Gillespie A.: Foundations of Economics., 2011, luvut 6-8, 17, 21 ja 29. ISBN Oxford University Press.

Koko: px
Aloita esitys sivulta:

Download "Gillespie A.: Foundations of Economics., 2011, luvut 6-8, 17, 21 ja 29. ISBN 978-0-19-958654-7. Oxford University Press."

Transkriptio

1 Vltiotieteellinen tiedekunt Tloustieteen vlintkoe Arvosteluperusteet Kesä 0 Vlintkoekirjt Gillespie A.: Foundtions of Economics., 0, luvut 6-8, 7, j 9. ISBN Oxford University Press. sekä toinen seurvist: Pohjol, Mtti (0): Tloustieteen oppikirj. 5. uudistettu pinos. ISBN WSOYPro Oy. Aineistokoe edellyttää pitkän mtemtiikn tietoj. eller på svensk Berglund, Tom och Johnsson, Edvrd (007): Introduktion till smhällsekonomisk nlys. ISBN Söderströms förlg. Aineistokoe edellyttää pitkän mtemtiikn tietoj. TEHTÄVÄ ) Suhdnnevihtelulle on esitetty useit selityksiä. Pohjol (s. 9) korost erilisten ulkoisten shokkien, kuten öljyn hinnn vihtelun merkitystä. Gillespie (s. 35) minitsee odotukset j vrstojen vihtelun. Kotitlouksien j yrityksen odotukset jtkuvst ksvust innostvt yrityksiä tekemään investointej, sillä ne uskovt kysynnän ksvvn tulevisuudess. Kotitloudetkin ovt hlukkit kuluttmn uskoessn, että niiden tulovirt säilyy korken. Nämä tekijät vhvistvt toisin. Josskin viheess mielilt kuitenkin kääntyvät pessimistisemmiksi (kenties vnhojen kokemusten perusteell). Odotusten kääntymistä seur sekä kysynnän että investointien väheneminen. Vrstojen tsoon perustuvn teorin mukn ksvun lkuviheess yritykset ovt hluttomi ksvttmn tuotnto, kosk eivät vielä luot ksvun jtkuvuuteen. Tuotnnon sijn kysyntä tyydytetään vrstoj pienentämällä. Jos kysyntä kuitenkin ksv edelleen, yritysten on pkko ryhtyä tuotnnon ljentmiseen. Tällöin ne työllistävät lisää j myös investoivt. Vrstotkin on plutettv entiseen kokoons. Näin nousukusi kiihtyy j kuumenee. Kun kysyntä viimein tittuu, tuotnto ei heti pienennetä, vn vrstot ksvvt. Lskun jtkuess tuotntokin supistetn, jop enemmän kuin kysyntää, sillä vrstot pullistelevt. Smll investoinnit lyödään jäihin. Näin lskusuhdnne muuttuu lmksi. Myös julkisen vlln stbiloivksi iottu suhdnnepolitiikk stt itse siss voimist suhdnneviheluit. Perussyynä on se, että julkisen vlln sm informtio on yleensä vnhentunutt j päätöksenteko vtii ik.

2 b) Suhdnnetyyppejä lsketn olevn kolme, klssiset, lle kymmenen vuott kestävät suhdnteet, nobelvoittj Kuznetsin mukn nimetyt 5-5 vuott kestävät syklit j toisen nobel voittj Kondrtieffin mukn nimetyt pitkät, vuott kestävät syklit (Gillepie s, 350). c) Suhdnnevihtelu käsitellään vlintkoekirjss Pohjol luvuss. Suhdnteit ennustvi indikttoreit puolestn käsitellään vlintkoekirjss Gillespie luvuss. Jälkimmäisessä luetelln kolmentyyppisiä indikttoreit, johtvt (leding), smnikiset( coincident) j viivästettyjä ti lhvi (lgging) indikttoreit. Tehtävässä esitetyistä indikttoreist kolme (uudet utot, kuluttjien luottmus j uudet lint) ovt johtvi, kun ts työttömyys on viivästetty indikttori. Kikki johtvt indikttorit osoittvt, että edessä on uusi nousu (nousev suunt). Sen sijn viivästetty indikttori, osoitt vielä jo sivuutettu lmn pohj (lskev suunt). Indikttorit osoittvt siis smnsuuntisesti. On kuitenkin selvää, että tilnne on epävrm; ennen kokemton Euroopn velkkriisi pienentää kikkien indikttoreiden luotettvuutt. TEHTÄVÄ ) (yhteensä 4 pistettä) Tämä kysymys on kohtuullisen hstv. Siinä pyydetään pohtimn tlousksvu, sitä selittäviä tekijöitä j miden välisten elintsoerojen syitä. Näitä sioit käsitellään Pohjoln kirjn luvuss 9. Vstuksen tulee pohjutu kirjss esitettyihin rgumentteihin. Esimerkillisen vstuksen tulisi sisältää seurvt seikt j esityksen tulisi oll jouhev j looginen. Vstuksess ilmenevät keskeiset seikt ovt: ) Tlousksvu voidn nlysoid knsntlouden tuotntofunktion Y = A*F(K,L,H) vull, joss K, L, H j A ovt tuotnnontekijöitä; tlous ksv kun tuotnnontekijöiden määrä lisääntyy; tärkein / keskeisin tlousksvun moottori on ollut teknologin (A) kehittyminen; muhin tuotnnontekijöihin (K, L, H) pätee lskevn rjtuottvuuden lki. ( piste) ) Elintso vuorostn voidn (pproksimoiden) mitt BKT per cpit:ll, j se vuorostn voidn hjoitt seurviin khteen tekijään: BKT / pop = BKT/L * L/pop, joss pop on mn väkiluku j L mn yhteenlskettu työpnos (esim. tehdyt työtunnit). Tällöin BKT/L (ti edellisen kohdn merkinnöin Y/L) kuv työn tuottvuutt j L/pop työn määrää. Työnmäärää ksvttmll elintso voidn ksvtt vin rjllisesti; työn tuottvuus voi vuorostn ksv rjtt. ( piste)

