8 Pyörimisliike ja monifaasivirtaus

Koko: px
Aloita esitys sivulta:

Download "8 Pyörimisliike ja monifaasivirtaus"

Transkriptio

1 212 8 Pyörimisliike ja monifaasivirtaus Virtauslaskentaohjelmissa on virtausta kuvaaviin yhtälöihin linkitetty paljon erilaisia malleja. Nämä voidaan jakaa monellakin tavalla. Eräs epämääräinen jakotapa on fysikaaliset mallit ja perusyhtälöihin liittyvät mallit, vaikka nämäkin menevät todellisuudessa päällekkäin itse ohjelmakoodissa. Jälkimmäisestä esimerkkinä voisi olla laivavirtausten laskenta, joka eroaa oleellisesti autojen tai lentokoneiden laskennasta vapaan nestepinnan osalta. Eräs lähestymistapa on käyttää ns. deformoituvaa laskentahilaa, jonka pinta muuttuu ratkaisun aikana aaltokuvion mukaiseksi. Tilanteeseen ei siis oikeastaan liity sen kummempaa fysikaalista mallinnusta, vaan ratkaistavat yhtälöt ja reunaehdot voivat olla oleellisesti aivan samat kuin autojen yhteydessä, mutta algoritmia on muutettava siten, että hila deformoituu tiettyjen pintaa kuvaavien ehtojen mukaan. Toinen vastaava esimerkki on pyörivät virtauslaitteet, joiden laskentaan on olemassa useitakin erilaisia approksimatiivisia keinoja. Pyörimisliike vaikuttaa sinänsä myös fysiikkaan, koska turbulenssi käyttäytyy tällöin eri tavoin kuin ilman pyörimisliikettä. Tämän vuoksi myös turbulenssimalleja olisi modifioitava pyörimisen vuoksi. Monimutkaisempana esimerkkinä fysiikan mallinnuksesta voidaan mainita palaminen, mutta sen tyyppisiä ilmiöitä ei käsitellä tällä kurssilla. Tässä luvussa tarkastellaan pyörimisliikettä ja kaksifaasilaskentaa, jossa on myös mahdollisuus vapaan nestepinnan omaavien ilmiöiden simulointiin. On syytä huomata, että juuri pyörimisliikkeen, vapaan nestepinnan yms. huomioon ottaminen saattaa periaatteessa olla yksinkertaista, mutta johtaa käytännössä monenlaisiin ongelmiin. Tämän vuoksi pyöriville virtauslaitteille on aikoinaan kehitetty myös tarkoitukseen sopivia erikoisohjelmia, kuten CFX-TASCflow ja Euranus-Turbo, ja myös laiva-alalla on omia ohjelmia. Ns. yleisohjelmana myös FLUENTissa on pyöriville virtauslaitteille hyvin soveltuvia laskentatapoja.

2 8.1. PYÖRIMISLIIKKEEN LASKENTAMAHDOLLISUUDET 213 y Ω x Liikkumaton Pyörii nopeudella Ω Ω y x Pyörii nopeudella Ω Liikkumaton a) alkuperäinen referenssi koordinaatisto b) pyörivä referenssi koordinaatisto Kuva 8.1: Kiinteä ja pyörivä koordinaatisto. 8.1 Pyörimisliikkeen laskentamahdollisuudet Virtaus on pyörivässä liikkeessä esimerkiksi turbokoneissa ja sekoitussäiliöissä. Pyörivä virtaus on jossain mielessä aina epätasapainotilassa, mikä tekee sen laskennan vaikeaksi. (Tässä yhteydessä ei tarkastella turbulenssimallien ongelmia, jotka hankaloittavat asiaa vielä lisää). Eräissä tapauksissa virtauksen voidaan katsoa olevan tasapainotilassa ainakin approksimatiivisesti. Ongelmahan tulee siitä, että ajasta riippuva virtaustilanne olisi aina integroitava ajan suhteen tarkasti, mikä on yleensä huomattavasti raskaampaa kuin tasapainotilan simulointi. Jos pyörivälle laitteelle löytyy tasapainotilan virtausratkaisu, se löytyy laitteen mukana pyörivässä koordinaatistossa. Eri koordinaatistotyyppejä on havainnollistettu kuvassa 8.1. Paikallaan olevassa koordinaatistossa roottori pyörii ja virtaus siinä on ajasta riippuvaa. Pyörivässä koordinaatistossa roottoriosa on paikallaan ja staattori pyörii. Mikäli staattori on symmetrinen tai sitä ei ole laskennassa mukana, virtaus on roottorin mukana pyörivässä koordinaatistossa tasapainotilassa. Laskenta voidaan siis jakaa kahteen periaatteellisesti erilaiseen luokkaan ajasta riippuva laskenta, jossa laskentahila liikkuu ajan funktiona. Laskennassa käytetään globaalia paikallaan olevaa koordinaatistoa, vaikka laskentahila (tai osa siitä) pyöriikin. staattinen tai kvasistaattinen laskenta, jossa koordinaatisto (tai osa siitä) pyörii laitteen mukana, mutta tasapainotilan laskennassa hilaa ei tarvitse liikuttaa Pyörivä virtaus voi olla (pyörivässä koordinaatistossa) todellisessa tasapainotilassa vain jos geometria on symmetrinen. Tällainen tilanne voi esiintyä esimerkiksi aksiaalipuhaltimella. Jos tilannetta yksinkertaistetaan, kuten usein tehdään koejär-

3 8.1. PYÖRIMISLIIKKEEN LASKENTAMAHDOLLISUUDET 214 Ω Ω y x z x y a) Pyörivä sekoitin sekoitustankissa b) keskipakoroottorin siivet Kuva 8.2: Tapauksia, joissa virtaus on aidosti tasapainotilassa pyörivässä koordinaatistossa. jestelyissä, tasapainotila voidaan olettaa myös paikallaan olevan helikopterin roottorille tai pelkälle laivan potkurille. Kuvassa 8.2 on esimerkkejä tasapainotilanteista. Haitattomassa sekoittimessa ei ole tehty yksinkertaistuksia, mutta radiaaliturbokoneella on staattoriosa jätetty pois. CFD-validointia varten on tehty symmetrisiä radiaalipumppuja ja puhaltimia, jolloin laskenta voidaan suorittaa tasapainotilan simulointina, mutta yleensä käytännössä pyörivissä laitteissa on olemassa pyörivä osa (roottori) ja siihen liittyvä staattori ja tilanne on siten epäsymmetrinen. Periaatteessa joudumme siten laskemaan esimerkiksi tavallisen pumpun aina ajan suhteen tarkasti mallintaen koko pumpun pesineen. Tämän tyyppiset laskut ovat olleet perinteisesti raskaita ja niitä on pyritty välttämään erilaisten approksimaatioiden avulla. Koska laskentakapasiteettia on nykyään halvalla saatavissa, tilanne on muuttumassa. Virtaussimuloinnit pumpuille ja muille turbokoneille tehdään siis usein olettamalla tilanne stationaariseksi, vaikkei se sitä todellisuudessa olisikaan. Koska tilanne ei todellisuudessa ole tasapainotilassa, voidaan kaikkea tämän tyypistä virtauslaskentaa kutsua kvasistaattiseksi. Käytännössä on tullut kuitenkin tavaksi kutsua geometrisesti yksinkertaistettuja tilanteita tasapainotilan laskuiksi. Tasapainotilan laskut voidaan siis jakaa vielä tarkemmin seuraavasti: aidosti tasapainotilassa oleva virtaus (esimerkiksi aksiaalipuhallin tai haitaton sekoitussäiliö) geometrisesti yksinkertaistettu tilanne, joka laskennan kannalta on tasapainotilassa eikä vaadi mitään approksimatiivista mallinnusta. Tällainen tilanne

