Gillespie A.: Foundations of Economics., 2011, luvut 6-8, 17, 21 ja 29. ISBN Oxford University Press.

Koko: px
Aloita esitys sivulta:

Download "Gillespie A.: Foundations of Economics., 2011, luvut 6-8, 17, 21 ja 29. ISBN 978-0-19-958654-7. Oxford University Press."

Transkriptio

1 Vltiotieteellinen tiedekunt Tloustieteen vlintkoe Arvosteluperusteet Kesä 0 Vlintkoekirjt Gillespie A.: Foundtions of Economics., 0, luvut 6-8, 7, j 9. ISBN Oxford University Press. sekä toinen seurvist: Pohjol, Mtti (0): Tloustieteen oppikirj. 5. uudistettu pinos. ISBN WSOYPro Oy. Aineistokoe edellyttää pitkän mtemtiikn tietoj. eller på svensk Berglund, Tom och Johnsson, Edvrd (007): Introduktion till smhällsekonomisk nlys. ISBN Söderströms förlg. Aineistokoe edellyttää pitkän mtemtiikn tietoj. TEHTÄVÄ ) Suhdnnevihtelulle on esitetty useit selityksiä. Pohjol (s. 9) korost erilisten ulkoisten shokkien, kuten öljyn hinnn vihtelun merkitystä. Gillespie (s. 35) minitsee odotukset j vrstojen vihtelun. Kotitlouksien j yrityksen odotukset jtkuvst ksvust innostvt yrityksiä tekemään investointej, sillä ne uskovt kysynnän ksvvn tulevisuudess. Kotitloudetkin ovt hlukkit kuluttmn uskoessn, että niiden tulovirt säilyy korken. Nämä tekijät vhvistvt toisin. Josskin viheess mielilt kuitenkin kääntyvät pessimistisemmiksi (kenties vnhojen kokemusten perusteell). Odotusten kääntymistä seur sekä kysynnän että investointien väheneminen. Vrstojen tsoon perustuvn teorin mukn ksvun lkuviheess yritykset ovt hluttomi ksvttmn tuotnto, kosk eivät vielä luot ksvun jtkuvuuteen. Tuotnnon sijn kysyntä tyydytetään vrstoj pienentämällä. Jos kysyntä kuitenkin ksv edelleen, yritysten on pkko ryhtyä tuotnnon ljentmiseen. Tällöin ne työllistävät lisää j myös investoivt. Vrstotkin on plutettv entiseen kokoons. Näin nousukusi kiihtyy j kuumenee. Kun kysyntä viimein tittuu, tuotnto ei heti pienennetä, vn vrstot ksvvt. Lskun jtkuess tuotntokin supistetn, jop enemmän kuin kysyntää, sillä vrstot pullistelevt. Smll investoinnit lyödään jäihin. Näin lskusuhdnne muuttuu lmksi. Myös julkisen vlln stbiloivksi iottu suhdnnepolitiikk stt itse siss voimist suhdnneviheluit. Perussyynä on se, että julkisen vlln sm informtio on yleensä vnhentunutt j päätöksenteko vtii ik.

