja hajautettuun energiantuotantoon Maa- ja elintarviketalouden tutkimuskeskus MTT on Suomen johtava ruokajärjestelmän vastuullisuutta, kilpailukykyä ja luonnonvarojen kestävää hyödyntämistä kehittävä

Lisätiedot

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu TN 3 / SÄHKÖASIOITA Viitaniemen koulu SÄHKÖSTÄ YLEISESTI SÄHKÖ YMPÄRISTÖSSÄ = monen erilaisen ilmiön yhteinen nimi = nykyihminen tulee harvoin toimeen ilman sähköä SÄHKÖN MUODOT SÄHKÖN MUODOT pistorasioista

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

A13-03 Kaksisuuntainen akkujen tasauskortti. Projektisuunnitelma. Automaatio- ja systeemitekniikan projektityöt AS-0.

A13-03 Kaksisuuntainen akkujen tasauskortti. Projektisuunnitelma. Automaatio- ja systeemitekniikan projektityöt AS-0. A13-03 Kaksisuuntainen akkujen tasauskortti Projektisuunnitelma Automaatio- ja systeemitekniikan projektityöt AS-0.3200 Syksy 2013 Arto Mikola Aku Kyyhkynen 25.9.2013 Sisällysluettelo Sisällysluettelo...

Lisätiedot

Suprajohtava generaattori tuulivoimalassa

Suprajohtava generaattori tuulivoimalassa 1 Suprajohtava generaattori tuulivoimalassa, Seminaaripäivä, Pori 2 Tuulivoiman kehitysnäkymät Tuuliturbiinien koot kasvavat. Vuoden 2005 puolivälissä suurin turbiinihalkaisija oli 126 m ja voimalan teho

Lisätiedot

Van der Polin yhtälö

Van der Polin yhtälö Van der Polin yhtälö RLC-virtapiirissä oleva vastus vaikuttaa varsin olennaisesti piirissä esiintyviin värähtelyilmiöihin. Kuitenkin aivan uuden elementin komponenttitekniikkaan toivat aikoinaan puolijohdediodeja

Lisätiedot

Veneen sähköt ja akusto. Akkujen valinta Lataus ja -laitteet Kaapelointi ja kytkentä Yleisimmät viat sähköjärjestelmissä

Veneen sähköt ja akusto. Akkujen valinta Lataus ja -laitteet Kaapelointi ja kytkentä Yleisimmät viat sähköjärjestelmissä Veneen sähköt ja akusto Akkujen valinta Lataus ja -laitteet Kaapelointi ja kytkentä Yleisimmät viat sähköjärjestelmissä Akku Akku on laite, joka ladattaessa muuttaa sähköenergian kemialliseksi energiaksi

Lisätiedot

Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 4. Kennon komponenteista huokoinen puolijohde

Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 4. Kennon komponenteista huokoinen puolijohde Väriaineaurinkokenno (Dye-sensitized solar cell, DSSC) 1. Johdanto 2. Rakenne ja toimintaperiaate 3. Kennon suorituskyvyn karakterisointi 4. Kennon komponenteista huokoinen puolijohde 5. Kennon komponenteista

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

www.ces.ee Citysec Energy Solutions AURINKOPANEELIT HYBRIDIRATKAISUT INVERTTERIT TARVIKKEET LED-VALOT KATUVALOT Citysec Energy Solutions

www.ces.ee Citysec Energy Solutions AURINKOPANEELIT HYBRIDIRATKAISUT INVERTTERIT TARVIKKEET LED-VALOT KATUVALOT Citysec Energy Solutions Uusiutuvan energian ratkaisut Citysec Energy Solutions Tulevaisuus on jo tänään! AURINKOPANEELIT HYBRIDIRATKAISUT Sähkö ja lämmin vesi - yhdellä moduulilla INVERTTERIT TARVIKKEET LED-VALOT KATUVALOT Narva

Lisätiedot

Uutta tuulivoimaa Suomeen. TuuliWatti Oy

Uutta tuulivoimaa Suomeen. TuuliWatti Oy Uutta tuulivoimaa Suomeen TuuliWatti Oy Päivän agenda Tervetuloa viestintäpäällikkö Liisa Joenpolvi, TuuliWatti TuuliWatin investointiuutiset toimitusjohtaja Jari Suominen, TuuliWatti Simo uusiutuvan energian