4 8.1. PYÖRIMISLIIKKEEN LASKENTAMAHDOLLISUUDET 215 Liikkumaton Liikkumattomat haitat Ω Pyörii nopeudella Ω Ω pyörivä sekoitin a) Roottori staattori vuorovaikutus b) pyörivä sekoitin haitallisessa tankissa Kuva 8.3: Tapauksia, joissa virtaus ei ole tasapainotilassa pyörivässä koordinaatistossa. Laskennassa on käytettävä kvasistaattista menettelyä tai raskasta ajan suhteen tarkkaa integrointia. saadaan esimerkiksi laskemalla yhtä pumpun tai puhaltimen siipisolaa. Reunaehdot tulevat tällöin approksimatiivisesti asetetuiksi. Reunaehdot voidaan yrittää asettaa joko kuvaamaan siipisolan tiettyä asentoa tai (yleensä) kuvaamaan keskimääräistä virtaustilannetta. geometrisesti monimutkaisempi tilanne, joka selvästi ei ole tasapainotilassa, mutta jossa sopivalla reunojen käsittelyllä voidaan tilannetta approksimoida tasapainotilalla. Tästä käytetään nimitystä kvasistaattinen laskenta. Ajan suhteen tarkasti tehtävä laskenta edellyttää roottoria kuvaavan laskentahilan liikettä muun laskenta-alueen suhteen. Näiden välillä oleva kytkentä muuttuu ajan funktiona ja vaatii tekniikkaa, jota nimitetään liukuhilaksi (sliding mesh). Open- FOAMissa vastaava menetelmä on nimeltään AMI (Arbitrary Mesh Interface). AMIn vanhempaa versiota on kutsuttu lyhenteellä GGI (General Grid Inteface). Liukuhilalaskenta suoritetaan siis aina ajan suhteen tarkasti ja se muodostuu raskaaksi varsinkin, jos siihen halutaan tarkkuutta. Tämä edellyttää melko lyhyttä aika-askelta (pyörähdyskulmaa aika-askelta kohden) ja toisen kertaluvun aikaintegrointia. Usein joudutaan myös mallintamaan täydet 360 pyörivästä laitteesta, koska symmetriaa ei ole. Ei siis ole ihme, että vielä nykyisellä tietokoneiden teholla tämän tyyppiset tarkat laskut saattavat joskus kestää päiviä tai jopa viikkoja. Vaihtoehtona on siis käyttää pyörivää koordinaatistoa, jossa virtaus voi olla tasapainotilassa. Simuloinnin suorittaja voi tehdä geometrisen yksinkertaistuksen ja

5 8.2. VIRTAUSYHTÄLÖT PYÖRIVÄSSÄ KOORDINAATISTOSSA 216 laskea vain osaa laskenta-alueesta, mikä on kaikkein yksinkertaisin ja samalla turvallisin tapa. Toiseksi mahdollisuudeksi jää kvasistaattinen laskenta, jossa pyörivän ja paikallaan olevan laskentahilan välillä käytetään jotain approksimatiivista reunaehtoa. Tätä tapaa on sovellettu yleisesti käytännön tehtävissä, mutta on tärkeää tiedostaa, että tulos ei ole aina fysikaalisesti mielekäs. Kun siirrytään kokonaan ajasta riippuvaan laskentaan, kvasistaattisella simuloinnilla kannattaa edelleen laskea alkutilanne. Yleisesti virtausohjelmissa on käytössä kaksi approksimatiivista reunaehtoa: usean koordinaatiston käyttö (multiple reference frame, MRF) sekoitustasomalli (mixing plane model) Oikeastaan kumpaankin mallinnustapaan sisältyy sekä pyörivä että paikallaan oleva laskenta-alue ( koordinaatisto ). MRF-tekniikassa oletetaan roottori- ja staattoriosien välinen kytkentä heikoksi. Tällöin pyörivä osa koordinaatistoa ja paikallaan oleva osa yksinkertaisesti liimataan yhteen. Oletus merkitsee, että roottorin näkemä staattorin reunaehto ei oleellisesti muutu pyörimisliikkeen funktiona. Tällainen tilanne voi vallita esimerkiksi sekoitustankissa, jossa staattorin (tankin) haittalevyt ovat niin kaukana sekoittimesta, ettei virtaustilanne staattoripuolella oleellisesti riipu sekoittimen kehän suuntaisesta asennosta. Sekoitustasotekniikka on suunniteltu tapauksille, joissa laskentahilan eri osien välillä reunaehto muuttuu merkittävästi. Esimerkiksi turbokoneiden roottorin ja siivellisen staattorin siipien välimatka voi olla niin lyhyt, että reunaehto muuttuu jaksollisesti ja hyvin nopeasti. Jotta tällainen tilanne voitaisiin edes approksimatiivisesti laskea on tehtävä reunaehtojen osalta virtaussuureiden keskiarvottaminen kehän suunnassa. Tätä menetelmää on joskus paranneltu siten, että keskiarvottamisessa syntyvät näennäiset leikkausjännitykset mallinnetaan. Koska virtaus roottorin ja staattorin välillä heilahtelee, sen keskiarvottaminen tuottaa samantyyppisiä näennäisiä leikkausjännitystermejä kuin turbulentin virtauksen Reynolds-keskiarvottaminenkin. FLUENTissa ei ole kuitenkaan malleja näille näennäisjännityksille, vaan laskennassa käytetään pelkästään keskiarvottamalla saatuja reunaehtoja. 8.2 Virtausyhtälöt pyörivässä koordinaatistossa Jotta tasapainotilaa voitaisiin laskea, tarvitaan virtausyhtälöt pyörivässä koordinaatistossa. Ajan suhteen tarkassa liukuhilalaskennassa voitaisiin periaatteessa käyttää

6 8.2. VIRTAUSYHTÄLÖT PYÖRIVÄSSÄ KOORDINAATISTOSSA 217 myös pyörivää koordinaatistoa, mutta siinä ei ole mitään järkeä. Fysiikan alkeiskurssilta muistamme, että paikallaan olevasta pyörivään koordinaatistoon tapahtuva muunnos tuottaa yhtälöihin näennäisiä voiman kaltaisia termejä, joita kutsutaan Coriolis- ja keskipakovoimiksi. On syytä korostaa, että kyseessä eivät ole todelliset voimat, vaan koordinaatistomuunnoksesta aiheutuvat termit, jotka ovat lisäksi erimuotoiset erilaisten nopeuskomponenttien valinnalla. Pyörivä koordinaatisto on kiihtyvässä liikkeessä, koska liiketila voidaan jakaa pyörimisakselia kohti suuntautuneeseen kiihtyvyyteen ja tasaiseen kiihtyvyysvektoria vasten kohtisuoraan nopeuteen. Kun yhtälöt muunnetaan pyörivään koordinaatistoon, niiden havainnollisuus katoaa ja fysiikan perusteistakin muistamme muunnoksen hankalaksi. Perusfysiikan kursseilla ei kuitenkaan tuoda esille sitä, että nopeuskomponentit voidaan lausua joko pyörivässä koordinaatistossa tai sitten paikallaan olevassa inertiaalikoordinaatistossa, vaikka koordinaatisto pyöriikin! Laskennassa kannattaa käyttää jälkimmäistä tapaa, mikä tekee asian vielä hankalammin tajuttavaksi, mutta matemaattisesti yksinkertaiseksi. Seuraavassa esitetään tähän menettelyyn yksinkertainen johdatus. Kun koordinaatisto, tai laskennassa oikeammin hila, pyörii, on sen nopeusω r, missä Ω on pyörimisvektori ja r paikkavektori. Tällöin nopeus pyörivässä koordinaatistossa ( V r ) ja paikallaan olevassa koordinaatistossa ( V ) muuntuvat seuraavasti V r = V Ω r (8.1) Liikemääräyhtälöiden vasen puoli voidaan vektorimuodossa kirjoittaa seuraavasti t (ρ V)+ (ρ V V) (8.2) Yhtälön muuttaminen karteesisten inertiaalikoordinaatiston nopeuskomponentteja käyttäen pyörivään koordinaatistoon vaatii vektori- tai tensorianalyysin hallintaa. Lopputulokseksi saadaan t (ρ V)+ (ρ V r V)+ Ω V (8.3) Yhtälöt muuntuvat vain siten, että konvektionopeus tulee korvata suhteellisella nopeudella V r ja lisäksi oikealle puolelle siirretään keskeisvoimatermi Ω V. Myös muissa yhtälöissä konvektionopeus on korvattava laskentahilan pintojen läpi oleval-

7 8.2. VIRTAUSYHTÄLÖT PYÖRIVÄSSÄ KOORDINAATISTOSSA 218 la suhteellisella nopeudella. Kokonaisuudessaan kitkattomaksi vuon osaksi saadaan ρû ρuû+n x p ˆF = A ρvû+n y p ρwû+n z p ρeû+pū (8.4) missäaon kopin seinän pinta-ala, n = n x i+n y j +n z k pinnan normaali,ūpintaa vasten kohtisuora nopeuskomponentti jaû = n V r suhteellinen pintaa vasten kohtisuora nopeus (ts. konvektionopeus). Kun laskennassa käytetään karteesisia inertiaalikoordinaatiston nopeuksia muuttujina, yhtälöt eivät muutu fysikaalisessa mielessä ollenkaan. Koordinaatiston liike näkyy konvektionopeuksissa. Itse asiassa juuri samanmuotoinen vuon lauseke saadaan, jos koordinaatisto on tasaisessa liikkeessa. Konvektionopeudet on aina korvattava hilan suhteen olevilla nopeuksilla. Tasaisessa liikkeessä ei yhtälöihin muita termejä tule, mutta kiihtyvässä liikkeessä olevassa koordinaatistossa tulee lisäksi kiihtyvyydestä lähdetermi, joka pyörimisliikkeen tapauksessa on siis Ω V. Vuon lausekkeessa kannattaa kiinnittää huomiota energiayhtälöön, josta huomataan, ettei paine energiayhtälössä ole konvektoituva suure, vain kokonaissisäenergia on sitä. Tämän vuoksi painetta kertoo absoluuttinen nopeus. Asian voisi ilmaista myös siten, että laskentahilan liike ei sinänsä tee työtä. Paine tulee energiayhtälön konvektiotermiin vain kirjoitustavan (entalpia) vuoksi (joka tietenkin yksinkertaistaa asioita). Myös nopeudet voidaan tietenkin lausua pyörivässä koordinaatistossa sijoittamalla yhtälö (8.1) yhtälöön (8.3). Tulokseksi saadaan t (ρ V r )+ (ρv rvr )+2Ω V r + Ω Ω r +ρ Ω r (8.5) t Nyt liikemääräyhtälö on paljon monimutkaisempi. Siihen on lisäksi tullut enemmän lähdetermejä. Termi 2 Ω V r voidaan identifioida Coriolis-voimaksi ja termi Ω Ω V r keskipakovoimaksi. (FLUENTin manuaalissa näiden summaa nimitetään Coriolis-voimaksi ). Lisäksi mukana on kulmanopeuden aikaderivaatta, joka FLUENTissa asetetaan nollaksi (oletetaan vakio pyörimisnopeus). Liikemääräyhtälöiden muut termit pysyvät tämän tyyppisessä koordinaatistomuunnoksessa ennallaan, ts. laskentahilan pyöriminen jäykkänä ei vaikuta kitkatermiin (ei aiheuta leikkausjännityksiä) eikä painegradienttiin. FLUENTissa käyttäjä voi valita absoluuttisten tai suhteellisten nopeuskomponenttien välillä. Tuloksissa