3 3) Nyt kirjoittmll tuotntofunktio muotoon Y/L = A*F(K/L,,H/L), jolloin voimme selittää eroj työn tuottvuudess (j siis elintsoss) miden välillä seurvsti: erot teknologiss (tämä on tärkein!), erot pääomintensiteetissä j erot koulutustsoss. Empiirisen tutkimuksen mukn erot teknologiss selittävät noin puolet elintsoeroist; toinen puoli selittyy eroill pääomn määrässä j koulutustsoiss. ( piste) (Lisäksi miden välillä on eroj tehdyn työn määrässä mutt on syytä huomioid, että vp-ik (eli ei työnteko) on hyödyke, jonk kuluttminen ksvtt yksilöiden hyvinvointi. Pohdinnt siitä, miksi BKT/pop ei välttämättä ole hyvä hyvinvoinninmittri on voinut korvt muit puutteit tässä kohdss.) 4) Keskeinen syy elintsoeroille onkin ksvun puuttuminen; kun köyhä m pääsee ksvu-urlle ott se (todennäköisesti) iemmin vurstuneit mit kiinni elintsoss; teknologin omksuminen ulkomilt mhdollist luksi muit nopemmn ksvun; erot teknologin tsoss selittävät elintsoeroj premmin kuin erot koulutustsoss. Tehtävän ohess ollut kuvio tukee teori siitä, että köyhä m voi omksumll muiden käytössä olev teknologi ksv nopemmin kuin muut j näin kuro umpeen elintsoeroj. (Tämä koht & kuvion tulkint, piste) Lisäksi puutteit edellisten kohtien tiedoiss on voinut pikt seurvill pohdinnoill / huomioill: - Tlousksvu tukee sellisten instituutioiden olemssolo, jotk mhdollistvt / knnustvt säästämistä j investointej sekä fyysiseen että inhimilliseen pääomn. (0,5 pistettä) - T&K-toimint j sen tukemisen vikutus teknologiseen kehitykseen j näin ollen tlousksvuun. (0,5 pistettä) b) Etelä-Koren keskimääräinen ksvuprosentti on (noin) 6, Sveitsin (noin) prosentti. Pohjol (s. 54) esittää kksinkertistumisjn säännön, jonk mukn siis Etelä-Koren BKT kksinkertistuu jok 70/6=,66 eli (noin) jok vuosi. (0,5 pistettä) Vstvsti Sveitsin tlous kksinkertistuu jok 70/=70 vuosi. (0,5 pistettä) c) Voidn käyttää esimerkiksi seurv rviointitp: Kosk Etelä-Korell on ollut kiinniottoik 30/=,5 kksinkertistumisik, j kosk Etelä-Koren BKT vuonn 975 oli 3

4 noin 5000 $ henkeä kohti, on se ksvnut siis srjoiss Viimeisin luku viitt siihen, että kolms kksinkertistumiskusi ei ehdi kulu loppuun; Etelä-Koren henkeä kohti lskettu BKT jää siis lle dollrin vuonn 005. Vikk Sveitsi on ksvnut hitsti, on se kuitenkin pysytellyt edellä Etelä-Kore, sillä sen BKT oli niin korke vuonn 975, noin dollri. Jkson ikn ksvu oli noin puolet lähtöluvust, joten Sveitsin henkeä kohti lskettu BKT ylittää dollri. Trkt luvut vuonn 005 olivt: Etelä-Kore 808 $ j Sveitsi $. (Oiken suuntiset lskelmt 0,5 pistettä; lisäksi oike vstus 0,5 pistettä) TEHTÄVÄ 3 Kilpilu j monopoli verrtn Pohjoln kirjss, kuvioss 57. Vstv kuvio on esitetty ll. Pisteytys (mx. 6 pistettä): - Vstvnlinen kuvio esitetty oikein (0,5 pistettä); lisäksi kuvio tulkittu oikein (0,5 pistettä); tulkinnksi on riittänyt, että selvästi erottelee vpn kilpilun j monopolin kohtmt kustnnus j tuotto käyrät sekä molempi tilnteit vstvt tspinopisteet. (Tämä koht yhteensä piste.) - Anlyyttinen trkstelu (D, MC j MR käyrät nnettu); vpn kilpilun tspinoehto D = MC ( piste); vpn kilpilun tuottm määrä q=5 (0,5 pistettä) j hint p=6 (0,5 pistettä); monopolin tp-ehto MR=MC ( piste); monopolin tuottm määrä q=3 (0,5 pistettä) j hint p=0 (0,5 pistettä). (Tämä koht yhteensä 4 pistettä.) - Pohdinnt tloudellisen ksvun knnlt; verrttun vpseen kilpiluun, monopoli tuott vähemmän j klliimmll (0,5 pistettä); monopolin iheuttmt mhdolliset dynmiset vikutukset teknologiseen kehitykseen, ei välttämättä knnustimi T&K-toimintn (0,5 pistettä). (Tämä koht yhteensä piste.) (Jommnkummn edellisen seikn puuttumist on korvnnut huomio siitä, että monopoli voi knnust korruptioon, jne. Tosin tästä huomiost on voinut sd vin 0,5 pistettä.) 4