Lisätiedot

Biokaasu traktori on jo teknisesti mahdollinen maatiloille Nurmesta biokaasua, ravinteet viljelykiertoon - seminaari 26.03.2013

Biokaasu traktori on jo teknisesti mahdollinen maatiloille Nurmesta biokaasua, ravinteet viljelykiertoon - seminaari 26.03.2013 Biokaasu traktori on jo teknisesti mahdollinen maatiloille Nurmesta biokaasua, ravinteet viljelykiertoon - seminaari 26.03.2013 Petri Hannukainen, Agco/Valtra AGCO Valtra on osa AGCOa, joka on maailman

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Yleistietomateriaalia luentojen tueksi Aurinkokennotyypit: Mitä erilaisia aurinkokennotyyppejä on olemassa, ja miten ne poikkeavat ominaisuuksiltaan toisistaan? Yksikiteisen

Lisätiedot

Ohjeita opetukseen ja odotettavissa olevat tulokset

Ohjeita opetukseen ja odotettavissa olevat tulokset Ohjeita opetukseen ja odotettavissa olevat tulokset Ensimmäinen sivu on työskentelyyn orientoiva johdatteluvaihe, jossa annetaan jotain tietoja ongelmista, joita happamat sateet aiheuttavat. Lisäksi esitetään

Lisätiedot

SMG-4450 Aurinkosähkö

SMG-4450 Aurinkosähkö SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate

Lisätiedot

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

Mikä on Vaihtoehtoisten Sähköenergiateknologioiden ammattiaineen idea?

Mikä on Vaihtoehtoisten Sähköenergiateknologioiden ammattiaineen idea? Mikä on Vaihtoehtoisten Sähköenergiateknologioiden ammattiaineen idea? VAIHTOEHTOISET SÄHKÖENERGIATEKNOLOGIAT ON UUSIUTUVIEN SÄHKÖENERGIAMUOTOJEN TEKNIIKKAA Lähtökohta: Ilmastonmuutoksen seurauksena uusiutuvien

Lisätiedot

Vedonrajoitinluukun merkitys savuhormissa

Vedonrajoitinluukun merkitys savuhormissa Vedonrajoitinluukun merkitys savuhormissa Savupiipun tehtävä on saada aikaan vetoa palamista varten ja kuljettaa pois tuotetut savukaasut. Siksi savupiippu ja siihen liittyvät järjestelyt ovat äärimmäisen

Lisätiedot

Mistäuuttakysyntääja jalostustametsähakkeelle? MikkelinkehitysyhtiöMikseiOy Jussi Heinimö

Mistäuuttakysyntääja jalostustametsähakkeelle? MikkelinkehitysyhtiöMikseiOy Jussi Heinimö Mistäuuttakysyntääja jalostustametsähakkeelle? MikkelinkehitysyhtiöMikseiOy Jussi Heinimö 14.11.2016 Mistä uutta kysyntää metsähakkeelle -haasteita Metsähakkeen käyttö energiantuotannossa, erityisesti

Lisätiedot

Käytännön esimerkkejä on lukuisia.

Käytännön esimerkkejä on lukuisia. PROSESSI- JA Y MPÄRISTÖTEKNIIK KA Ilmiömallinnus prosessimet allurgiassa, 01 6 Teema 4 Tehtävien ratkaisut 15.9.016 SÄHKÖKEMIALLISTEN REAKTIOIDEN TERMODYNAMIIKKA JA KINETIIKKA Yleistä Tämä dokumentti sisältää

Lisätiedot

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

DEE Aurinkosähkön perusteet

DEE Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Viidennen luennon aihepiirit Olosuhteiden vaikutus aurinkokennon toimintaan: Mietitään kennon sisäisten tapahtumien avulla, miksi ja miten lämpötilan ja säteilyintensiteetin

Lisätiedot

skijännitekojeistot ENERGIAA AURINGOSTA ium Voltage Power Distribution Equipment

skijännitekojeistot ENERGIAA AURINGOSTA ium Voltage Power Distribution Equipment skijännitekojeistot ENERGIAA AURINGOSTA ium Voltage Power Distribution Equipment Ekologinen ja edullinen aurinkosähkö Aurinkosähkö on uusiutuva ja saasteeton energiamuoto, jota on saatavilla kaikkialla