8 8.3. KVASISTAATTINEN LASKENTA 219 olevat erot ovat luonteeltaan numeerisia. Yleensä voisi ajatella, että oletusarvoisesti käytetään absoluuttisia nopeuksia eli sovelletaan yhtälöä (8.3). Liikemääräyhtälö on tällöin yksinkertaisempi kuin suhteellisilla nopeuksilla. Yhtälö on myös muodossa, jossa reunaehtojen antaminen on yksinkertaisinta. Yleensä reunaehdot annetaan ennen pumppua tai puhallinta. Tällöin helpoin ja tarkin tapa on käyttää karteesisia absoluuttisia nopeuksia. Jos käytetään suhteellisia nopeuksia, ohjelma muuntaa annetun reunaehtojakauman suhteelliseksi. Käyttäjän ei siis periaatteessa tarvitse välittää nopeuksien antamistavasta, mutta absoluuttiset nopeudet saattavat marginaalisesti olla tarkemmin lausuttavissa ja myös laskentatapa on robustimpi. Reunaehtojen suhteen on kuitenkin oltava tarkkana, koska jos annetaan kokonaispaine, se on aina annettava absoluuttisessa koordinaatistossa, vaikka nopeusreunaehdot annettaisiinkin suhteellisessa. Erilaiset sotkeutumismahdollisuudet puoltavat siten voimakkaasti absoluuttisten nopeuskomponenttien käyttöä aina. Lisäksi on huomattava, että tiheyspohjaisen ratkaisijan yhteydessä FLUENTissa voidaan käyttää vain absoluuttisia nopeuksia. 8.3 Kvasistaattinen laskenta Usean koordinaatiston käyttö Useamman koordinaatiston käyttö on kaikkein yksinkertaisin tapa käsitellä ajasta riippuvaa pyörivää virtausta. Ensinnäkin laskenta on tasapainotilan laskentaa, kvasistaattista, jossa laskentahilaa ei liikuteta laskennan aikana. Osa laskenta-alueesta on silti määritelty pyöriväksi ja yhtälöt lausutaan silloin pyörivässä koordinaatistossa. Koska staattoriosa hilasta on paikallaan, on joko käytettävä laskennassa absoluuttisia nopeuskomponentteja tai sitten pyörivän ja pyörimättömän vyöhykkeen välillä tehdään nopeuskomponenttien muuntaminen eri koordinaatistojen välillä. Usean koordinaatiston käyttö on sopiva approksimaatio, kun kytkentä roottorin ja staattorin välillä on heikko. Tällainen tilanne saattaa esiintyä sekoitustankissa, missä haittalevyt eivät enää vaikuta kovin paljoa tankin keskiosissa. Useamman koordinaatiston käytöllä saadaan myös luonteva alkuehto pohjustettaessa ajasta riippuvaa liukuhilalaskentaa. Ajasta riippuva tilanne saadaan nopeammin simuloiduksi, jos laskenta aloitetaan hyvästä approksimaatiosta. Kahden koordinaatiston käyttöä havainnollistetaan kuvassa 8.4, jossa on haitoilla varustettu sekoitustankki. Pyörivä sekoitin erotetaan laskennassa omaksi vyöhyk-

9 8.3. KVASISTAATTINEN LASKENTA 220 Kuva 8.4: Haitallinen sekoitustankki, jossa sovelletaan pyörivää ja paikallaan pysyvää koordinaatistoa. keekseen, jossa koordinaatisto siis pyörii. Mutta koska laskenta suoritetaan pyörivässä koordinaatistossa tasapainotilan oletuksella, hila ei liiku mihinkään laskennan aikana. Tankin seinien lähellä oleva, haitat sisältävä alue, on koordinaatistoltaan kiinteä. Vyöhykkeiden välillä oleva katkoviiva erottaa eri koordinaatistot toisistaan. Rajapinta on pyrittävä asettamaan mahdollisimman rauhalliseen kohtaan, yleensä puoleen väliin kiinteistä pinnoista. Rajapinnan on oltava muodoltaan ympyrä. Laskennassa voi olla mukana useita eri pyöriviä koordinaatistoja. Laskenta on mielekästä vain tasapainotilan laskuna, mutta FLUENTissa on myös piirre, joka sallii aikaintegroinnin suorittamisen usean koordinaatiston yhteydessä. Mitä tällainen keinotekoinen järjestelmä simuloi, jätetään käyttäjän huoleksi. Tässä yhteydessä voidaan suositella, ettei sitä käytetä koskaan. Usean koordinaatiston käyttö kvasistaattisessa simuloinnissa on erittäin yksinkertaista, jos käytetään absoluuttisia nopeuksia. Silloin ei nimittäin tarvita yhtään mitään erikoistoimenpiteitä. Laskenta voidaan suorittaa aivan samalla tavalla kuin mikä tahansa muu tasapainotilan simulointi. Jos hilaviivat ovat jatkuvia, vyöhykkeiden rajapinnalle asetetaan interior zone. Hilaviivojen ei kuitenkaan tarvitse olla jatkuvia, vuon laskentaa tältä osin selostettiin toisessa luvussa. Kuten edellä jo todettiin FLUENTissa on jostain syystä mahdollista laskea pyörivä hilavyöhyke myös käyttäen suhteellisia nopeuksia ja syy tähän ei ole oikein selvinnyt. Tällöin on tehtävä nopeuksille koordinaatistomuunnos, kun niitä käytetään reunaehtoina vyöhykkeiden välillä (kts. kuva 8.5). Pyörivän koordinaatiston origo on kohdassa x 0. Tällöin pisteen paikkavektori pyörivässä koordinaatistossa

10 8.3. KVASISTAATTINEN LASKENTA 221 Y y x r x x 0 liikkuva koordinaatisto Z absoluuttinen koordinaatisto X z Kuva 8.5: Koordinaatistojärjestelmä, kun käytetään pyörivän koordinaatiston nopeuskomponentteja. on r = x x 0. Nopeus absoluuttisessa koordinaatistossa on V = V r + Ω r + V t (8.6) missä on pyörimisliikkeen lisäksi oletettu, että hila voi olla aksiaalisessa tasaisessa liikkeessä nopeudella V t. Pyörimis- ja aksiaalinopeudet käyttäjä antaa syöttötietoina Sekoitustasomalli Sekoitustasomalli on hieman edellistä monimutkaisempi tapa käsitellä pyörivän ja pyörimättömän koordinaatiston välistä rajapintaa kvasistaattisessa laskennassa. Sitä tulee käyttää silloin, kun virtaus roottorin ja staattorin välillä muuttuu nopeasti ja tilanne on kehän suunnassa symmetrinen. Vaikka sekoitustasomalli on tavallista usean koordinaatiston käyttöä monimutkaisempi, se ei sovi kaikkiin tapauksiin. Mallia voidaan käyttää juuri turbokoneissa, joissa roottorin ja staattorin siipien väli on lyhyt ja virtaus niiltä osin sykkii korkeataajuisesti. Kuten edellä todettiin, tämä aikariippuvuus voidaan periaatteessa kuvata näennäisillä jännitystermeillä. FLUENTin manuaalin mukaan ilman näitä termejäkin monivaiheisen turbokoneen kvasistaattinen laskenta onnistuu sekoitustasomallilla kohtalaisen hyvin. Sekoitustasoa voidaan käyttää aksiaali- tai radiaaliturbokoneen yhteydessä. Laskennassa käytetään kahta vyöhykettä, joista toinen on pyörivässä koordinaatistossa ja toinen kiinteässä. Näiden välisellä rajapinnalla käytetään keskiarvottamista kehän