5 TEHTÄVÄ 4 ) Verokiilll trkoitetn ero työnntjn plkkkustnnusten j työntekijän smn plkn välillä. Epäsuorien verojen t m j työnntjn sosiliturvmksujen t vikutus sdn ottmll verokiiln (KME) derivtt ko. tekijöiden suhteen. Lopuksi suoritetn derivttojen vertilu: KME dt m dt dtm dt Y Y F F tm W W t Y Y F F W W t Y Y F F W W t Y Y F F tm W W W W t W W t tm t dtm dt 0 Y Y F F tm W W t t Molemmt derivtt ovt positiivisi. Verokiil ksv siis, kun epäsuori veroj ti työnntjn sosiliturvmksuj nostetn. Kummsskin tpuksess työnteon knnustimet heikkenevät. Verokiil ksv kuitenkin vähemmän epäsuorien verojen noustess, joten epäsuorien verojen nosto hitt vähemmän työnteon knnustvuutt. Artikkelin mukn juuri työnteon knnustvuus on pitkällä tähtäyksellä tärkeää, sillä se määrää bruttoknsntuotteen tson j sen ksvun. Mhdollisesti välttämättömät veronkorotukset tulisi siten tehdä epäsuori veroj nostmll. b) Määritellään verokertymän T t w L(t) äärirvo välillä ( 0 t ). Ensimmäisen kertluvun ehto sdn, kun kirjoitetn T verosteen t funktion j derivoidn se t:n suhteen, setetn derivtt nollksi j rtkistn t: T T( t) t w l( t) (/ ) t w (/ ) t T ' w (3/ ) t 3 w t (3/ ) t 0 t / 3 w (/ ) t w 3 (/ ) t ( / ) t ti t

6 Trkstelln sitten toisen kertluvun ehtoj kummllekin rvolle: T '' w (6 / ) t T ''( / 3) w (6 / w w 0 T ''(0) w )( / 3) 0 w 0 Äärirvo t=/3 on siis mksimi. Verosteen tulee oll /3, jott verokertymä T mksimoituisi. Verokertymä jää nollksi, jos t=0. Myös reunpiste t= tuott pienemmän verokertymän kuin optimlinen rvo. TEHTÄVÄ 5 ) Suomen tloustilnne oli vuonn 0 verrttin hyvä, kosk von Greffin j Vrtiisen rtikkelin mukn tlous oli vielä lskusuhdnteess 00. Vuonn 0 Suomen tlousksvu oli ripeää, työttömyys ste oli verrttin mtl, vltion velk oli kohtuullisell tsoll j investointien tso lähellä eurolueen keskirvo (World Fct Booking ineisto). Vihtotse oli niin ikään vielä koko vuoden oslt trksteltun positiivinen. Huono Suomen tloudess oli, että korkest verosteest huolimtt vltion budjetti oli tppiollinen. Vuoden 0 luss Suomen tlousksvu on pysynyt vkn, mutt sitä vrjost phenev Euroopn velkkriisi. Vltion velkntuminen on siitä huolimtt pysynyt kuriss j työttömyys ei ole ksvnut. Euron rvon lsku on myös uttnut Suomen vientiä j vihtotseemme on kääntynyt negtiiviseksi. Suomen tilnne näyttää kuitenkin vielä kohtuullisen hyvältä. Tästä kertoo myös se, että tehtävän kuluttjbrometri on myös lkuvuoden 0 ikn noussut. b) (Vstusvihtoehto : lyhyt ikväli) Suomell olisi vr elvyttää, eli hrjoitt ekspnsiivist tlouspolitiikk. Tämä uttisi tloutt lisäämällä kotimist kysyntää sekä luomll positiivisi kerroinvikutuksi tlouteen. Elvytys olisi todennäköisesti jnkohtist, kosk Suomen suurin yksittäinen kuppkumppni eli eurolue on jutumss (ellei se ole jo jutunut) tntumn. Suomen tloudess on kuitenkin myös ns. utomttisi suhdnteiden tsji, jotk vrmistvt, että lskusuhdnteess ulkomisen kysynnän hiipuess kotiminen kysyntä ei lske voimkksti. Näitä tsji ovt työttömyyskorvukset j sosiliturv. Voidn siis jtell, että Euroopn epävrmn tilnteen vuoksi ei tehdä mitään, vn nnetn ns. tsjien hoit lyhyen ikvälin ksvun tsoittmist. Korken verosteen vuoksi Suomen tulisi vro lisäämästä veroj. Budjetin tspinottmiseksi Suomen tulisikin mieluummin leikt vltion menoj j luod knnusteit työntekoon. Knnustimi työntekoon voitisiin luod pienentämällä 6