Lisätiedot

Tuulivoiman ympäristövaikutukset

Tuulivoiman ympäristövaikutukset Tuulivoiman ympäristövaikutukset 1. Päästöt Tuulivoimalat eivät tarvitse polttoainetta, joten niistä ei synny suoria päästöjä Valmistus vaatii energiaa, mikä puolestaan voi aiheuttaa päästöjä Mahdollisesti

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

METSÄHAKKEEN KILPAILUASEMA LAUHDESÄHKÖN TUOTANNOSSA ESITYS 1.10.2013

METSÄHAKKEEN KILPAILUASEMA LAUHDESÄHKÖN TUOTANNOSSA ESITYS 1.10.2013 METSÄHAKKEEN KILPAILUASEMA LAUHDESÄHKÖN TUOTANNOSSA ESITYS LAUHDESÄHKÖN MERKITYS SÄHKÖMARKKINOILLA Lauhdesähkö on sähkön erillissähköntuotantoa (vrt. sähkön ja lämmön yhteistuotanto) Polttoaineilla (puu,

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

Seoksen rikastus ja säätö - Ruiskumoottorit lambdalla

Seoksen rikastus ja säätö - Ruiskumoottorit lambdalla Seoksien säätö - Ruiskumoottorit lambdalla 1 / 6 20.04.2016 10:45 Seoksen rikastus ja säätö - Ruiskumoottorit lambdalla Seos palaa parhaiten, C0-pitoisuuden ollessa alhainen ja HC-pitoisuus erittäin alhainen.

Lisätiedot

Teollisuus- ja palvelutuotannon kasvu edellyttää kohtuuhintaista energiaa ja erityisesti sähköä

Teollisuus- ja palvelutuotannon kasvu edellyttää kohtuuhintaista energiaa ja erityisesti sähköä Teollisuus- ja palvelutuotannon kasvu edellyttää kohtuuhintaista energiaa ja erityisesti sähköä Jos energian saanti on epävarmaa tai sen hintakehityksestä ei ole varmuutta, kiinnostus investoida Suomeen

Lisätiedot

Nykykodin lämmitysjärjestelmät

Nykykodin lämmitysjärjestelmät yle Nykykodin lämmitysjärjestelmät Antero Mäkinen Lämmönjakojärjestelmät Vesikiertoiset Patterit Lattialämmitys (IV-koneen esilämmityspatteri) Ilma IV-kone Sähkölämmitin maalämpöfoorumi.fi Vesikiertoinen

Lisätiedot

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla.

Hydrostaattinen tehonsiirto. Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Komponentit: pumppu moottori sylinteri Hydrostaattinen tehonsiirto Toimivat syrjäytysperiaatteella, eli energia muunnetaan syrjäytyselimien staattisten voimavaikutusten avulla. Pumput Teho: mekaaninen

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Tuulivoima. Energiaomavaraisuusiltapäivä 20.9.2014. Katja Hynynen

Tuulivoima. Energiaomavaraisuusiltapäivä 20.9.2014. Katja Hynynen Tuulivoima Energiaomavaraisuusiltapäivä 20.9.2014 Katja Hynynen Mitä on tuulivoima? Tuulen liike-energia muutetaan toiseen muotoon, esim. sähköksi. Kuva: http://commons.wikimedia.org/wiki/file: Windmill_in_Retz.jpg

Lisätiedot

90 ryhmän 1 huomautuksen f alakohdan nojalla. Näin ollen tavara luokitellaan CN-koodiin 8108 90 90 muuksi titaanista valmistetuksi tavaraksi.

90 ryhmän 1 huomautuksen f alakohdan nojalla. Näin ollen tavara luokitellaan CN-koodiin 8108 90 90 muuksi titaanista valmistetuksi tavaraksi. 14.11.2014 L 329/5 (CN-koodi) Kiinteä, lieriön muotoinen, kierteitetty tuote, joka on valmistettu erittäin kovasta värikäsitellystä titaaniseoksesta ja jonka pituus on noin 12 mm. Tuotteessa on varsi,

Lisätiedot

Voiteluaineiden vaikutus raskaiden ajoneuvojen polttoaineen kulutukseen. Kari Kulmala Neste Oil Oyj / Komponentit / Perusöljyt