2 b) Suhdnnetyyppejä lsketn olevn kolme, klssiset, lle kymmenen vuott kestävät suhdnteet, nobelvoittj Kuznetsin mukn nimetyt 5-5 vuott kestävät syklit j toisen nobel voittj Kondrtieffin mukn nimetyt pitkät, vuott kestävät syklit (Gillepie s, 350). c) Suhdnnevihtelu käsitellään vlintkoekirjss Pohjol luvuss. Suhdnteit ennustvi indikttoreit puolestn käsitellään vlintkoekirjss Gillespie luvuss. Jälkimmäisessä luetelln kolmentyyppisiä indikttoreit, johtvt (leding), smnikiset( coincident) j viivästettyjä ti lhvi (lgging) indikttoreit. Tehtävässä esitetyistä indikttoreist kolme (uudet utot, kuluttjien luottmus j uudet lint) ovt johtvi, kun ts työttömyys on viivästetty indikttori. Kikki johtvt indikttorit osoittvt, että edessä on uusi nousu (nousev suunt). Sen sijn viivästetty indikttori, osoitt vielä jo sivuutettu lmn pohj (lskev suunt). Indikttorit osoittvt siis smnsuuntisesti. On kuitenkin selvää, että tilnne on epävrm; ennen kokemton Euroopn velkkriisi pienentää kikkien indikttoreiden luotettvuutt. TEHTÄVÄ ) (yhteensä 4 pistettä) Tämä kysymys on kohtuullisen hstv. Siinä pyydetään pohtimn tlousksvu, sitä selittäviä tekijöitä j miden välisten elintsoerojen syitä. Näitä sioit käsitellään Pohjoln kirjn luvuss 9. Vstuksen tulee pohjutu kirjss esitettyihin rgumentteihin. Esimerkillisen vstuksen tulisi sisältää seurvt seikt j esityksen tulisi oll jouhev j looginen. Vstuksess ilmenevät keskeiset seikt ovt: ) Tlousksvu voidn nlysoid knsntlouden tuotntofunktion Y = A*F(K,L,H) vull, joss K, L, H j A ovt tuotnnontekijöitä; tlous ksv kun tuotnnontekijöiden määrä lisääntyy; tärkein / keskeisin tlousksvun moottori on ollut teknologin (A) kehittyminen; muhin tuotnnontekijöihin (K, L, H) pätee lskevn rjtuottvuuden lki. ( piste) ) Elintso vuorostn voidn (pproksimoiden) mitt BKT per cpit:ll, j se vuorostn voidn hjoitt seurviin khteen tekijään: BKT / pop = BKT/L * L/pop, joss pop on mn väkiluku j L mn yhteenlskettu työpnos (esim. tehdyt työtunnit). Tällöin BKT/L (ti edellisen kohdn merkinnöin Y/L) kuv työn tuottvuutt j L/pop työn määrää. Työnmäärää ksvttmll elintso voidn ksvtt vin rjllisesti; työn tuottvuus voi vuorostn ksv rjtt. ( piste)

3 3) Nyt kirjoittmll tuotntofunktio muotoon Y/L = A*F(K/L,,H/L), jolloin voimme selittää eroj työn tuottvuudess (j siis elintsoss) miden välillä seurvsti: erot teknologiss (tämä on tärkein!), erot pääomintensiteetissä j erot koulutustsoss. Empiirisen tutkimuksen mukn erot teknologiss selittävät noin puolet elintsoeroist; toinen puoli selittyy eroill pääomn määrässä j koulutustsoiss. ( piste) (Lisäksi miden välillä on eroj tehdyn työn määrässä mutt on syytä huomioid, että vp-ik (eli ei työnteko) on hyödyke, jonk kuluttminen ksvtt yksilöiden hyvinvointi. Pohdinnt siitä, miksi BKT/pop ei välttämättä ole hyvä hyvinvoinninmittri on voinut korvt muit puutteit tässä kohdss.) 4) Keskeinen syy elintsoeroille onkin ksvun puuttuminen; kun köyhä m pääsee ksvu-urlle ott se (todennäköisesti) iemmin vurstuneit mit kiinni elintsoss; teknologin omksuminen ulkomilt mhdollist luksi muit nopemmn ksvun; erot teknologin tsoss selittävät elintsoeroj premmin kuin erot koulutustsoss. Tehtävän ohess ollut kuvio tukee teori siitä, että köyhä m voi omksumll muiden käytössä olev teknologi ksv nopemmin kuin muut j näin kuro umpeen elintsoeroj. (Tämä koht & kuvion tulkint, piste) Lisäksi puutteit edellisten kohtien tiedoiss on voinut pikt seurvill pohdinnoill / huomioill: - Tlousksvu tukee sellisten instituutioiden olemssolo, jotk mhdollistvt / knnustvt säästämistä j investointej sekä fyysiseen että inhimilliseen pääomn. (0,5 pistettä) - T&K-toimint j sen tukemisen vikutus teknologiseen kehitykseen j näin ollen tlousksvuun. (0,5 pistettä) b) Etelä-Koren keskimääräinen ksvuprosentti on (noin) 6, Sveitsin (noin) prosentti. Pohjol (s. 54) esittää kksinkertistumisjn säännön, jonk mukn siis Etelä-Koren BKT kksinkertistuu jok 70/6=,66 eli (noin) jok vuosi. (0,5 pistettä) Vstvsti Sveitsin tlous kksinkertistuu jok 70/=70 vuosi. (0,5 pistettä) c) Voidn käyttää esimerkiksi seurv rviointitp: Kosk Etelä-Korell on ollut kiinniottoik 30/=,5 kksinkertistumisik, j kosk Etelä-Koren BKT vuonn 975 oli 3