7 työnntjien sosiliturvmksuj, jotk ovt tähän tehokkmpi kuin epäsuorien verojen, kuten tuloverotuksen, lskeminen. Toinen vihtoehto olisi luod knnusteit investoinneille, esim. lskemll pääomverotust. (Vstusvihtoehto : pitkä ikväli). Euroopn epävrmn tilnteen vuoksi Suomen voidn myös suositell keskittyvän pidemmän ikvälin ksvun tukemiseen. Tämä voitisiin tehdä tukemll kotimist tutkimus j kehitystoimint, joll luotisiin edellytyksiä pidemmän ikvälin ksvulle (ns. endogeeninen ksvuteori; Pohjol s. 60). Suomen ongelmn on myös väestön ikääntyminen j ns. huoltosuhteen heikkeneminen, jolloin työllisten osuus väestöstä pienenee. Tähän voitisiin pyrkiä vikuttmn nostmll eläkeikää j knnustmll ihmisiä työskentelemään pidempään (von Greff j Vrtiinen s. - ). Näistä jälkimmäiseen voitisiin vikutt esim. työviihtyvyyttä prntmll. TEHTÄVÄ 6 ) Kreikn tloustilnne oli vuonn 0 huono. BKT supistui, vltioll oli pljon velk j työttömyysste oli hyvin korke (World Fct Book). Kreikn investointiste oli myös huomttvn mtl j vihtotse oli phsti negtiivinen. b) Tärkeintä Kreikn tlouden tspinottmisess olisi velkojen uudelleenjärjestely, eli velktkn pienentäminen. On mtemttisesti (lskennllisesti) selvää, että Kreikk ei pysty mksmn kikki velkojn tkisin. Näin suuren velktkn ll tlouden ksvttminen ei myöskään onnistu, kosk huomttv os sen keräämistä verovroist menee velkojen korkomksuihin j näin sillä ei ole esim. vr hrrst ekspnsiivist tlouspolitiikk. Vihtoehtoin velktkn hoitmiseen on, että huomttv os veloist ostetn pois joko muiden euromiden (eurobondit) ti EKP:n puolest (setelirhoitus). Kreikn plminen omn vluuttn vähentäisi tuonti, lisäisi vientiä j tekisi Kreikst houkuttelevmmn (hlvemmn) mtkilukohteen, kosk sen uusi vluutt vrmsti devlvoituisi euroon j dollriin nähden (Gillespie 0, s ). Nämä prntisivt Kreikn tlouden ksvupotentili. Eurost eromisen lyhyen ikvälin kustnnukset voivt kuitenkin oll huomttvt. Kreikn vltion veln nimellisrvo nousisi vluutn devlvoitumist vstvss suhteess. Vltiolt myös käytännössä loppuisivt rht mks plkkoj j mksuj, kosk Kreikk ei tällä hetkellä pystyisi linmn knsinvälisiltä linmrkkinoilt eivätkä sen verotulot riittäisi kttmn menoj. Tämä johtisi esim. poliisien j opettjien plknmksun ktkemiseen sekä koulujen j sirloiden toiminnn häiriöihin. Kreikk ei myöskään ole ruoktloudeltn omvrinen, joten voimks devlvtio voi joht myös ruokpuln. Onkin mhdollist, että eurost erominen johtisi vielä suurempiin sisäisiin levottomuuksiin kuin mitä tähän mennessä on nähty. Näihin kustnnuksiin vikutt keskeisesi se kuink pljon j millä ehdoill Kreikk sisi erons jälkeen tuke esim. EU:lt. 7

8 Kreikk voi myös pyrkiä tehostmn verotust nostmll epäsuori veroj, mutt näillä olisi vin tlousksvu hidstv j sitä kutt verokertymää lskev vikutus (von Greff j Vrtiinen 00, s., Pohjol 00, s. 6). Kreikn suurin ongelm on, että sillä on liik velk j että sen vluutn rvo on kiinnitetty. Kreikn investointiste pitäisi myös sd nousemn, joll luotisiin ksvun edellytyksiä (Pohjol 00, s ). Huom. Tehtävässä oli keskeistä esittää ymmärrystä Kreikn ongelmllist tilnnett kohtn sekä pystyä esittämään jokin järkevä tlouspoliittinen vihtoehto. 8

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Mikrotalousteoria 2, 2008, osa III

Mikrotalousteoria 2, 2008, osa III Sisältö Mikrotlousteori 2, 2008, os III Yrityksen tuotntofunktiost 2 Pnosten substituoitvuus 2 3 Yrityksen teori 3 4 Mittkvedut tuotnnoss 5 5 Yksikkökustnnusten j skltuottojen steen välinen yhteys 5 6

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin Ludtur MAA rtkisut kertushrjoituksiin Integrlifunktio. ) Jokin integrli funktio on esimerkiksi F( ) b) Kikki integrlifunktiot F( ) + C, missä C on vkio Vstus: ) F( ) b) F( ) + C, C on vkio. Kikki integrlifunktiot

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,

Lisätiedot

Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3

Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3 Kertusos. ) Edullisemm hit 480, = 64 Klliimm tukkuhit, 480 = 576 Klliimm myytihit, 576 = 748,80 b) 748,80 64 = 0,666... = 6,66% 7% 748,80. Liittymä puhelimell mks khde vuode ik 4 8,50 = 684. Liittymä ilm