Voiteluaineiden vaikutus raskaiden ajoneuvojen polttoaineen kulutukseen. Kari Kulmala Neste Oil Oyj / Komponentit / Perusöljyt Voiteluaineiden vaikutus raskaiden ajoneuvojen polttoaineen kulutukseen Kari Kulmala Neste Oil Oyj / Komponentit / Perusöljyt 1 Esityksen sisältö: Yleistä tietoa moottoriöljyistä ja niiden viskositeettiluokituksesta

Lisätiedot

CCO kit. Compact Change Over - 6-tievaihtoventtiili toimilaitteineen LYHYESTI

CCO kit. Compact Change Over - 6-tievaihtoventtiili toimilaitteineen LYHYESTI kit Compact Change Over - 6-tievaihtoventtiili toimilaitteineen LYHYESTI Mahdollistaa lämmityksen ja jäähdytyksen tuotteille, joissa on vain yksi patteripiiri Tarkka virtaussäätö Jäähdytys/lämmitys 4-putkijärjestelmiin

Lisätiedot

Aurinkoenergia Suomessa

Aurinkoenergia Suomessa Tampere Aurinkoenergia Suomessa 05.10.2016 Jarno Kuokkanen Sundial Finland Oy Aurinkoteknillinen yhdistys Ry Aurinkoenergian termit Aurinkolämpö (ST) Aurinkokeräin Tuottaa lämpöä Lämpöenergia, käyttövesi,

Lisätiedot

2.1 Sähköä kemiallisesta energiasta

2.1 Sähköä kemiallisesta energiasta 2.1 Sähköä kemiallisesta energiasta Monet hapettumis ja pelkistymisreaktioista on spontaaneja, jolloin elektronien siirtyminen tapahtuu itsestään. Koska reaktio on spontaani, vapautuu siinä energiaa, yleensä

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen. Erik Raita Polarsol Oy

Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen. Erik Raita Polarsol Oy Uuden sukupolven energiaratkaisu kiinteistöjen lämmitykseen Erik Raita Polarsol Oy Polarsol pähkinänkuoressa perustettu 2009, kotipaikka Joensuu modernit tuotantotilat Jukolanportin alueella ISO 9001:2008

Lisätiedot

Lämpöputkilämmönsiirtimet HPHE

Lämpöputkilämmönsiirtimet HPHE Lämpöputkilämmönsiirtimet HPHE LÄMMÖNTALTEENOTTO Lämmöntalteenotto kuumista usein likaisista ja pölyisistä kaasuista tarjoaa erinomaisen mahdollisuuden energiansäästöön ja hiilidioksidipäästöjen vähentämiseen

Lisätiedot

Paikallinen ja palveleva kumppani jo vuodesta 1919. Tapamme toimia. Leppäkosken Sähkö Oy. Arvomme. Tarjoamme kestäviä energiaratkaisuja asiakkaidemme

Paikallinen ja palveleva kumppani jo vuodesta 1919. Tapamme toimia. Leppäkosken Sähkö Oy. Arvomme. Tarjoamme kestäviä energiaratkaisuja asiakkaidemme Energiantuotanto Paikallinen ja palveleva kumppani jo vuodesta 1919 Sähkö -konserni on monipuolinen energiapalveluyritys, joka tuottaa asiakkailleen sähkö-, lämpö- ja maakaasupalveluja. Energia Oy Sähkö

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KEMIALLISIIN REAKTIOIHIN PERUSTUVA POLTTOAINEEN PALAMINEN Voimalaitoksessa käytetään polttoaineena

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Visioita tulevaisuuden sähköverkosta. Kimmo Kauhaniemi Professori Teknillinen tiedekunta Sähkö- ja energiatekniikka

Visioita tulevaisuuden sähköverkosta. Kimmo Kauhaniemi Professori Teknillinen tiedekunta Sähkö- ja energiatekniikka Visioita tulevaisuuden sähköverkosta Kimmo Kauhaniemi Professori Teknillinen tiedekunta Sähkö- ja energiatekniikka Minä ja tiede -luento, Seinäjoki 17.5.2016 & Vaasa 19.5.2016 Sisältö 1. Sähköverkko 2.

Lisätiedot

SMG-4300: Yhteenveto ensimmäisestä luennosta

SMG-4300: Yhteenveto ensimmäisestä luennosta SMG-4300: Yhteenveto ensimmäisestä luennosta Aurinko lähettää avaruuteen sähkömagneettista säteilyä. Säteilyn aallonpituusjakauma määräytyy käytännössä auringon pintalämpötilan (n. 6000 K) perusteella.