4 noin 5000 $ henkeä kohti, on se ksvnut siis srjoiss Viimeisin luku viitt siihen, että kolms kksinkertistumiskusi ei ehdi kulu loppuun; Etelä-Koren henkeä kohti lskettu BKT jää siis lle dollrin vuonn 005. Vikk Sveitsi on ksvnut hitsti, on se kuitenkin pysytellyt edellä Etelä-Kore, sillä sen BKT oli niin korke vuonn 975, noin dollri. Jkson ikn ksvu oli noin puolet lähtöluvust, joten Sveitsin henkeä kohti lskettu BKT ylittää dollri. Trkt luvut vuonn 005 olivt: Etelä-Kore 808 $ j Sveitsi $. (Oiken suuntiset lskelmt 0,5 pistettä; lisäksi oike vstus 0,5 pistettä) TEHTÄVÄ 3 Kilpilu j monopoli verrtn Pohjoln kirjss, kuvioss 57. Vstv kuvio on esitetty ll. Pisteytys (mx. 6 pistettä): - Vstvnlinen kuvio esitetty oikein (0,5 pistettä); lisäksi kuvio tulkittu oikein (0,5 pistettä); tulkinnksi on riittänyt, että selvästi erottelee vpn kilpilun j monopolin kohtmt kustnnus j tuotto käyrät sekä molempi tilnteit vstvt tspinopisteet. (Tämä koht yhteensä piste.) - Anlyyttinen trkstelu (D, MC j MR käyrät nnettu); vpn kilpilun tspinoehto D = MC ( piste); vpn kilpilun tuottm määrä q=5 (0,5 pistettä) j hint p=6 (0,5 pistettä); monopolin tp-ehto MR=MC ( piste); monopolin tuottm määrä q=3 (0,5 pistettä) j hint p=0 (0,5 pistettä). (Tämä koht yhteensä 4 pistettä.) - Pohdinnt tloudellisen ksvun knnlt; verrttun vpseen kilpiluun, monopoli tuott vähemmän j klliimmll (0,5 pistettä); monopolin iheuttmt mhdolliset dynmiset vikutukset teknologiseen kehitykseen, ei välttämättä knnustimi T&K-toimintn (0,5 pistettä). (Tämä koht yhteensä piste.) (Jommnkummn edellisen seikn puuttumist on korvnnut huomio siitä, että monopoli voi knnust korruptioon, jne. Tosin tästä huomiost on voinut sd vin 0,5 pistettä.) 4

5 TEHTÄVÄ 4 ) Verokiilll trkoitetn ero työnntjn plkkkustnnusten j työntekijän smn plkn välillä. Epäsuorien verojen t m j työnntjn sosiliturvmksujen t vikutus sdn ottmll verokiiln (KME) derivtt ko. tekijöiden suhteen. Lopuksi suoritetn derivttojen vertilu: KME dt m dt dtm dt Y Y F F tm W W t Y Y F F W W t Y Y F F W W t Y Y F F tm W W W W t W W t tm t dtm dt 0 Y Y F F tm W W t t Molemmt derivtt ovt positiivisi. Verokiil ksv siis, kun epäsuori veroj ti työnntjn sosiliturvmksuj nostetn. Kummsskin tpuksess työnteon knnustimet heikkenevät. Verokiil ksv kuitenkin vähemmän epäsuorien verojen noustess, joten epäsuorien verojen nosto hitt vähemmän työnteon knnustvuutt. Artikkelin mukn juuri työnteon knnustvuus on pitkällä tähtäyksellä tärkeää, sillä se määrää bruttoknsntuotteen tson j sen ksvun. Mhdollisesti välttämättömät veronkorotukset tulisi siten tehdä epäsuori veroj nostmll. b) Määritellään verokertymän T t w L(t) äärirvo välillä ( 0 t ). Ensimmäisen kertluvun ehto sdn, kun kirjoitetn T verosteen t funktion j derivoidn se t:n suhteen, setetn derivtt nollksi j rtkistn t: T T( t) t w l( t) (/ ) t w (/ ) t T ' w (3/ ) t 3 w t (3/ ) t 0 t / 3 w (/ ) t w 3 (/ ) t ( / ) t ti t