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

Vuoden 2014 tuloveroprosentti. Vuoden 2014 kiinteistöveroprosentit

Vuoden 2014 tuloveroprosentti. Vuoden 2014 kiinteistöveroprosentit Kunnnvltuusto KOKOUSKUTSU Kokousik Perjnti 15.11.2013 klo 14.00-15.00 Kokouspikk Käsiteltävät sit Asino Liite no Svukosken kunnnvirsto 1 60 Järjestäytymissit 2 61 1-2 Vuoden 2014 tuloveroprosentti 3 62

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13

Viivaintegraali: Pac- Man - tulkinta. Viivaintegraali: Pac- Man - tulkinta. Perinteisempi tulkinta: 1D 3/19/13 Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot

IKÄÄNTYMINEN ETELÄ-SAVOSSA

IKÄÄNTYMINEN ETELÄ-SAVOSSA 1 TRENDIKATSAUS 3/215 (31.12.215) TULEVAISUUSLOIKKA ETELÄ-SAVON ENNAKOINTIHANKE 215-217 IKÄÄNTYMINEN ETELÄ-SAVOSSA KATSAUS ETELÄ-SAVON MAAKUNNAN VÄESTÖN IKÄÄNTYMISKEHITYKSEEN Tähän ktsukseen on koottu

Lisätiedot

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst...

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S 3.3. Aritmeettie summ 3.3. Aritmeettie summ Mikä olisi helpoi tp lske 0 esimmäistä luoollist luku yhtee? Olisiko r voim käyttö 0 + + + 3 + + 00 hyvä jtus? Tekiik vull se iki toimii. Fiksumpiki tp kuiteki

Lisätiedot

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm - Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst... Tietoj pkkuksest. Vrlämmitin..... Vrusteiden poistminen

Lisätiedot

Suorat, käyrät ja kaarevuus

Suorat, käyrät ja kaarevuus Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.

Lisätiedot

Kasvihuonekaasupäästöjen kehitys pääkaupunkiseudulla

Kasvihuonekaasupäästöjen kehitys pääkaupunkiseudulla YTV MUISTIO 1 Asi 7 / Liite 1 PÄÄKAUPUNKISEUDUN ILMASTOSTRATEGIA 2030 YTV:n hllitus on kokouksessn 14.12.2006 hyväksynyt Pääkupunkiseudun ilmstostrtegiluonnoksen 2030 lusuntojen j knnnottojen pyytämistä

Lisätiedot

SUORAKULMAINEN KOLMIO

SUORAKULMAINEN KOLMIO Clulus Lukion Täydentävä ineisto 45 0 45 60 ( - ) + SUORKULMINEN KOLMIO Pvo Jäppinen lpo Kupiinen Mtti Räsänen Suorkulminen kolmio Suorkulminen kolmio Käsillä olev Lukion Clulus -srjn täydennysmterili

Lisätiedot

Matematiikkaolympialaiset 2008 kuusi vaikeaa tehtävää

Matematiikkaolympialaiset 2008 kuusi vaikeaa tehtävää Solmu 3/2008 Mtemtiikkolympiliset 2008 kuusi vike tehtävää Mtti Lehtinen Mnpuolustuskorkekoulu 49. Knsinväliset mtemtiikkolympiliset pidettiin Mdridiss 4. 22. heinäkuut 2008. Kilpilijoit oli 535 j he edustivt

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Syysrypsin kylvö kevätviljaan

Syysrypsin kylvö kevätviljaan Syysrypsin kylvö kevätviljn Antti Tuulos j Pirjo Mäkelä Soveltvn biologin litos, PL 27, 00014 Helsingin yliopisto, emil: ntti.tuulos@helsinki.fi j pirjo.mkel@helsinki.fi Tiivistelmä Syysrypsi on vrteenotettv

Lisätiedot

Metsätieteen aikakauskirja

Metsätieteen aikakauskirja Metsätieteen ikkuskirj t u t k i m u s r t i k k e l i Sij Huuskonen j Anssi Ahtikoski Sij Huuskonen Ensihrvennuksen joituksen j voimkkuuden vikutus kuivhkon knkn männiköiden tuotokseen j tuottoon Huuskonen,

Lisätiedot

Geometrinen algebra: kun vektorien maailma ei riitä

Geometrinen algebra: kun vektorien maailma ei riitä Geometrinen lgebr: kun vektorien milm ei riitä Risto A. Pju 4. huhtikuut 2003 Tiivistelmä Geometrinen lgebr on viime vuosin ksvttnut suosiotn luonnontieteiden mtemttisen menetelmänä. Sen juuret ovt vektori-

Lisätiedot

298 TYÖN, PÄÄOMAN JA KULUTUKSEN VERORASITUKSEN MITTAAMINEN

298 TYÖN, PÄÄOMAN JA KULUTUKSEN VERORASITUKSEN MITTAAMINEN VATT-KESKUSTELUALOITTEITA VATT-DISCUSSION PAPERS 298 TYÖN, PÄÄOMAN JA KULUTUKSEN VERORASITUKSEN MITTAAMINEN Hrri Hietl* j Teemu Lyytikäinen Vltion tloudellinen tutkimuskeskus Government Institute for Economic