11 8.3. KVASISTAATTINEN LASKENTA 222 roottori staattori roottorin ulosvirtaus: p s Rθ staattorin sisäänvirtaus p 0,T 0, α x, α y, α z, k, ε sekoitustason rajapinta Kuva 8.6: Roottorin ja staattorin kytkentä sekoitustasolla. suhteen reunaehtojen lausumisessa. Ideana on korvata keskiarvoilla kehän suuntainen suureiden vaihtelu. Tällöin kumpikin vyöhyke voidaan ratkaista omana tasapainotilan laskunaan. Tapa on mielekäs, koska esimerkiksi roottorivyöhyke (kts. kuva 8.6) näkee keskimääräisessä mielessä reunaehtona alapuolella olevan keskimääräisen paineen. Sekoitustasomallin laskenta-algoritmi on seuraava: 1. lasketaan yksi iteraatiokierros roottori- ja staattorivyöhykkeille 2. keskiarvotetaan virtaussuureet kummassakin vyöhykkeessä kehän suunnassa 3. siirretään keskiarvotetut suureet toiseen asianomaiseen vyöhykkeeseen käytettäviksi reunaehtoina. Reunaehtoja ei tarvitse siirtää jokaisella iteraatiokierroksella, mikä saattaa parantaa robustisuutta ja vähentää reunaehtojen alirelaksaation tarvetta. 4. toistetaan kohdat 1-3, kunnes tasapainotila on saavutettu Koska laskenta suoritetaan ikään kuin vyöhykkeet laskettaisiin erillään, reunaehtoja ei tarvita yhtä paljon kuin on laskettavia suureita. Jos virtaussuunta on vasemmalta oikealle, kuten kuvassa 8.6, tarvitaan roottorivyöhykkeen reunalla vain yksi suure, staattinen paine. Kyseessä on siis FLUENTin paineulosvirtausehto. Muut suureet ulosvirtausreunalla ohjelma ekstrapoloi laskenta-alueesta. Alavirran suunta vaikuttaa varsin vähän ylöspäin ja kun reunaehtona käytetään keskiarvotettua painetta, voidaan olettaa tarkkuuden roottorivyöhykkeessä olevan varsin hyvä. Staattoripuolella tarvitaan neljä reunaehtoa ja lisäksi ehdot turbulenssisuureille. Tässä yhteydessä käytetään FLUENTin painesisäänvirtausehtoa. Keskiarvotetut

12 8.4. LIUKUHILAMALLI 223 suureet ovat kokonaispaine, kokonaislämpötila, virtauskulmat ja turbulenssisuureet. Jäljelle jäävän yhden reunaehdon, nopeusvektorin itseisarvon, ohjelma ekstrapoloi ylävirtaan staattorivyöhykkeen laskenta-alueesta. Koska staattorin puolella reunaehtoja on enemmän, tehty approksimaatio (keskiarvottaminen) vaikuttaa enemmän virtausratkaisun tarkkuuteen staattorissa. Kun käytetään tiheyspohjaista ratkaisijaa, voitaisiin reunaehtoja käsitellä toisinkin. Tiheyspohjainen ratkaisija osaa vuon lausekkeen avulla ottaa juuri oikean informaation reunalla olevista suureista. Tällöin olisi mahdollista myös keskiarvottaa kaikki suureet ja siirtää ne naapurivyöhykkeen reunaehdoiksi. Tulos ei todennäköisesti paljoa muuttuisi FLUENTin laskentatavasta, mutta se olisi robustimpi kääntyvän virtauksen tapauksessa. FLUENTin käsittelytapa ei näet toimi kunnolla, jos virtaussuunta kääntyy huomattavassa osassa sekoitustasoa. Jos tällaista taipumusta esiintyy, pinnan voisi ensin laskea reunaehdot kiinnitettyinä ja vasta sen jälkeen ryhtyä käyttämään sekoitustasomallia. Sekoitustasomallissa on tarpeen alirelaksoida reunaehtoja φ new = φ old +α(φ calculated φ old ) (8.7) missä α on käyttäjän antama alirelaksaatioparametri. Laskennan edistyessä voidaan alirelaksaatiota vähentää (α:n arvoa kasvattaa). Sekoitustasolla hilaviivat voivat olla myös epäjatkuvia. Taso ei välttämättä säilytä eksaktisti esimerkiksi massaa ja energia, mutta virheiden pitäisi olla pieniä edellyttäen, että laskentahila on riittävän tiheä. 8.4 Liukuhilamalli Edellisen kohdan kvasistaattiset laskentakeinot tuottavat käytännössä erilaisia tuloksia, joista tilanteesta riippuen kumpi tahansa voi olla tarkempi. Simuloinnin suorittajan on siten pyrittävä identifioimaan tilanteet, missä niitä kannattaa soveltaa. Tulokset ovat kuitenkin aina approksimatiivisia, koska tilanne on todellisuudessa ajasta riippuva ja tarkka tulos voidaan saada vain integroimalla virtausyhtälöitä ajan suhteen. Tällöin pyörivä hilavyöhyke liikkuu ja sen asemaa päivitetään laskennan aikana. Hilaviivat vyöhykkeestä toiseen eivät säily jatkuvina, vaikka ne aluksi olisivatkin sitä. Jokaisella aika-askeleella on tehtävä pinnan jako osiin ja laskettava vuo näissä osissa erikseen, kuten luvussa esitettiin. Aika-askeleittain on myös hilan asemaa päivitettävä ja koska mallinnettu laskenta-alue loppuu nopeasti kesken

13 8.4. LIUKUHILAMALLI 224 Kuva 8.7: Liukuhilan (katkoviiva) käyttötapoja. esimerkiksi kuvan 8.7 vasemmanpuoleisessa tilanteessa, on usein käytettävä hyväksi periodisuutta. Laskentatekniikasta käytetään nimitystä liukuhila. Liukuhila voidaan asettaa kahden samanlaisen pinnan väliin. Pinnat voivat olla tasomaisia (kuva 8.7 vasemmalla) tai sylinterimäisiä (kuva 8.7 oikealla) tai kartioita. Aksiaalipuhaltimella liukuhilan pinnasta tulee tasomainen sektori (kuva 8.8). Symmetriasyistä pintaa ei aina tarvitse mallintaa kokonaisuudessaan, vaan voidaan käyttää periodisuutta. Laskennassa tulee periodisuus esille kehän suunnassa laskentavyöhykkeen kahden rajapinnan välillä, mutta myös liukuvan pinnan yhteydessä on käytettävä periodisuutta pyörähdyskulman kasvaessa. Yleensä liukuhilatekniikalla lasketaan periodista virtausta. Alkutransientin jälkeen (jota voidaan lyhentää hyvällä kvasistaattisella tuloksella) virtaussuureet kehittyvät ajan suhteen jaksollisiksi. Tällöin roottori voi tyypillisesti joutua pyörähtämään useita kierroksia. Kun kulma muuttuu, on liukuhila kuitenkin pidettävä periodisesti oikealla kohdallaan, jos ei ole mallinnettu koko 360 sektoria. Hilakoon tulee myös olla asteissa yhtä suuri kahden puolen liukuvaa pintaa. Liukuhilan yhteydessä vuon laskenta tehdään osissa. Olisi myös mahdollista suorittaa ensin suureiden pinta-aloilla painotettu interpolointi eri vyöhykkeiden välillä ja muodostaa reunaehtoina tarvittavat suureet interpoloinnin avulla. FLUENTissa käytetään ensimmäistä tapaa. Vuon laskentaa on selostettu kuvan 2.15 yhteydessä. Juuri turbokonesovelluksia varten epäjatkuvalla pinnalla voi olla kiinteä seinän alue, jolla mallinnetaan virtauskoneen siivet.

14 8.5. LASKENTASTRATEGIOITA PYÖRIVILLE VIRTAUKSILLE 225 Mallinnettava alue tasosektori hilan rajapinta Kuva 8.8: Aksiaalipuhaltimella voidaan symmetriasyistä mallintaa vain osa laskentaalueesta liukuhilaa sovellettaessa. Edellä jo todettiin laskenta-aikaa säästyvän, jos aloitetaan kvasistaattisen laskennan tuloksesta. Liukuhilalla siis lasketaan ajan suhteen jaksottaisia virtaustilanteita, joissa φ(t) = φ(t+nt), (N = 1,2,3,...) (8.8) Tässä T on periodi ja N laskentasykli. Jotta tulos olisi tyydyttävä, on laskettava useita periodeja, joissa tilanne jo toistuu jaksollisesti riittävän samanlaisena. Periodisen virtauksen syntyä voi nopeuttaa paitsi aloittamalla kvasistaattisesta tuloksesta, myös käyttämällä aluksi pitempää aika-askelta. Kun virtaus on kehittynyt jaksolliseksi, aika-askelta voidaan lyhentää. Loppuvaiheessa aika-askelta ei enää pidä muuttaa, koska aika-askeleen pituuden muutokset vaikuttavat tulokseen FLUENTin toisen kertaluvun aikaintegroinnissa. 8.5 Laskentastrategioita pyöriville virtauksille Edellä on jo tullut esille joitain pyörivien virtauksien yhteydessä esille tulevia ongelmia. Pyörivät virtaukset ovat monessa suhteessa ongelmallisia ja tässä yhteydessä ei ole mahdollisuuksia ryhtyä esimerkiksi pohtimaan pyörimisen vaikutusta turbulenssiin. Ratkaisussa esiintyy monia muitakin tavanomaisista virtauksista poikkeavia elementtejä. Turbokoneilla esiintyy suuria painegradientteja ja virtaus