6 Trkstelln sitten toisen kertluvun ehtoj kummllekin rvolle: T '' w (6 / ) t T ''( / 3) w (6 / w w 0 T ''(0) w )( / 3) 0 w 0 Äärirvo t=/3 on siis mksimi. Verosteen tulee oll /3, jott verokertymä T mksimoituisi. Verokertymä jää nollksi, jos t=0. Myös reunpiste t= tuott pienemmän verokertymän kuin optimlinen rvo. TEHTÄVÄ 5 ) Suomen tloustilnne oli vuonn 0 verrttin hyvä, kosk von Greffin j Vrtiisen rtikkelin mukn tlous oli vielä lskusuhdnteess 00. Vuonn 0 Suomen tlousksvu oli ripeää, työttömyys ste oli verrttin mtl, vltion velk oli kohtuullisell tsoll j investointien tso lähellä eurolueen keskirvo (World Fct Booking ineisto). Vihtotse oli niin ikään vielä koko vuoden oslt trksteltun positiivinen. Huono Suomen tloudess oli, että korkest verosteest huolimtt vltion budjetti oli tppiollinen. Vuoden 0 luss Suomen tlousksvu on pysynyt vkn, mutt sitä vrjost phenev Euroopn velkkriisi. Vltion velkntuminen on siitä huolimtt pysynyt kuriss j työttömyys ei ole ksvnut. Euron rvon lsku on myös uttnut Suomen vientiä j vihtotseemme on kääntynyt negtiiviseksi. Suomen tilnne näyttää kuitenkin vielä kohtuullisen hyvältä. Tästä kertoo myös se, että tehtävän kuluttjbrometri on myös lkuvuoden 0 ikn noussut. b) (Vstusvihtoehto : lyhyt ikväli) Suomell olisi vr elvyttää, eli hrjoitt ekspnsiivist tlouspolitiikk. Tämä uttisi tloutt lisäämällä kotimist kysyntää sekä luomll positiivisi kerroinvikutuksi tlouteen. Elvytys olisi todennäköisesti jnkohtist, kosk Suomen suurin yksittäinen kuppkumppni eli eurolue on jutumss (ellei se ole jo jutunut) tntumn. Suomen tloudess on kuitenkin myös ns. utomttisi suhdnteiden tsji, jotk vrmistvt, että lskusuhdnteess ulkomisen kysynnän hiipuess kotiminen kysyntä ei lske voimkksti. Näitä tsji ovt työttömyyskorvukset j sosiliturv. Voidn siis jtell, että Euroopn epävrmn tilnteen vuoksi ei tehdä mitään, vn nnetn ns. tsjien hoit lyhyen ikvälin ksvun tsoittmist. Korken verosteen vuoksi Suomen tulisi vro lisäämästä veroj. Budjetin tspinottmiseksi Suomen tulisikin mieluummin leikt vltion menoj j luod knnusteit työntekoon. Knnustimi työntekoon voitisiin luod pienentämällä 6

7 työnntjien sosiliturvmksuj, jotk ovt tähän tehokkmpi kuin epäsuorien verojen, kuten tuloverotuksen, lskeminen. Toinen vihtoehto olisi luod knnusteit investoinneille, esim. lskemll pääomverotust. (Vstusvihtoehto : pitkä ikväli). Euroopn epävrmn tilnteen vuoksi Suomen voidn myös suositell keskittyvän pidemmän ikvälin ksvun tukemiseen. Tämä voitisiin tehdä tukemll kotimist tutkimus j kehitystoimint, joll luotisiin edellytyksiä pidemmän ikvälin ksvulle (ns. endogeeninen ksvuteori; Pohjol s. 60). Suomen ongelmn on myös väestön ikääntyminen j ns. huoltosuhteen heikkeneminen, jolloin työllisten osuus väestöstä pienenee. Tähän voitisiin pyrkiä vikuttmn nostmll eläkeikää j knnustmll ihmisiä työskentelemään pidempään (von Greff j Vrtiinen s. - ). Näistä jälkimmäiseen voitisiin vikutt esim. työviihtyvyyttä prntmll. TEHTÄVÄ 6 ) Kreikn tloustilnne oli vuonn 0 huono. BKT supistui, vltioll oli pljon velk j työttömyysste oli hyvin korke (World Fct Book). Kreikn investointiste oli myös huomttvn mtl j vihtotse oli phsti negtiivinen. b) Tärkeintä Kreikn tlouden tspinottmisess olisi velkojen uudelleenjärjestely, eli velktkn pienentäminen. On mtemttisesti (lskennllisesti) selvää, että Kreikk ei pysty mksmn kikki velkojn tkisin. Näin suuren velktkn ll tlouden ksvttminen ei myöskään onnistu, kosk huomttv os sen keräämistä verovroist menee velkojen korkomksuihin j näin sillä ei ole esim. vr hrrst ekspnsiivist tlouspolitiikk. Vihtoehtoin velktkn hoitmiseen on, että huomttv os veloist ostetn pois joko muiden euromiden (eurobondit) ti EKP:n puolest (setelirhoitus). Kreikn plminen omn vluuttn vähentäisi tuonti, lisäisi vientiä j tekisi Kreikst houkuttelevmmn (hlvemmn) mtkilukohteen, kosk sen uusi vluutt vrmsti devlvoituisi euroon j dollriin nähden (Gillespie 0, s ). Nämä prntisivt Kreikn tlouden ksvupotentili. Eurost eromisen lyhyen ikvälin kustnnukset voivt kuitenkin oll huomttvt. Kreikn vltion veln nimellisrvo nousisi vluutn devlvoitumist vstvss suhteess. Vltiolt myös käytännössä loppuisivt rht mks plkkoj j mksuj, kosk Kreikk ei tällä hetkellä pystyisi linmn knsinvälisiltä linmrkkinoilt eivätkä sen verotulot riittäisi kttmn menoj. Tämä johtisi esim. poliisien j opettjien plknmksun ktkemiseen sekä koulujen j sirloiden toiminnn häiriöihin. Kreikk ei myöskään ole ruoktloudeltn omvrinen, joten voimks devlvtio voi joht myös ruokpuln. Onkin mhdollist, että eurost erominen johtisi vielä suurempiin sisäisiin levottomuuksiin kuin mitä tähän mennessä on nähty. Näihin kustnnuksiin vikutt keskeisesi se kuink pljon j millä ehdoill Kreikk sisi erons jälkeen tuke esim. EU:lt. 7