Lisätiedot

6.2 Algoritmin määritelmä

6.2 Algoritmin määritelmä 6.2 Algoritmin määritelmä Mitä lgoritmill yleensä trkoitetn? Peritteess: Yksiselitteisesti kuvttu jono (tietojenkäsittely)opertioit, jotk voidn toteutt meknisesti. Käytännössä: luonnollist kieltä, pseudokoodi

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1 VEKTORILASKENTA Timo Mäkelä SISÄLTÖ: VEKTORIN KÄSITE VEKTOREIDEN ERUSLASKUTOIMITUKSET VEKTOREIDEN YHTEENLASKU VEKTOREIDEN VÄHENNYSLASKU 4 VEKTORIN KERTOMINEN LUVULLA6 4 VEKTORILAUSEKKEIDEN KÄSITTELY7 TASON

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk d Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A1 Muotoilun milm j muotoilusuunnistus Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Etsitään j löydetään muotoilu ympäristöstä.

Lisätiedot

3.7. Rekursiivisista lukujonoista

3.7. Rekursiivisista lukujonoista .7 Rekursiivisist lukujooist.7. Rekursiivisist lukujooist Kerrt vielä, että lukujoo void määritellä khdell eri tvll, joko käyttämällä lyyttistä säätöä ti rekursiivist säätöä. Joo määrittelemie rekursiivisesti

Lisätiedot

ELE-3600 Elektroniikan erikoistyö 24.05.2007 tomi.kettunen@biaspiste.fi. Putkitekniikan perusteet

ELE-3600 Elektroniikan erikoistyö 24.05.2007 tomi.kettunen@biaspiste.fi. Putkitekniikan perusteet Putkitekniikn perusteet 1 Sisällysluettelo 1. Historist nykypäivään...3 2. Putkitekniikn perusteet...4 3. Putken eri ost...8 4. Diodi...12 5. Triodi...18 6. Tetrodi...31 7. Pentodi...33 8. Lähdeluettelo...39

Lisätiedot

5.4 Ellipsi ja hyperbeli (ei kuulu kurssivaatimuksiin, lisätietoa)

5.4 Ellipsi ja hyperbeli (ei kuulu kurssivaatimuksiin, lisätietoa) 5.4 Ellipsi j hypereli (ei kuulu kurssivtimuksiin, lisätieto) Aurinkokuntmme plneett kiertävät Aurinko ellipsin (=litistyneen ympyrän) muotoist rt, jonk toisess polttopisteessä Aurinko on. Smoin Mt kiertävät

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

KANDIDAATINTYÖ: TEOLLISUUSKIINTEISTÖN ILMANVAIHTOKONEEN LTO- LAITTEISTON HYÖTYSUHTEEN PARANTAMINEN

KANDIDAATINTYÖ: TEOLLISUUSKIINTEISTÖN ILMANVAIHTOKONEEN LTO- LAITTEISTON HYÖTYSUHTEEN PARANTAMINEN LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunt Energitekniikn koulutusohjelm KANDIDAATINTYÖ: TEOLLISUUSKIINTEISTÖN ILMANVAIHTOKONEEN LTO- LAITTEISTON HYÖTYSUHTEEN PARANTAMINEN Lppeenrnnss 1.2.2010

Lisätiedot

Monikulmio on suljettu, yhtenäinen tasokuvio, jonka muodostavat pisteet ja näitä yhdistävät janat

Monikulmio on suljettu, yhtenäinen tasokuvio, jonka muodostavat pisteet ja näitä yhdistävät janat MAB: Monikulmiot Aluksi Tässä luvuss käsitellään pljon monikulmioit sekä muutmi tärkeimpiä esimerkkejä monikulmioiin liittyvistä leist. Näistä leist edottomsti tärkein ti inkin kuskntoisin on Pytgorn luse.

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Runkovesijohtoputket

Runkovesijohtoputket Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist

Lisätiedot

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä.

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä. Kertusesimerkki: Vuokrhuoneistojen välitystä tukev tietojärjestelmä. Esimerkin trkoituksen on on hvinnollist mllinnustekniikoiden käyttöä j suunnitteluprosessin etenemistä tietojärjestelmän kehityksessä.

Lisätiedot

YRITYSTEN HENKILÖSTÖKOULUTUS

YRITYSTEN HENKILÖSTÖKOULUTUS AIKUISKOULUTUSTILASTOT M Itell Posti Oy YRITYSTEN HENKILÖSTÖKOULUTUS VUONNA 2010 'CONTINUING VOCATIONAL TRAINING SURVEY - CVTS4' TIEDUSTELU PERUSTUU TILASTOLAKIIN (LAKI 280/04) KYSELYLOMAKE SÄHKÖINEN LOMAKE:

Lisätiedot

2 Hinnat ja rahan arvo

2 Hinnat ja rahan arvo 2 Hinnt j rhn rvo Indeksit 90. Vuosi Hint Indeksi (2006 = 100) 2006 442 100,0 2007 465 465 105,203... 442 2008 493 493 100 111,538... 442 2009 521 521 117,873... 442 2010 508 508 114,932... 442 105,2 111,5

Lisätiedot

MATEMATIIKAN HARJOITTELUMATERIAALI

MATEMATIIKAN HARJOITTELUMATERIAALI SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Ari Tuomenlehto - 0 - Lusekkeen käsittelyä Luseke j lusekkeen rvo Näkyviin merkittyä