15 8.5. LASKENTASTRATEGIOITA PYÖRIVILLE VIRTAUKSILLE 226 menee kasvavan paineen suuntaan. Tämä saattaa laskennan alkuvaiheessa aiheuttaa jopa virtauksen totaalisen kääntymisen. Usein laskennassakin pumppu tarvitsee käynnistyäkseen siemenvettä. On hyvä asettaa alkuarvoksi riittävän suuri nopeus. Sisääntuloreunaehtona nopeus- tai massavirtareunaehto on painereunaehtoa parempi, koska tällöin virtaus pakotetaan oikeaan suuntaan. FLUENTissa annetaan myös neuvoksi käyttää ensin pienempää pyörimisnopeutta laitteelle ja sen jälkeen kun on saavutettu järkevä tulos, kasvatetaan pyörimisnopeutta ja käytetään saavutettua tulosta alkuehtona. Vanha keino on myös pienentää alirelaksaatiokertoimia alkuvaiheessa hyvin pieniksi ja kasvattaa niitä laskennan edistyessä. FLUENTissa kehotetaan myös kokeilemaan option PRESTO! käyttöä, jolloin laskennassa käytetään limitetyn hilan kaltaista tekniikkaa. Tätä ei kuitenkaan selosteta sen tarkemmin, joten option käytössä kannattaa olla varovainen. Pyörivissä virtauksissa tulee myös vastaan jälkikäsittelyongelmia. Liukuhilatekniikassa tilanne on ajasta riippuva ja siten hankala visualisoida. Parhaiten virtauksen luonne tulee esille animaatioista. Jos käytetään kvasistaattista tekniikkaa, osa laskenta-alueesta pyörii ja osa on kiinteä. Tällöin virtaviivojen ja nopeusvektoreiden esittäminen tuo esille ristiriitaisia tilanteita. Nopeusvektoreiden osalta tilanne on kuvassa 8.9. Absoluuttisilla nopeuksilla vektorit näyttäisivät törmäävän virtauslaitteen siivistöön. Jos piirretään virtaviivat yhtä aikaa turbokoneen roottoriin ja staattoriin, on roottorivyöhykkeessä käytettävä suhteellisia nopeuksia, jotta virtaustilanne mitenkään hahmottuisi. Staattoripuolella taas olisi käytettävä kiinteän koordinaatiston nopeuksia. Tällöin rajapinnalle tulee väkisin äkillinen nykäys eri tavoin lasketuissa virtaviivoissa. Käytettäessä liukuhilatekniikkaa visualisoidaan oletusarvoisesti absoluuttisia nopeuksia, mutta tällöinkin hetkellistä tilannetta esittävissä kuvissa voi olla tarpeen käyttää suhteellisia nopeuksia. Jälkikäsittelyssä voidaan valita käytetäänkö suhteellisia vai absoluuttisia nopeuksia. Vaikka laskennassa voidaan ja kannattaa aina käyttää absoluuttisia nopeuksia, jälkikäsittelyssä myös suhteelliset nopeudet ovat usein välttämättömiä. Kokonaissuureiden, kuten kokonaispaineen ja -lämpötilan suhteen on jälkikäsittelyssä oltava tarkkana, koska niitäkin voidaan tulostaa eri tavoin. Erilaisten tulosten vertailussa voi siis tulla vastaan tilanteita, joissa tulokset näiltä osin näyttävät aivan erilaisilta, vaikka laskennassa ei sinänsä ole mitään vikaa. Kyseessä on ns. jälkikäsittelyongelma, joita tulee esille monimutkaisissa virtaustapauksissa melko usein. Usein pyörivillä virtauslaitteilla kannattaa esittää keskimääräisiä suureita, kuten painetta tai nostokorkeutta, kanavan aksiaalisuunnan funktiona. FLUENTissa on

16 8.6. MONIFAASIVIRTAUSMALLIT e e e e e e e e e e e 01 a) absoluuttiset nopeusvektorit 1.81e e e e e e e e e e e 03 b) suhteelliset nopeusvektorit Kuva 8.9: Nopeusvektorit kiinteässä ja pyörivässä koordinaatistossa. mahdollista laskea kehän suuntaisia keskiarvoja tätä tarkoitusta varten. 8.6 Monifaasivirtausmallit Monifaasivirtausta voidaan mallintaa hyvin monella tavalla. Virtaus voi koostua myös useasta eri komponentista. Faasien välinen vuorovaikutus on erittäin monimutkainen ja puutteellisesti tunnettu asia. Täydellisessä monifaasivirtausmallissa on taseyhtälöt kullekin faasille ja niiden välillä massan-, liikemäärän- ja energiansiirtotermit, jotka perustuvat lähinnä mittauksiin. Useamman faasin tai komponentin vaikutus näkyy myös turbulenssissa. Vanhoissa FLUENTin versioissa ei ollut mahdollista mallintaa faaseja erillisinä, mutta uudemmissa versioissa tällaisetkin mallit ovat mukana. Erillisellä mallinnuksella tarkoitetaan tässä, että kummallekin faasille on omat täydelliset kenttäyhtälönsä. Kaksifaasivirtauksella tällaista täydellistä mallia on kutsuttu kaksinestemalliksi (two-fluid model), nykyisin yleisemmin eulerilaiseksi malliksi. Nimitys on tullut siitä, että virtauksia mallinnetaan myös yksifaasivirtauksina, joihin liitetään erillinen partikkelien kuvaus. Tätä tapaa kaupalliset ohjelmistotalot nimittävät lagrangelaiseksi. Kaksinestemallissa perusyhtälöitä on siis faasia kohden viisi (3D tilanteessa), lisäksi tulevat turbulenssiyhtälöt ja lisämallit, joilla faasit vuorovaikuttavat toisiinsa. Lisämallien osalta tarjonta niukkaa. Eräänä syynä niukkuuteen on se, että yleisiä malleja faasien väliselle vuorovaikutukselle ei oikeastaan ole, vaan ne ovat tapaus-

17 8.7. TILAVUUSMALLI 228 kohtaisia ja monimutkaisia. Viime kädessä mallit jäävät aina käyttäjän vastuulle. Uudemmissa FLUENTin versioissa monifaasivirtaus voidaan mallintaa approksimatiivisesti usealla eri tavalla. Mallinnustavat ja niistä käytetyt nimitykset eivät ole vielä vakiintuneet. Seuraavassa tarkastellaan neljää eri mallinnustapaa: Nämä ovat tilavuusmalli (volume of fluid, VOF) kavitaatiomalli seosmalli (algebrallinen nopeuseromalli, algebraic slip mixture model) eulerilainen malli Näistä tilavuusmallia ei yleensä edes pidetä monifaasivirtausmallina, vaan pikemminkin nesteen pinnan laskentakeinona. Fysikaalisesti ehkä luotettavin on tällä hetkellä seosmalli. FLUENTin seosmalli perustuu VTT Energiassa aikoinaan tehtyyn kehitystyöhön. Eulerilaisessa mallissa kummallekin faasille on omat yhtälönsä, mutta tätä kirjoitettaessa malli ei ole yleistettävissä kaikkiin kaksifaasivirtaustapauksiin. Mallien rajoitukset on otettava huomioon simulointia tehtäessä, mutta onneksi ohjelmistojen kehitys on varsin nopeaa. Tämäkin on syytä ottaa huomioon uuden tyyppistä simulointitehtävää aloitettaessa, koska pitkäaikaisessa kehitystyössä mallit saattavat käydä vanhoiksi. FLUENTin vanhemmissa versioissa kavitaatiomalli oli oma yksinkertainen kaksifaasimallinsa, mutta FLUENT 6 ohjelmasta lähtien se on ollut faasien välisen massansiirron kuvaustapa. Kavitaatiomalli voidaan yhdistää seosmalliin tai eulerilaiseen malliin. Jatkossa kavitaatiomalli kuvataan muiden varsinaisten monifaasimallien yhteydessä. 8.7 Tilavuusmalli Tilavuusmalli on kotoisin Los Alamosin laboratoriosta, jossa on tehty nesteen pintaan liittyviä simulointeja 1960-luvulta lähtien. Ensimmäisissä menetelmissä ei ollut varsinaista pintaa, vaan käytettiin nesteen mukana kulkeutuvia partikkeleita. Kuuluisa tällainen laskentatapa oli 1960-luvulla marker and cell-menetelmä (MAC), joka oli samalla myös ensimmäinen painekorjausta soveltava algoritmi, itse asiassa FLUENTinkin painekorjausmenetelmän edeltäjä. Samoilta tutkijoilta on kotoisin