8 Kreikk voi myös pyrkiä tehostmn verotust nostmll epäsuori veroj, mutt näillä olisi vin tlousksvu hidstv j sitä kutt verokertymää lskev vikutus (von Greff j Vrtiinen 00, s., Pohjol 00, s. 6). Kreikn suurin ongelm on, että sillä on liik velk j että sen vluutn rvo on kiinnitetty. Kreikn investointiste pitäisi myös sd nousemn, joll luotisiin ksvun edellytyksiä (Pohjol 00, s ). Huom. Tehtävässä oli keskeistä esittää ymmärrystä Kreikn ongelmllist tilnnett kohtn sekä pystyä esittämään jokin järkevä tlouspoliittinen vihtoehto. 8

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst...

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi

Asennusopas. Daikin Altherma - Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi Dikin Altherm - Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst... Tietoj pkkuksest. Vrlämmitin..... Vrusteiden poistminen

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L )

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L ) 76638A Termofysiikk Hrjoitus no. 6, rtkisut syyslukukusi 014) 1. Trkstelln L:n pituist nuh, jonk termodynmiikn perusreltio on de = d Q + d W = T ds + F dl, 1) missä F on voim, joll nuh venytetään reversiibelisti

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

= a sanoo vain, että jonon ensimmäinen jäsen annetaan. Merkintä a. lasketaan a :stä.

= a sanoo vain, että jonon ensimmäinen jäsen annetaan. Merkintä a. lasketaan a :stä. .. Lukujoo Aluksi Mtemtiiklle o erityise tyypillistä se, että käytäö tiltee settm ogelm bstrhoid. Käytäössä tämä trkoitt sitä, että siitä krsit lilluk vrret. Trkstelu kohteeksi jätetää vi si loogie ydi

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

IKÄÄNTYMINEN ETELÄ-SAVOSSA

IKÄÄNTYMINEN ETELÄ-SAVOSSA 1 TRENDIKATSAUS 3/215 (31.12.215) TULEVAISUUSLOIKKA ETELÄ-SAVON ENNAKOINTIHANKE 215-217 IKÄÄNTYMINEN ETELÄ-SAVOSSA KATSAUS ETELÄ-SAVON MAAKUNNAN VÄESTÖN IKÄÄNTYMISKEHITYKSEEN Tähän ktsukseen on koottu

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

Suorat, käyrät ja kaarevuus

Suorat, käyrät ja kaarevuus Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

Metsätieteen aikakauskirja

Metsätieteen aikakauskirja Metsätieteen ikkuskirj t u t k i m u s r t i k k e l i Sij Huuskonen j Anssi Ahtikoski Sij Huuskonen Ensihrvennuksen joituksen j voimkkuuden vikutus kuivhkon knkn männiköiden tuotokseen j tuottoon Huuskonen,

Lisätiedot

Syysrypsin kylvö kevätviljaan

Syysrypsin kylvö kevätviljaan Syysrypsin kylvö kevätviljn Antti Tuulos j Pirjo Mäkelä Soveltvn biologin litos, PL 27, 00014 Helsingin yliopisto, emil: ntti.tuulos@helsinki.fi j pirjo.mkel@helsinki.fi Tiivistelmä Syysrypsi on vrteenotettv