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

Säännöt 2 7. Regler 8 13. Regler. Regler. Rules 26 31

Säännöt 2 7. Regler 8 13. Regler. Regler. Rules 26 31 Säännöt 8 9 Rules B tyhjä suositusruutu krtt rhmittri vesiruutu viinitrhruutu utio viinitrhruutu Sisällys C pelilut Viiniyhdistyksen suositus -ltt hintmerkkiä Ltikoit: punviiniltikko vlkoviiniltikko smppnjltikko

Lisätiedot

AVOIN MATEMATIIKKA 7 lk. Osio 3: Potensseja ja polynomeja

AVOIN MATEMATIIKKA 7 lk. Osio 3: Potensseja ja polynomeja Mrik Toivol j Tiin Härkönen AVOIN MATEMATIIKKA lk. Osio : Potenssej j polynomej Sisältö on lisensoitu voimell CC BY.0 -lisenssillä. Osio : Potenssej j polynomej. Smnkntisten potenssien tulo.... Smnkntisten

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN)

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN) Pyydämme lukemn käyttöohjeen huolellisesti läpi j noudttmn sitä! Ohjeiden liminlyönti voi joht kytkimen toiminthäiriöihin j siitä johtuviin vurioihin. Nämä käyttöohjeet (B.1.0.FIN) ovt os kytkintoimitust.

Lisätiedot

Tutkimusasetelmien tilastollisista menetelmistä

Tutkimusasetelmien tilastollisista menetelmistä Tutkimussetelmien tilstollisist menetelmistä Jnne Pitkäniemi VTM, MS (iometry HY, Knsnterveystieteen litos 1 Kohorttitutkimuksen siruen j ltisteen välinen ssositio Tpusverrokki tutkimus Poikkileikkustutkimus

Lisätiedot

Jalkapallokentältä kaupankäynnin kentälle. Newbodyn tarina

Jalkapallokentältä kaupankäynnin kentälle. Newbodyn tarina Jlkpllokentältä kupnkäynnin kentälle Newbodyn trin Autmme kouluj j seuroj vrinkeruuss kisoj, hrjoitusleirejä j luokkretkiä vrten. Seurt sekä koululiset voivt nsit tuntuvsti rh tvoitteidens svuttmiseksi

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä

Lisätiedot

Kirjallinen teoriakoe

Kirjallinen teoriakoe 11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1

Lisätiedot

AMMATILLINEN OPETTAJAKORKEAKOULU

AMMATILLINEN OPETTAJAKORKEAKOULU Tmpereen mmttikorkekoulu AMMATILLINEN OPETTAJAKORKEAKOULU KEHITTÄMISHANKE Opettjnkoulutuksen kehittämishnke Vpn sivistystyön käsityön lyhytkurssien sisällöllinen kehittäminen Anj Rosenberg 2008 TAMPEREEN

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

Kiertomatriisi Erikoistyö. Petri Rönnholm

Kiertomatriisi Erikoistyö. Petri Rönnholm Kietomtiisi Eikoistö Peti önnholm isälls JOHDANO KEOUUNNA 3 OMEGA-, PH- JA KAPPA-KEO 3 ALPHA-, N- JA KAPPA-KEO 5 5 KOLMULOEEN KEOMAN OMNAUUKA 7 6 KEOMAN KOVAAMNEN MLLÄ AHANA OOGONAALELLA MALLA 9 7 KEOMAN

Lisätiedot

LATO - Lastensuojelun ja toimeentulotuen toimintaprosessien ja tiedonhallinnan kehittäminen ja tehostaminen(2014-2015)

LATO - Lastensuojelun ja toimeentulotuen toimintaprosessien ja tiedonhallinnan kehittäminen ja tehostaminen(2014-2015) LATO - Lstensuojelun j toimeentulotuen toimintprosessien j tiedonhllinnn kehittäminen j tehostminen(2014-2015) 27.9.2013 Päivitetty: 30.12.2013 Sisältö 1 YHTEENVETO... 3 1.1 TAUSTA JA PERUSTELUT... 4 2

Lisätiedot

Kohteen turvaluokitus on

Kohteen turvaluokitus on LVI 03-10517 SIT 13-610091 KH X4-00513 INFRA 053-710109 ST 41.01 HANKETIETOKORTTI HT12 Hnketietokortiss esitetään rkennuskohteen lähtötiedot j tiljn edellyttämä ltutso suunnittelun työmäärän rviointi vrten.

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

RTS 16:2. Tässä ohjeessa esitetään ajoneuvojen ja yleisimpien autotyyppien mittoja, massoja sekä liikenteeseen hyväksymistä koskevia rajoituksia.