18 8.7. TILAVUUSMALLI luvun alussa kehitetty tilavuusmenetelmä (Volume of fluid, VOF). Los Alamosista kotoisin olevat tuotteet erottaa tyypillisistä kirjainyhdistelmistä, joita on muitakin, kuten SOLA, TRAC jne. Tilavuusmenetelmällä voidaan löytää nesteen pinnan muoto. Tämän tyyppistä mallinnusta on kehitetty laivavirtausten laskentaan. Toinen tapa laivoilla on käyttää deformoituvan hilan tekniikkaa, jolloin nestepinta on tarkasti määritelty. Kokemuksen mukaan laivan vastus saadaan tällöin parhaassa tapauksessa riittävän tarkasti määritetyksi. Tilavuusmenetelmä on tekniikka, jolla vältytään monimutkaiselta hilan deformoitumisalgoritmilta ottamalla käyttöön suure, joka määrää minkä verran nestettä on laskentatilavuudessa. Kyseessä on yksinkertaisesti nesteen tilavuusosuus. Tällä keinolla pinta ei tule tarkaksi, vaan pinnan lähellä on laskentatilavuuksia, joiden vesiosuus on nollan ja ykkösen välillä. Koska pinta ei ole terävä, vastuksen laskemisen tarkkuudesta ei voida tätä kirjoitettaessa sanoa mitään varmaa. Tilavuusmallin tarkkuus varmasti riittää kuitenkin tilanteisiin, joissa kvalitatiivinen tieto pinnan muodosta tai pinnan muodon vaikutus muualle virtauskenttään on riittävää. Tilavuusmallin tapaisia lähestymistapoja on muitakin. Viime vuosina on tutkittu paljon esimerkiksi ns. level set -menetelmää Yhtälöt Tilavuusmallissa otetaan käyttöön uusi suure, nesteen tilavuusosuusα l. Toisena virtaavana aineena on yleensä ilma, mutta mitään esteitä ei ole kahden erilaisen nesteen rajapinnan kuvaamiseen tilavuusmallilla. Päärajoitus on, että nesteiden pitää olla laskennassa erillään. Tämän vuoksi kyseessä ei ole varsinainen kaksifaasilaskenta, vaan pintamalli. Pinnan läheisyydessä tilavuusosuudet ovat jotain nollan ja ykkösen välillä. Ongelmaksi tulee juuri pinnan leviäminen laajalle alueelle, koska numeerisessa laskennassa tapahtuu aina jonkinlaista diffuusiota pelkästään numeerisista syistä. On olemassa algoritmeja, joissa pintaa terävöitetään laskentakierroksen jälkeen siten, että kerrostenα l = 0 jaα l = 1 välillä on pääsääntöisesti yksi koppirivi, jossa nesteosuus on nollan ja ykkösen välillä. Tällainen redistribuutioalgoritmi on helppo rakentaa sellaiseksi, että laskenta-alueen massa säilyy. Manuaalista ei varmuudella selviä tehdäänkö FLUENTissa nestealueiden rajapinnan terävöittämistä, mutta todennäköisesti näin ei ole.

19 8.7. TILAVUUSMALLI 230 rajapinnan todellinen muoto rajapinnan muoto geometrisena rajapinnan muoto luovuttaja rekonstruktiona esitettynä. vastaanottaja menetelmällä. (Jaksottain lineaarinen menetelmä) Kuva 8.10: Faasien välisen rajapinnan laskenta VOF-menetelmässä. Nesteen tilavuusosuus voidaan laskea yksinkertaisesta massataseyhtälöstä α l t + α lu i x i = 0 (8.9) Periaatteessa nesteitä voisi olla enemmän kuin kaksi. Tällöin toteutuu yhtälö n α q = 1 (8.10) q=1 Virtaavan aineen keskimääräinen tiheys voidaan laskea komponenttien tiheyksistä n ρ = α q ρ q (8.11) q=1 Muut ominaisuudet, kuten viskositeetti lasketaan samalla tavoin. Tilavuusmalli heijastuu siis virtausyhtälöihin vain aineominaisuuksien muuttumisen kautta. Turbulenssisuureet lasketaan tavanomaisista yhtälöistä ja ne jaetaan tilavuusosuuksien mukaan eri faaseille. Kaikki nämä laskentatavat ovat hyvin approksimatiivisia Interpolointitavat nestepinnan läheisyydessä Nesteosuusyhtälön ratkaiseminen on ongelma, koska rajapinnan läheisyydessä tapahtuu numeerisista syistä pinnan leviämistä eli diffuusiota. Tämän vuoksi on FLUEN- Tissa neljä erilaista ratkaisutapaa yhtälön (8.9) vuon laskentaan. Käyttäjän on tosin hyvin vaikea tietää, mikä laskentatapa on kulloinkin paras. Ainoastaan yksi laskentatapa on sovelias suoraan tasapainotilan simulointiin. Muilla kolmella on suoritettava aikaintegrointi ja haettava tasapainotilan pinnan muoto aikaintegroinnin avulla. Ratkaisutavat ovat

20 8.7. TILAVUUSMALLI 231 geometrinen rekonstruktio -menetelmä luovuttaja-vastaanottaja -menetelmä (donor-acceptor scheme) Eulerin eksplisiittinen menetelmä Eulerin implisiittinen menetelmä Näistä kahta ensimmäistä havainnollistetaan kuvassa Geometrisessa rekonstruktiossa todellinen nestepinta korvataan paloittain lineaarisella jakaumalla. Koodissa ei tietenkään ole todellista pintaa, vaan nesteosuuksien arvot ja derivaatat, joiden avulla konstruktio tehdään. Seuraavaksi lasketaan vuotα l ū pinnan läpi ja näistä vuobalanssi. Yksityiskohtia ei selosteta manuaalissa eikä myöskään aikaintegrointitapaa. Ilmeisesti se on eksplisiittinen Eulerin menetelmä, koska tasapainotilaa ei voida laskea suoraan. Manuaalin perusteella on myös mahdotonta sanoa tehdäänkö liikemääräyhtälön vuoarvojen laskennassa sama rekonstruktio vai perustuuko liikemääräyhtälön ratkaisu keskimääräisiin tiheyksiin. Luovuttaja-vastaanottaja -menetelmässä virtaa joko nestettä tai ilmaa (vaihtoehtoisesti toista nestettä). Tässä menettelyssä kopit, jotka sisältävät sekä nestettä että ilmaa, toimivat jommankumman faasin luovuttajina ja vastaanottajina. Tällä tavoin saadaan numeerinen diffuusio minimoiduksi mahdollisesti muun tarkkuuden kustannuksella. Kun jokin koppi luovuttaa nestettä tietyn määrän, sama määrä asetetaan vastaanottajapuolelle. Faasien rajapinnan orientaatio vaikuttaa kumpaa ainetta rajapinnan läpi virtaa (kts. kuva 8.10). Eulerin eksplisiittisessä menetelmässä käytetään seuraavaa diskretointia V αn+1 l t α n l + pinnat A f ū n fα n lf = 0 (8.12) Laskenta on siis eksplisiittinen. Nesteosuuksien interpoloinnissa käytetään FLUEN- Tin normaaleja menettelytapoja. Tämä laskenta eroaa edellisistä kahdesta tavasta siis ainakin suureenαlf n interpoloinnin suhteen, mutta itse aikaintegrointitapa on ilmeisesti sama. Jos käytetään tavanomaista interpolointimenettelyä, ei liikemääräyhtälöiden laskentatapa poikkea normaalista muuta kuin tiheyden ja aineominaisuuksien laskennan osalta. Kuten edellä todettiin, manuaalista ei varmasti selviä vaikuttavatko geometrinen rekonstruktio- tai luovuttaja-vastaanottaja -menetelmä myös liikemääräyhtälöön.