Lisätiedot

6.2 Algoritmin määritelmä

6.2 Algoritmin määritelmä 6.2 Algoritmin määritelmä Mitä lgoritmill yleensä trkoitetn? Peritteess: Yksiselitteisesti kuvttu jono (tietojenkäsittely)opertioit, jotk voidn toteutt meknisesti. Käytännössä: luonnollist kieltä, pseudokoodi

Lisätiedot

4 DETERMINANTTI JA KÄÄNTEISMATRIISI

4 DETERMINANTTI JA KÄÄNTEISMATRIISI 4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

2.2 Automaattien minimointi

2.2 Automaattien minimointi 24 2.2 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

S Fysiikka IV (ES) Tentti RATKAISUT. 1,0*10 m. Kineettinen energia saadaan kun tästä vähennetään lepoenergia: 2

S Fysiikka IV (ES) Tentti RATKAISUT. 1,0*10 m. Kineettinen energia saadaan kun tästä vähennetään lepoenergia: 2 S-11436 ysiikk V (ES) Tentti 175001 RATKASUT 1 Tutkittess pieniä kohteit on tutkimukseen käytettävien ltojen llonpituuden oltv yleensä enintään 1/10 os kohteen ulottuvuudest (esim hlkisijst) Lske trvittv

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

Kirjallinen teoriakoe

Kirjallinen teoriakoe 11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1

Lisätiedot

Geometrinen algebra: kun vektorien maailma ei riitä

Geometrinen algebra: kun vektorien maailma ei riitä Geometrinen lgebr: kun vektorien milm ei riitä Risto A. Pju 4. huhtikuut 2003 Tiivistelmä Geometrinen lgebr on viime vuosin ksvttnut suosiotn luonnontieteiden mtemttisen menetelmänä. Sen juuret ovt vektori-

Lisätiedot

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT Lyhyt mtemtiikk YO-vlmennus 8. mliskuut 00 LYHYEN MATEMATIIKAN SIMULOITU YO-KOE RATKAISUT. Trkstelln yhtälöpri, polynomin sievennöstä j lusekkeeseen sijoittmist. ) Rtkistn jälkimmäisestä yhtälöstä x, jolle

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

Runkovesijohtoputket

Runkovesijohtoputket Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

Tutkimusasetelmien tilastollisista menetelmistä

Tutkimusasetelmien tilastollisista menetelmistä Tutkimussetelmien tilstollisist menetelmistä Jnne Pitkäniemi VTM, MS (iometry HY, Knsnterveystieteen litos 1 Kohorttitutkimuksen siruen j ltisteen välinen ssositio Tpusverrokki tutkimus Poikkileikkustutkimus

Lisätiedot

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä.

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä. Kertusesimerkki: Vuokrhuoneistojen välitystä tukev tietojärjestelmä. Esimerkin trkoituksen on on hvinnollist mllinnustekniikoiden käyttöä j suunnitteluprosessin etenemistä tietojärjestelmän kehityksessä.

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

Vakioiden variointi kolmannen kertaluvun yhtälölle

Vakioiden variointi kolmannen kertaluvun yhtälölle Vkioiden vriointi kolmnnen kertluvun yhtälölle Olkoon trksteltvn kolmnnen kertluvun linerinen epähomogeeninen differentiliyhtälö > diffyht:= (-1)*diff(y(), $3)-*diff(y(), $2)+diff(y(), )=ep(^2); diffyht

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

OUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT

OUML6421B3004. 3-tilaohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT OUML6421B3004 3-tilohjttu venttiilimoottori KÄYTTÖKOHTEET i Lämmityksen säätö i Ilmnvihtojärjestelmät TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden

Lisätiedot

2.2 Monotoniset jonot

2.2 Monotoniset jonot Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (

Lisätiedot

Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.

Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy. Valtiotieteellinen tiedekunta Kansantaloustieteen valintakoe Arvosteluperusteet Kesä 010 Kirjallisuuskoe Pohjola, Matti (008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.