RTS 16:2. Tässä ohjeessa esitetään ajoneuvojen ja yleisimpien autotyyppien mittoja, massoja sekä liikenteeseen hyväksymistä koskevia rajoituksia. RTS 16:2 RT XX-XXXXX KH XX-XXXXX Infr x-x AJONEUVOJEN MITTOJA OHJEET xxxkuu 2016 1 (8) korv RT 98-10914 Tässä ohjeess esitetään joneuvojen j yleisimpien utotyyppien mittoj, mssoj sekä liikenteeseen hyväksymistä

Lisätiedot

Sähkönjakelun luotettavuusindeksit ja laskenta

Sähkönjakelun luotettavuusindeksit ja laskenta LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPISTO SÄHKÖTEKNIIKAN OSASTO Jukk Rämä KANDITYÖ Säte 4 3.02.2008 Säkönkelun luotettvuusindeksit lskent PL 20, 5385 LAPPEENRANTA, p. 05 62,

Lisätiedot

ArcGIS for Server. Luo, jaa ja hallitse paikkatietoa

ArcGIS for Server. Luo, jaa ja hallitse paikkatietoa ArcGIS Server ArcGIS for Server Luo, j j hllitse pikktieto ArcGIS Serverin vull voidn luod plveluit keskitetysti, hllinnoid näitä plveluit j jk niitä orgnistion sisällä sekä verkoss. Plveluj voidn helposti

Lisätiedot

Johdatus fraktaaliderivaattoihin ja niiden sovelluksiin

Johdatus fraktaaliderivaattoihin ja niiden sovelluksiin Jodtus frktliderivttoiin j niiden sovelluksiin Hnn Hlinen Mtemtiikn pro grdu Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kesä 4 Tiivistelmä: Hnn Hlinen, Jodtus frktliderivttoiin j niiden sovelluksiin

Lisätiedot

Euroopan neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnallisesta merkityksestä

Euroopan neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnallisesta merkityksestä Sopimustekstin käännös 30.03.2015 (epävirllinen) Counil of Europe Trety Series - No. 199 Euroopn neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnllisest merkityksestä Fro, 27.10.2005 Johnto Euroopn

Lisätiedot

SALAINEN KIRJASTO. Harjoitusvihkon. Eija Lehtiniemi OPETTAJAN OHJEET. Erityisopetus

SALAINEN KIRJASTO. Harjoitusvihkon. Eija Lehtiniemi OPETTAJAN OHJEET. Erityisopetus E i j L e h t i n i e m i M e r v i Wä r e S L I N E N P I N E N H R J O I T U S V I H K O SLINEN KIRJSTO Hrjoitusvihkon Eij Lehtiniemi OPETTJN OHJEET Erityisopetus HRJOITUSVIHKON SISÄLTÖ Vlmiushrjoitukset

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka B 2014

Mika Hirvensalo. Insinöörimatematiikka B 2014 Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen

Lisätiedot

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto Integroimistekniikk /5 Sisältö Sijoitsmenettely Annetn fnktion integrlifnktiot lskettess fnktiot pyritään mntmn siten, että tlos voidn tnnist jonkin lkeisfnktion derivtksi. Usein mntminen jodtn tekemään

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.

Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy. Valtiotieteellinen tiedekunta Kansantaloustieteen valintakoe Arvosteluperusteet Kesä 010 Kirjallisuuskoe Pohjola, Matti (008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.

Lisätiedot

ktû,- A E tcl Talousarvioraamit vuodelle 2016 ja taloussuunnitelma vuosille 2017-2018 Valmistelija: Talousjohtaja Jari Saarinen, puh.

ktû,- A E tcl Talousarvioraamit vuodelle 2016 ja taloussuunnitelma vuosille 2017-2018 Valmistelija: Talousjohtaja Jari Saarinen, puh. ktû,- A E tcl Kupunginhllitus s 272 1 1.5.215 Tlousrviormit vuodelle 216 j tloussuunnitelm vuosille 217-218 317 tj2tù2t2t215 KH S 272 Vlmistelij: Tlousjohtj Jri Srinen, puh. O44789 426 Tlousrviormit ovt

Lisätiedot

SAVUKOSKEN KUNTA Sosiaalilautakunta 21.03.2012

SAVUKOSKEN KUNTA Sosiaalilautakunta 21.03.2012 Sosililutkunt 21.03.2012 11 Sosililutkunt Aik: Keskiviikko 21.03.2012 klo 16.00 17.35 Pikk: Vnhinkoti Asit 9 Sosililutkunnlle tiedoksi 10 Plvelussuhteen päättyminen 11 Rvitsemistyöntekijän tehtävien hoito

Lisätiedot

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta Kirsi Myllyniemi, Blogikurssi teologeille mlikuuss 2006 Mitä blogit ovt Mhdollisuuksi Verkostoitumist Mitä ovt blogit? Mhdollisuuksi Verkostoitumist Sn blogi tulee englnnin snoist web log. Se sisältää

Lisätiedot

Laudatur. Lukion pitkän matematiikan kertausta ylioppilastehtävien avulla Otava

Laudatur. Lukion pitkän matematiikan kertausta ylioppilastehtävien avulla Otava Ludtur Lukio pitkä mtemtiik kertust ylioppilstehtävie vull Otv Ylioppilstehtävät vuositti Mtemtiik koe 6.. Pitkä oppimäärä Perustitoj. Sieveä lusekkeet ), b) y y + y y. Geometri. Tssivuise kolmio ympäri

Lisätiedot

http://www.math.helsinki.fi/solmu/

http://www.math.helsinki.fi/solmu/ 1/2000 2001 http://www.mth.helsinki.fi/solmu/ Solmu Solmu Solmu 1/2000 2001 Mtemtiikn litos PL 4 (Yliopistonktu 5) 00014 Helsingin yliopisto http://www.mth.helsinki.fi/solmu/ Päätoimittj Pekk Alestlo Toimitussihteerit

Lisätiedot