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

DEE-53010 Aurinkosähkön perusteet

DEE-53010 Aurinkosähkön perusteet DEE-53010 Aurinkosähkön perusteet Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Pinnallinen tapa aurinkokennon virta-jännite-käyrän

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä

Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä Avoinkirje kasvihuoneviljelijöille Aiheena energia- ja tuotantotehokkuus. Vähennä energian kulutusta ja kasvata satoa kasvihuoneviljelyssä Kasvihuoneen kokonaisenergian kulutusta on mahdollista pienentää

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

BIOMETANOLIN TUOTANTO

BIOMETANOLIN TUOTANTO LAPPEENRANNAN TEKNILLINEN YLIOPISTO Kemiantekniikan osasto Teknillisen kemian laboratorio Ke3330000 Kemianteollisuuden prosessit BIOMETANOLIN TUOTANTO Tekijä: Hiltunen Salla 0279885, Ke2 20.2.2006 SISÄLLYS

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

A13-03 Kaksisuuntainen akkujen tasauskortti. Väliaikaraportti. Automaatio- ja systeemitekniikan projektityöt AS Syksy 2013

A13-03 Kaksisuuntainen akkujen tasauskortti. Väliaikaraportti. Automaatio- ja systeemitekniikan projektityöt AS Syksy 2013 A13-03 Kaksisuuntainen akkujen tasauskortti Väliaikaraportti Automaatio- ja systeemitekniikan projektityöt AS-0.3200 Syksy 2013 Arto Mikola Aku Kyyhkynen 22.10.2013 Sisällysluettelo Sisällysluettelo...

Lisätiedot

ERISTETYT PUTKISTOJÄRJESTELMÄT. Vettä ja lämpöä turvallista asumista. laadukkaita LVI-ratkaisuja rakentajalle ja remontoijalle.

ERISTETYT PUTKISTOJÄRJESTELMÄT. Vettä ja lämpöä turvallista asumista. laadukkaita LVI-ratkaisuja rakentajalle ja remontoijalle. ERISTETYT PUTKISTOJÄRJESTELMÄT Vettä ja lämpöä turvallista asumista laadukkaita LVI-ratkaisuja rakentajalle ja remontoijalle. Uponor neliputkinen elementti lämmön ja lämpimän käyttöveden johtamiseen autotallin

Lisätiedot

Tuulivoimalatekniikan kehityksen vaikutus syöttötariffin tasoon

Tuulivoimalatekniikan kehityksen vaikutus syöttötariffin tasoon Tuulivoimalatekniikan kehityksen vaikutus syöttötariffin tasoon 27.7.2015 Raportin laatinut: Tapio Pitkäranta Diplomi-insinööri, Tekniikan lisensiaatti Tapio Pitkäranta, tapio.pitkaranta@hifian.fi Puh:

Lisätiedot

Farmivirta. Oulun Energia / Oulun Sähkönmyynti Olli Tuomivaara OULUN ENERGIA

Farmivirta. Oulun Energia / Oulun Sähkönmyynti Olli Tuomivaara OULUN ENERGIA Farmivirta Oulun Energia / Oulun Sähkönmyynti Olli Tuomivaara OULUN ENERGIA Farmivirta on puhdasta lähienergiaa pientuottajalta sähkönkäyttäjille Farmivirta tuotetaan mikro- ja pienvoimaloissa uusiutuvilla

Lisätiedot

Dynatel M sarjan paikannus- ja merkintäjärjestelmä UUSI TEKNOLOGIA VAHINKOJEN TORJUNTA ERITTÄIN TARKKA TURVALLISUUS Uusi 3M Dynatel M sarjan paikannus- ja merkintäjärjestelmä HELPPOA KUIN PUHELIMEN KÄYTTÖ...