Lisätiedot

AMMATILLINEN OPETTAJAKORKEAKOULU

AMMATILLINEN OPETTAJAKORKEAKOULU Tmpereen mmttikorkekoulu AMMATILLINEN OPETTAJAKORKEAKOULU KEHITTÄMISHANKE Opettjnkoulutuksen kehittämishnke Vpn sivistystyön käsityön lyhytkurssien sisällöllinen kehittäminen Anj Rosenberg 2008 TAMPEREEN

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa Luku 5. Integrli Merkitsemme seurvss [, b]:llä lukusuorn suljettu väliä { R : b}. Olkoon f välillä [, b] määritelty funktio. Snomme, että välillä [, b] määritelty funktio g on funktion f integrlifunktio

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi ATE.1xx tttisen kenttäteorin ljentminen ähkömgneettiseksi kenttäteoriksi syksy 212 1 / 5 skuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys

Lisätiedot

Sähkönjakelun luotettavuusindeksit ja laskenta

Sähkönjakelun luotettavuusindeksit ja laskenta LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPISTO SÄHKÖTEKNIIKAN OSASTO Jukk Rämä KANDITYÖ Säte 4 3.02.2008 Säkönkelun luotettvuusindeksit lskent PL 20, 5385 LAPPEENRANTA, p. 05 62,

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

Makrotaloustiede 31C00200

Makrotaloustiede 31C00200 Makrotaloustiede 31C00200 Kevät 2016 Harjoitus 5 1.4.2016 Arttu Kahelin arttu.kahelin@aalto.fi Tehtävä 1 a) Käytetään kaavaa: B t Y t = 1+r g B t 1 Y t 1 + G t T t Y t, g r = 0,02 B 2 Y 2 = 1 + r g B 1

Lisätiedot

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016

Korko ja inflaatio. Makrotaloustiede 31C00200 Kevät 2016 Korko ja inflaatio Makrotaloustiede 31C00200 Kevät 2016 Sisältö Nimellis ja reaalikorot, Fisher yhtälö Lyhyt ja pitkä korko Rahapolitiikka ja korot Korko ja inflaatio Nimellinen korko i: 1 tänä vuonna

Lisätiedot

Graafinen ohjeisto. Julkis- ja yksityisalojen toimihenkilöliitto Jyty

Graafinen ohjeisto. Julkis- ja yksityisalojen toimihenkilöliitto Jyty Grfinen ohjeisto Julkis- j yksityislojen toimihenkilöliitto Jyty Julkis- j yksityislojen toimihenkilöliitto Jyty Grfinen ohjeisto Sisällysluettelo: 1. Johdnto 2. Peruselementit Tunnus j versiot...2.1 Tunnuksen

Lisätiedot

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto Integroimistekniikk /5 Sisältö Sijoitsmenettely Annetn fnktion integrlifnktiot lskettess fnktiot pyritään mntmn siten, että tlos voidn tnnist jonkin lkeisfnktion derivtksi. Usein mntminen jodtn tekemään

Lisätiedot

SATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima

SATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima ATE14 Dynminen kenttäteori syksy 1 1 / skuhrjoitus : iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. All olevss kuvss esitetyssä pitkässä virtlngss kulkee virt i 1 (t) j sen vieressä on kuvn mukinen

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

Ankkurijärjestelmä Monotec Järjestelmämuotti Framax Xlife

Ankkurijärjestelmä Monotec Järjestelmämuotti Framax Xlife 999805711-02/2015 fi Muottimestrit. nkkurijärjestelmä Monotec Järjestelmämuotti rmx Xlife Käyttäjätieto sennus- j käyttöohje 9764-445-01 Johdnto Käyttäjätieto nkkurijärjestelmä Monotec dnto Joh- by ok

Lisätiedot

Pitkäaikaistyöttömien työkykyisyys ja miten sitä tulisi arvioida?

Pitkäaikaistyöttömien työkykyisyys ja miten sitä tulisi arvioida? Pitkäikistyöttömin työkykyisyys j mitn sitä tulisi rvioid? Rij Krätär, kuntoutuslääkäri, kouluttj Oorninki Oy www.oorninki.fi Tässä sityksssä Tuloksi pitkäikistyöttömin työkykyä j työkyvyn rviot koskvst

Lisätiedot

ystävät LUONNON LAHJA Kaneli & appelsiini Minun valintani 1). Tuemme yhteisöjä, joista eteeriset öljymme ovat per

ystävät LUONNON LAHJA Kaneli & appelsiini Minun valintani 1). Tuemme yhteisöjä, joista eteeriset öljymme ovat per LUONNON Lhj LUONNOSTA ystävät Brighter Home -kokoelmmme on luotu ympäristöystävällisiä j sosilisesti vstuullisi käytäntöjä noudtten. Tästä kokoelmst löydät oiket lhjt kikille, jotk vlivt mpllomme. Kneli