21 8.7. TILAVUUSMALLI 232 Neljäs laskentatapa on muuten sama kuin edellinen, mutta nyt konvektiotermi yhtälössä (8.12) lausutaan uuden ajan hetken arvoilla. Tällöin voidaan laskea myös suoraan tasapainotilaa Tilavuusmallin käytöstä VOF-menetelmän käyttö on ilmeisen hankalaa ja konvergenssivaikeuksia esiintyy. Jo mallin asettaminen FLUENTissa sisältää monia vaiheita, joita ei voida tässä yhteydessä käydä läpi. Malliin voidaan asettaa myös pintajännityksen ja seinän adheesion vaikutus, joita ei edellä käsitelty. Ongelma, joka sisältää esimerkiksi pintajännityksen vaikutuksen, on liian monimutkainen suoraan ratkaistavaksi, joten tavanomaisen käyttäjän kannattaa ensin keskittyä vain pelkän pinnan laskentaan melko yksinkertaisissa tilanteissa. Tilavuusmallilla on tätä kirjoitettaessa lukuisia fysikaalisia rajoituksia: tiheyspohjaista ratkaisua ei voida käyttää. Virtauksen on myös oltava aina kokoonpuristumatonta lämmönsiirtoa ei voida kuvata virtauksen suunnassa periodista virtausta ei voida kuvata LES ei toimi faasimuutosmalli ei toimi Useimmat rajoituksista eivät koske niitä tilanteita, joissa yleensä ollaan kiinnostuneita nesteen pinnasta. Interpolointitavoille annetaan joitain suosituksia. Suosituksena on käyttää geometrista rekonstruktiota, mutta jos hilakopit ovat hyvin vääristyneitä parempi tulos saadaan luovuttaja-vastaanottaja -menettelyllä. Muut kaksi ratkaisutapaa ovat soveliaita myös toisenlaisille laskentatilavuustyypeille. Implisiittinen integrointi soveltuu tietenkin parhaiten tasapainotilan laskentaan, mutta sisältää suuremman diffuusion kuin geometrinen rekonstruktio. Tästä voisi päätellä, ettei FLUENTissa ole aiemmin mainitun kaltaista nesteosuuksien uudelleen distribuutiota iteraatiokierrosten tai aika-askelten välillä. Käyttäjä voi monilta osin vaikuttaa nestepinnan numeriikkaan. Ohjelma asettaa aika-askeleen annetun Courantin luvun perusteella. Paineen interpolointitavassa

22 8.8. KAVITAATIOMALLI 233 kehotetaan käyttämään aina tilavuusvoimalla painotettua interpolointia, mikä stabiloi ratkaisua. Vaikka nestepinta laskettaisiin eksplisiittisesti, on taustalla oleva virtausratkaisu on aina implisiittinen. Eksplisiittisen pinnan laskennan yhteydessä suositellaan käytettäväksi PISO-algoritmia. On myös selvää, että virtausratkaisulla ja nestepinnan ratkaisulla on voimakas linkitys keskenään. Tällöin ratkaisun alirelaksaatiolla on suuri merkitys ja pinta varmasti edellyttää pienempiä alirelaksaatiokertoimien arvoja kuin normaali ratkaisu. 8.8 Kavitaatiomalli Kavitaatiomalli on hyvin samantapainen kuin tilavuusmalli, mutta kavitaatiomallissa voi tapahtua faasimuutos ja faasit voivat sekoittua keskenään. Faaseilla on kuitenkin vain yksi liikemääräyhtälö ja niillä oletetaan olevan samat nopeudet. Kavitaatiomallia voidaan pitää ehkä yksinkertaisimpana mahdollisena kaksifaasimallina, jossa massansiirto on mukana. Silloin kun faaseilla on samat nopeudet, yhtälöt muodostavat ns. homogeenisen monifaasimallin. Kavitaatiomallissa on yhtälö myös faasimuutokselle, joka periaatteessa sallii faaseille eri lämpötilat. Koska energiayhtälöä ei yleensä käytetä, varsinaisia lämpötilojakaan ei ole. Kavitaatiomallia vielä yksinkertaisemmassa kaksifaasimallissa voitaisiin olettaa ns. termodynaaminen tasapaino, jolloin faasimuutos (käytännössä höyrystymisnopeus) määräytyy siitä, että paine ei saa laskea kylläisen höyryn paineen alapuolelle. Kavitaatiomallin käytölle ovat voimassa samat rajoitukset kuin tilavuusmallille, lukuunottamatta seikkaa, että faasien välillä ei tarvitse olla rajapintaa. FLUENTin perinteinen kavitaatiomalli ja termodynaaminen tasapainomalli ovat esimerkkejä yksinkertaisista monifaasimalleista. Muitakin vaihtoehtoja on, voidaan esimerkiksi olettaa kevyemmän faasin olevan aina kylläisessä lämpötilassa. Mallien nimitykset eivät ole vakiintuneita. FLUENTin uusissa versioissa kavitaatiomallilla tarkoitetaan faasimuutoksen laskentatapaa. Seuraavassa esitetään alkuperäinen kavitaatiomalli. Kavitaatiomallissa kaasufaasin tilavuusosuudelle on oma massataseyhtälönsä. Yleisessä muodossa se voidaan kirjoittaa t (α gρ g )+ x i (α g ρ g u i ) = ṁ lg (8.13) missäṁ lg on höyrystymisnopeus. Yhtälössä (8.13) on myös oletettu faaseilla olevan

23 8.9. SEOSMALLI 234 sama nopeus. FLUENTissa käytetään tilavuusosuudelle yhtälöä t (α g)+ x i (α g u i ) = 1 ρ g (ṁ lg dρ dt ) (8.14) missädρ/dt = ρ/ t +u i ρ/ x i on tiheyden materiaaliderivaatta. Miten ja millä oletuksilla FLUENTin yhtälö saadaan yhtälöstä (8.13) jätetään harjoitustehtäväksi. FLUENTissa käytetään yksinkertaista kupladynamiikkaan perustuvaa mallia höyrystymisnopeudelle ṁ lg. Kun paine alenee paikallisesti kylläisen paineen p sat alapuolelle, höyrystymisnopeus lasketaan yhtälöstä ṁ lg = 3ρ gα g R 2(psat p) 3ρ l (8.15) missä kuplan säde on ( ) 1/3 αg R = 4 πn (8.16) 3 malli tarvitsee siis parametrina kuplien määrän tilavuusyksikköä kohden. Oletusarvona on /m 3, mikä vastaa kymmentä kuplaa litrassa. Tämän tyyppinen malli on idealisointi ja toimii vain oikein viritettynä. Joskus tarvitaan kuplamääräksi /m 3 tai ylikin, mikä vastaa jo kymmentä kuplaa kuutiomillimetriä kohden. Selvästikään n ei ole yleensä kuplien fysikaalinen määrä, vaan viritysparametri. Käyttäjä voi joutua tekemään kokeiluja oikean arvon löytämiseksi. 8.9 Seosmalli Seosmalli (algebraic slip mixture model) oli pitkään FLUENTin monipuolisin vaihtoehto kuvaamaan virtauksia, joissa eri faaseilla tai komponenteilla on eri nopeudet. Tässä mallissa ei aiemmin voinut tapahtua faasimuutoksia, mikä puolestaan rajoitti sen käyttöä. Seosmallissa voidaan käyttää vain kahta komponenttia. (Jos olomuodonmuutoksia ei ole, kyseessä on pikemmin monikomponentti- kuin monifaasimalli). Kunkin faasin k nopeus saadaan keskimääräisen nopeuden V m ja ns. drift-nopeuden V Dk avulla Massataseessa käytetään keskimääräisiä suureita V k = V m + V Dk (8.17) t (ρ m)+ x i (ρ m u m,i ) = 0 (8.18)

24 8.10. EULERILAINEN MALLI 235 Liikemääräyhtälössä eri komponenttien liikemäärät vaikuttavat vuohon, koska komponenteilla on eri nopeudet t (ρ mu m,j )+ (ρ m u m,i u m,j ) = p + ( um,i µ m + u ) m,i + x i x j x i x j x j x i Tässä tilavuusvoimia ei ole kirjoitettu näkyviin. Toiselle komponentille voidaan kirjoittaa, kun ṁ lg = 0, taseyhtälö Drift-nopeuksien avulla tämä saadaan muotoon t (α gρ g )+ x i (α g ρ g u g,i ) = 0 (8.20) t (α gρ g )+ (α g ρ g u m,i ) = (α g ρ g u Dg,i ) (8.21) x i x i Mallia varten tarvitaan drift-nopeudet. Nämä saadaan yksinkertaisista algebrallisista lausekkeista. Näissä on parametrina hiukkas- tai kuplakoko, joka käyttäjän on annettava. Parametrilla voidaan tuloksia viritellä. Seosmallin sanotaan sopivan esimerkiksi sedimentaation, syklonien ja kuplavirtausten laskentaan. Ilman massansiirtoa voidaan laskea veden ja ilman seosta, ei veden kaksifaasivirtausta. Lisäksi mallissa oletetaan, että toisen faasin tilavuusosuus on melko pieni. Malli on kriittinen drift-nopeuksien suhteen, joita ei tiedetä tarkasti. Drift-nopeudet ovat myös numeriikan kannalta hankalia ja erityisesti ratkaisun alkuvaiheessa niitä on voimakkaasti alirelaksoitava. n α k ρ k u Dk,i u Dk,j k=1 (8.19) 8.10 Eulerilainen malli Kaksifaasivirtauksen kuvaukseen voidaan johtaa RANS-yhtälöitä vastaavat ajan suhteen keskiarvotetut yhtälöt. Faasien perusyhtälöiden lisäksi malliin tulee runsaasti lisäyhtälöitä. Ensimmäinen ja ehkä tunnetuin täydellinen kaksifaasimalli oli M. Ishiin johtama (Thermo Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, 1975). Mallissa on se vika, ettei sitä kokonaisuudessaan pystytä käyttämään. Kun ilmiöitä kuvataan lisäyhtälöillä, syntyy niihin uusia tuntemattomia, jotka kuvaavat faasien välistä vuorovaikutusta. Esimerkkeinä voisivat olla faasien välinen lämmönsiirto, joka kytkeytyy läheisesti massansiirtoon ja faasien välinen kitka. Mielenkiintoinen on myös faasien välisen rajapinnan kaarevuutta säätelevä termi. Lausekkeen voi myös pukea muotoon, jossa se kuvaa kuplien tai pisaroiden särkymistä ja yhteen