Lisätiedot

Kattiharjun tuulivoimapuisto

Kattiharjun tuulivoimapuisto LIITE S U U N N IT T EL U JA T EK N IIK K A PROKON WIND ENERGY FINLAND OY Kattiharjun tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet FCG SUUNNITTELU JA TEKNIIKKA OY P214 FCG SUUNNITTELU JA TEKNIIKKA

Lisätiedot

Energiamurros - Energiasta ja CO2

Energiamurros - Energiasta ja CO2 Energiamurros - Energiasta ja CO2 Hybridivoimala seminaari, 25.10.2016 Micropolis, Piisilta 1, 91100 Ii Esa Vakkilainen Sisältö CO2 Uusi aika Energian tuotanto ja hinta Bioenergia ja uusiutuva Strategia

Lisätiedot

Energiatehokkuuden analysointi

Energiatehokkuuden analysointi Liite 2 Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Energiatehokkuuden analysointi Liite loppuraporttiin Jani Isokääntä 9.4.2015 Sisällys

Lisätiedot

Syöttötariffit. Vihreät sertifikaatit. Muut taloudelliset ohjauskeinot. Kansantalousvaikutukset

Syöttötariffit. Vihreät sertifikaatit. Muut taloudelliset ohjauskeinot. Kansantalousvaikutukset UUSIUTUVAN ENERGIAN OHJAUSKEINOT KANSANTALOUDEN KANNALTA Juha Honkatukia VATT Syöttötariffit Vihreät sertifikaatit Muut taloudelliset ohjauskeinot Kansantalousvaikutukset UUSIUTUVAN ENERGIAN OHJAUSKEINOT

Lisätiedot

Kannattava aurinkosähköinvestointi

Kannattava aurinkosähköinvestointi Kannattava aurinkosähköinvestointi -aurinkosähköjärjestelmästä yleisesti -mitoittamisesta kannattavuuden kannalta -aurinkoenergia kilpailukyvystä Mikko Nurhonen, ProAgria Etelä-Savo p. 043-824 9498 senttiä

Lisätiedot

Kiertotalous alkaa meistä Bioenergian kestävyyden arviointi Kommenttipuheenvuoro

Kiertotalous alkaa meistä Bioenergian kestävyyden arviointi Kommenttipuheenvuoro Kiertotalous alkaa meistä Bioenergian kestävyyden arviointi Kommenttipuheenvuoro Teija Paavola, Biovakka Suomi Oy Bioenergian kestävyys seminaari, 3.12.2015, Helsinki Kestävyyden osa-alueiden painottaminen

Lisätiedot

Smart Grid. Prof. Jarmo Partanen LUT Energy Electricity Energy Environment

Smart Grid. Prof. Jarmo Partanen LUT Energy Electricity Energy Environment Smart Grid Prof. Jarmo Partanen jarmo.partanen@lut.fi Electricity Energy Environment Edullinen energia ja työkoneet Hyvinvoinnin ja kehityksen perusta, myös tulevaisuudessa Electricity Energy Environment

Lisätiedot

BILAGA 3 LIITE 3. Fotomontage och synlighetsanalys Valokuvasovitteet ja näkymäanalyysi

BILAGA 3 LIITE 3. Fotomontage och synlighetsanalys Valokuvasovitteet ja näkymäanalyysi BILAGA 3 LIITE 3 Fotomontage och synlighetsanalys Valokuvasovitteet ja näkymäanalyysi SUUNNITTELU JA TEKNIIKKA VINDIN AB/OY Molpe-Petalax tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet FCG SUUNNITTELU

Lisätiedot

FRANCKIN JA HERTZIN KOE

FRANCKIN JA HERTZIN KOE FRANCKIN JA HRTZIN KO 1 Atomin kokonaisenergian kvantittuneisuuden osoittaminen Franck ja Hertz suorittivat vuonna 1914 ensimmäisinä kokeen, jonka avulla voitiin osoittaa oikeaksi Bohrin olettamus, että

Lisätiedot

HW 1800 (350) - voimapesä pikkuveljeksi HW 3600:lle

HW 1800 (350) - voimapesä pikkuveljeksi HW 3600:lle HW 1800 HW 1800 HW 1800 (350) - voimapesä pikkuveljeksi HW 3600:lle Liikkuva lämmöntuottaja - 100 0 C Tällä liikkuvalla lämmöntuottajalla voit toimittaa 100 0 C lämpöistä vettä. Kuljetuksen, kokoamisen,

Lisätiedot

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy

Jämsän energiatase Keski-Suomen Energiatoimisto/ Benet Oy Jämsän energiatase 2010 Keski-Suomen Energiatoimisto/ Benet Oy 1 Jämsän energiatase 2010 Öljy 398 GWh Turve 522 GWh Teollisuus 4200 GWh Sähkö 70 % Prosessilämpö 30 % Puupolttoaineet 1215 GWh Vesivoima

Lisätiedot