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista

y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista 9 5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Esimmäis krtluvu diffrtilihtälörhmät Diffrtilihtälörhmiä trvit usiss sovlluksiss. Näistä usimmt void mllit simmäis krtluvu diffrtilihtälörhmi vull. Esimmäis krtluvu diffrtilihtälörhmä

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015 MATEMATIIKKA Mtemtiikk pintkäsittelijöille Peruslskutoimitukset Isto Jokinen 01 SISÄLTÖ 1. Lskujärjestys 1. Murtoluvuill lskeminen. Suureet j mittyksiköt. Potenssi. Juuri 6. Tekijäyhtälöiden rtkiseminen

Lisätiedot

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE

AHX640W AHX640W VOX400 VOX400 [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] [UUSIA RATKAISUJA PROMOTION JYRSIMET VALURAUDOILLE PROMOTION JYRSIMET VALURAUDOILLE NEW CAST IRON FACE MILLING CUTTERS FI-00 AHX0W AHX l Uui tehok -ärmäinen kääntöterä. AHX0W [UUSIA RATKAISUJA [UUSIA RATKAISUJA VALURAUTOJEN JYRSINTÄÄN] ] JYRSINTÄÄN VALURAUTOJEN

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen mterileist muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden 2014

Lisätiedot

POHJOIS-SAVON SAIRAANHOITOPIIRIN KUNTAYHTYMÄ

POHJOIS-SAVON SAIRAANHOITOPIIRIN KUNTAYHTYMÄ 1 2012 POHJOIS-SAVON SAIRAANHOITOPIIRIN KUNTAYHTYMÄ CyberKnife KYSiin, s. 4 KYSin rkenteet kevenevät, s. 14 Nope kotiutus vähentää kustnnuksi, s. 24 Henkreikä 1 / 2012 Pääkirjoitus... 3 Trkkuussädehoitolite

Lisätiedot

VALO-OLOJEN VAIKUTUS MESIMARJAN (Rubus arcticus L.) KASVUUN JA KUKINTAAN

VALO-OLOJEN VAIKUTUS MESIMARJAN (Rubus arcticus L.) KASVUUN JA KUKINTAAN VALO-OLOJEN VAIKUTUS MESIMARJAN (Ruus rcticus L.) KASVUUN JA KUKINTAAN Tii Mäkelä Misterintutkielm Helsingin yliopisto Mtloustieteiden litos Puutrhtiede 2013 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET

Lisätiedot

Asennusohje EPP-0790-FI-4/02. Kutistemuovijatkos Yksivaiheiset muovieristeiset. Cu-lanka kosketussuojalla 12 kv & 24 kv.

Asennusohje EPP-0790-FI-4/02. Kutistemuovijatkos Yksivaiheiset muovieristeiset. Cu-lanka kosketussuojalla 12 kv & 24 kv. Asennusohje EPP-0790-FI-4/02 Kutistemuovijtkos Yksiviheiset muovieristeiset kpelit Cu-lnk kosketussuojll 12 kv & 24 kv Tyyppi: MXSU Tyco Electronics Finlnd Oy Energy Division Konlntie 47 F 00390 Helsinki

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

Talousnäkymät. Reijo Heiskanen Ekonomisti, Chief Analyst Nordean taloudellinen tutkimus

Talousnäkymät. Reijo Heiskanen Ekonomisti, Chief Analyst Nordean taloudellinen tutkimus Talousnäkymät Reijo Heiskanen Ekonomisti, Chief Analyst Nordean taloudellinen tutkimus 1 2 Maailma elpymässä kehittyvien maiden vetoavulla 140 Indeksi, 2005=100 Teollisuustuotanto Indeksi 2005=100 140

Lisätiedot

Verotus ja talouskasvu. Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009

Verotus ja talouskasvu. Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009 Verotus ja talouskasvu Essi Eerola (VATT) Tulevaisuuden veropolitiikka -seminaari 25.09.2009 Johdantoa (1/2) Talouskasvua mitataan bruttokansantuotteen kasvulla. Pienetkin erot talouden BKT:n kasvuvauhdissa

Lisätiedot

33 VALON LUONNE JA ETENEMINEN (The Nature and Propagation of Light)

33 VALON LUONNE JA ETENEMINEN (The Nature and Propagation of Light) 68 33 VALON LUONNE JA ETENEMINEN (The Nture nd Propgtion of Light) Toinen ihmiselle tärkeä luonnon ltoliike, meknisten ääniltojen lisäksi, liittyy näkemiseen j on tietysti vlo. Vlo on sähkömgneettist ltoliikettä

Lisätiedot