25 8.10. EULERILAINEN MALLI 236 liittymistä. Kaikki tämä vaatisi suunnattoman määrän kokeellista tietoa, jota ei vieläkään ole käytettävissä kuin rajoitetusti. Monifaasiefektejä on perinteisesti kuvattu myös siten, että lasketaan virtauskenttä ja asetetaan tähän kenttään partikkeleita tai pisaroita, joiden lentoradat lasketaan. Tätä tapaa on totuttu nimittämään lagrangelaiseksi. Kun kaupallisiin koodeihin alettiin kehittämään kummankin faasin kenttäyhtälöihin perustuvaa mallinnusta, ryhdyttiin sitä nimittämään eulerilaiseksi. Perinteisen nimityskäytännön mukaan myös tilavuus- ja seosmallit olisivat eulerilaisia, mutta yleensä se ohjelmistoalalla tarkoittaa kummankin faasin mallinnusta, tapaa, jota Ishii nimitti kaksinestemalliksi (two-fluid model). Eulerilainen kaksifaasimallinnus on hankalaa eikä sitä tässä yhteydessä voida suositella kuin alan eksperteille. Ainakin FLUENTissa malli on vielä rajoittunut, mutta kehittyy koko ajan monipuolisemmaksi. Ja tällöin tarvitaan yhä enemmän fysikaalista tietoa mallin sulkeutumiseen. Käyttäjän on tällöin tarkasti tutkittava, millä oletuksilla ohjelma laskee. Jo nykyisin FLUENTissa on mahdollista valita useita erilaisia turbulenssin kuvaustapoja. Kuitenkaan mitään yleistä kaksi- tai monifaasiilmiöiden kuvaamiseen tarkoitettua mallia ei ole olemassa. Vastuu siis jää käyttäjälle ja erityisesti tämä koskee faasien välisten vuorovaikutustermien mallinnusta.

Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio. Liukuvan hilan reunaehdon testaus - Krainin impelleri

Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio. Liukuvan hilan reunaehdon testaus - Krainin impelleri Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio MUISTIO No CFD/TERMO-16-97 pvm 6 helmikuuta, 1997 OTSIKKO Liukuvan hilan reunaehdon testaus - Krainin impelleri LAATIJA(T) Esa

Lisätiedot

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot

Lisätiedot

Chapter 1. Preliminary concepts

Chapter 1. Preliminary concepts Chapter 1 Preliminary concepts osaa kuvata Reynoldsin luvun vaikutuksia virtaukseen osaa kuvata virtauksen kannalta keskeiset aineominaisuudet ja tietää tai osaa päätellä näiden yksiköt osaa tarvittaessa

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.

Lisätiedot

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu. Tehtävä 1 Tarkastellaan paineen ajamaa Poisseuille-virtausta kahden yhdensuuntaisen levyn välissä Levyjen välinen etäisyys on 2h Nopeusjakauma raossa on tällöin u(y) = 1 dp ( y 2 h 2), missä y = 0 on raon

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

Teknillinen Korkeakoulu CFD-ryhma/ Sovelletun termodynamiikan laboratorio MUISTIO No CFD/TERMO-8-96 pvm 15 tammikuuta, 1997 OTSIKKO IFRF polttokammion laskenta k ; turbulenssimallilla, case 11 LAATIJA(T)

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet Kertaus 3 Putkisto ja häviöt, pyörivät koneet KJR-C2003 Virtausmekaniikan perusteet Käsitteelliset tehtävät Käsitteelliset tehtävät Ulkopuoliset virtaukset Miten Reynoldsin luku vaikuttaa rajakerrokseen?

Lisätiedot

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi?

(c) Kuinka suuri suhteellinen virhe painehäviön laskennassa tehdään, jos virtaus oletetaan laminaariksi? Tehtävä 1 Vettä (10 astetta) virtaa suorassa valurautaisessa (cast iron) putkessa, jonka sisähalkaisija on 100 mm ja pituus 70 m. Tilavuusvirta on 15 litraa minuutissa. (a) Osoita, että virtaus on turbulenttia.

Lisätiedot

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

valitseminen vaikuttaa laskennan aikana ratkaistaviin yhtälöryhmiin.

valitseminen vaikuttaa laskennan aikana ratkaistaviin yhtälöryhmiin. Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-19-2011 pvm 28. heinäkuuta 2011 OTSIKKO Diskretointimenetelmät OpenFOAMissa LAATIJA(T)

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet DEE-53020 Tuulivoiman perusteet Aihepiiri 2 Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011

MUISTIO No CFD/MECHA pvm 22. kesäkuuta 2011 Aalto yliopisto Insinööritieteiden korkeakoulu Virtausmekaniikka / Sovelletun mekaniikan laitos MUISTIO No CFD/MECHA-17-2012 pvm 22. kesäkuuta 2011 OTSIKKO Hilatiheyden määrittäminen ennen simulointia

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä. JÄNNITYS-JAMUODONMUUTOSTILANYHTYS Materiaalimalleista Jännitys- ja muodonmuutostila ovat kytkennässä toisiinsa ja kytkennän antavia yhtälöitä sanotaan materiaaliyhtälöiksi eli konstitutiivisiksi yhtälöiksi.

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jouko Esko n85748 Juho Jaakkola n86633 Dynaaminen Kenttäteoria GENERAATTORI Sivumäärä: 10 Jätetty tarkastettavaksi: 06.03.2008 Työn tarkastaja Maarit

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio

Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio Teknillinen korkeakoulu CFD-ryhmä / Sovelletun termodynamiikan laboratorio MUISTIO No CFD/TERMO-13-97 pvm 15 tammikuuta, 1997 OTSIKKO Liukuvan hilan reunaehdon testaus LAATIJA(T) Esa Salminen TIIVISTELMÄ

Lisätiedot

7. Differentiaalimuotoinen jatkuvuusyhtälö. KJR-C2003 Virtausmekaniikan perusteet

7. Differentiaalimuotoinen jatkuvuusyhtälö. KJR-C2003 Virtausmekaniikan perusteet 7. Differentiaalimuotoinen jatkuvuusyhtälö KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten lähestymistapaa pitää muuttaa, jos halutaan tarkastella virtausta lokaalisti globaalin tasetarkastelun

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Supremum ja inmum Tarkastellaan aluksi avointa väliä, Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen Kuitenkaan päätepisteet eli luvut ja

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2019 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

1.4. VIRIAALITEOREEMA

1.4. VIRIAALITEOREEMA 1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen

Lisätiedot

9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet

9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet 9. Kitkaton virtaus ja potentiaaliteoria KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten ja millä edellytyksillä virtausongelmaa voidaan yksinkertaistaa? Motivointi: Navier-Stokes yhtälöiden ratkaiseminen

Lisätiedot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Osa IX. Z muunnos. Johdanto Diskreetit funktiot Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 3 Supremum ja infimum Tarkastellaan aluksi avointa väliä, ) = { : < < }. Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen. Kuitenkaan päätepisteet

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

Kon Simuloinnin Rakentaminen Janne Ojala

Kon Simuloinnin Rakentaminen Janne Ojala Kon 16.4011 Simuloinnin Rakentaminen Janne Ojala Simulointi käytännössä 1/3 Simulaatiomalleja helppo analysoida Ymmärretään ongelmaa paremmin - Opitaan ymmärtämään koneen toimintaa ja siihen vaikuttavia

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

PHYS-A3121 Termodynamiikka (ENG1) (5 op)

PHYS-A3121 Termodynamiikka (ENG1) (5 op) PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Johdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad

Johdantoa. Jokaisen matemaatikon olisi syytä osata edes alkeet jostakin perusohjelmistosta, Java MAPLE. Pascal MathCad Johdantoa ALGORITMIT MATEMA- TIIKASSA, MAA Vanhan vitsin mukaan matemaatikko tietää, kuinka matemaattinen ongelma ratkaistaan, mutta ei osaa tehdä niin. Vitsi on ajalta, jolloin käytännön laskut eli ongelman

Lisätiedot

5. OSITTAISINTEGROINTI

5. OSITTAISINTEGROINTI 5 OSITTAISINTEGROINTI Kahden funktion f ja g tulo derivoidaan kuten muistetaan seuraavasti: D (fg) f g + f Kun tämä yhtälö integroidaan puolittain, niin saadaan fg f ()g()d + f ()()d Yhtälö saattaa erota

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet

4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet 4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Vektoreita GeoGebrassa.

Vektoreita GeoGebrassa. Vektoreita GeoGebrassa 1 Miten GeoGebralla piirretään vektoreita? Työvälineet ja syöttökentän komennot Vektoreiden esittäminen GeoGebrassa on luontevaa: vektorien piirtämiseen on kaksi työvälinettä vektoreita

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.

Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta. Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot