KUORMAA KANTAMATTOMAN T-LIITOKSEN GEOMETRIAN VAIKUTUS VÄSYMISKESTOIKÄÄN TEHOLLISEN LOVIJÄNNITYKSEN MENETELMÄLLÄ

Koko: px
Aloita esitys sivulta:

Download "KUORMAA KANTAMATTOMAN T-LIITOKSEN GEOMETRIAN VAIKUTUS VÄSYMISKESTOIKÄÄN TEHOLLISEN LOVIJÄNNITYKSEN MENETELMÄLLÄ"

Transkriptio

1 LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö KUORMAA KANTAMATTOMAN T-LIITOKSEN GEOMETRIAN VAIKUTUS VÄSYMISKESTOIKÄÄN TEHOLLISEN LOVIJÄNNITYKSEN MENETELMÄLLÄ EFFECT OF NON-LOAD CARRYING T-JOINT GEOMETRY ON FATIGUE LIFE USING ENS METHOD Lappeenrannassa Tomi Saarentola Tarkastaja Professori Timo Björk Ohjaaja DI Heli Mettänen

2 TIIVISTELMÄ Lappeenrannan teknillinen yliopisto LUT Energiajärjestelmät LUT Kone Tomi Saarentola Kuormaa kantamattoman T-liitoksen geometrian vaikutus väsymiskestoikään tehollisen lovijännityksen menetelmällä Kandidaatintyö sivua, 32 kuvaa, 6 taulukkoa ja 1 liite Tarkastaja: Professori Timo Björk Ohjaaja: DI Heli Mettänen Hakusanat: FAT, FE-analyysi, ENS Työn tarkoituksena oli analysoida kuormaa kantamatonta T-liitosta erilaisilla geometriavariaatoilla ja tutkia saatuja jännityskonsentraatiokertoimia ja FAT-luokkia. Saatuja tuloksia tullaan hyödyntämään XFAT väsymismitoitustyökalun laajennuksessa. Työn tavoitteena oli näiden taulukoitujen lukujen pohjalta tulkita rakenteen geometristen mittojen ja väsymiskestävyyden suhdetta. Jännityskonsentraatiokertoimet selvitettiin käyttämällä ENS eli tehollisen lovijännityksen menetelmää FE-malleissa. Jokaisessa mallissa muuttui yksi geometrinen mitta tai mittojen välinen suhdeluku kerrallaan. Kaikkia malleja kuormitettiin sekä puhtaalla veto- että taivutuskuormituksella. Kirjallisuuskatsaus keskittyy tehollisen lovijännityksen menetelmään ja jännitysten jakautumiseen kappaleessa. Saadut jännitysjakaumat määritettiin FE-analyysillä hyödyntäen Femap/NX Nastran-ohjelmaa. Jännityskonsentraatiokertoimien ja nimellisten FAT-lukujen taulukoinnissa sekä laskennassa hyödynnettiin taulukkolaskentaa. Kaavioiden avulla löytyi muutamia riippuvuussuhteita, vaikka käytetty otoskoko oli pieni. Hitsin liittymäkulman muutos pienemmästä suurempaan kasvatti väsymiskestoikää. Tämä erottui selkeästi varsinkin isoilla liittymäkulman arvoilla. Toinen merkittävä väsymiskestävyyttä nostava tekijä oli liitoksen t/t-suhde. Ohuella T-liitoksen liitettävällä levyllä ja paksulla peruslevyllä väsymiskestävyys oli korkeimmillaan, laskien liitoksen levyjen suhteen muuttuessa päinvastaiseksi. Kolmas hieman heikompi riippuvuussuhde löytyi tunkeuman vaikutuksesta. Pienellä tunkeumalla saatiin suurempia väsymiskestoikiä, mutta vain tietyllä levyjen koon suhteella.

3 ABSTRACT Lappeenranta University of Technology LUT School of Energy Systems LUT Mechanical Engineering Tomi Saarentola Effect of the T-joint dimensions on weld fatigue life using ens method Bachelor s thesis pages, 32 figures, 6 tables and 1 appendice Examiner: Prof. Timo Björk Supervisor: M. Sc. (Tech.) Heli Mettänen Keywords: ENS, FAT, FE-analysis The meaning of the thesis was to analyze non-load carrying T-joint using different geometrical variations, study the resulting stress concentration factors and FAT classes. Results will be used for XFAT fatigue life designing tool expansion. The objective of the thesis was to analyze these values to find relation between fatigue life and structure geometrical dimensions. Stress concentration factors were figured out using effective notch stress (ENS) method in FE-models. One by one a single geometrical dimension or relation between dimensions was changed in each model. Every model had two load cases, pure tension and bending. Literature review of the thesis was focused on ENS method and for the stress components. Stress concentration factors were calculated using FE-analysis (Finite Element) by using Femap/NX Nastran analysis program. Nominal FAT-values and stress concentration factors were handled and calculated using spreadsheet. The results showed some correlations between the parameters and fatigue life, but the statistics behind analysis was low. Changing the weld connection angle from small to bigger lead to higher fatigue life. This was clearer with big weld connection angle was used. Another significant found which lead to higher fatigue life was about T-joint plate thickness relation t/t. Fatigue life was high with thin non-load carrying plate and thick baseplate. With opposite relation between plate thicknesses, the fatigue life dropped by significant amount. Third found is related to weld penetration depth. Small penetration lead to higher fatigue life, but only on single t/t value. The effect on fatigue life wasn t as strong as with other two results.

4 SISÄLLYSLUETTELO SYMBOLILUETTELO JOHDANTO Työn tausta ja tavoitteet Rajaukset TEHOLLISEN LOVIJÄNNITYKSEN MENETELMÄ FAT-luokat Fillet ja undercut menetelmät FE-MENETELMÄ JA MALLIT Hitsiliitos, parametrit ja nimeäminen FE-mallin verkotus Reunaehdot ja kuormitus TULOKSET TULOSTEN TARKASTELU Liittymäkulma β Levynpaksuuksien suhde t/t Tunkeuma w/t JOHTOPÄÄTÖKSET YHTEENVETO LÄHTEET LIITTEET LIITE I: Hitsausliitokset

5 5 SYMBOLILUETTELO A Profiilin poikkipinnan ala [mm 2 ] a a-mitta [mm] E Youngin moduuli, kimmomoduuli [MPa] F Voima [N] Kf Kt m ND r rref s t T w Lovivaikutusluku Jännityskonsentraatiokerroin SN-käyrien kulmakerroin Kuormituskertojen määrä Rajaviivapyöristys [mm] Rajaviivapyöristys alle 5 mm levyille [mm] Materiaalin kolmiaksiaalisuuskerroin Levyn paksuus [mm] Levyn paksuus [mm] Vajaa tunkeuma [mm] β Hitsin liittymäkulma [ ] v Poissonin kuroumavakio ρ Loven todellinen pyöristyssäde [mm] ρ ρ f σb σ D σ nom σnl σm Materiaalin mikrorakenteellinen pituus [mm] Loven fiktiivinen pyöristyssäde [mm] Taivutusjännitys (bending) [MPa] Lovijännitys [MPa] Nimellinen kalvo- tai taivutusjännitys (nominal) [MPa] Epälineaarinen jännityshuippu (nonlinear) [MPa] Kalvojännitys (membrane) [MPa] ENS FAT FE FEA Effective Notch Stress, tehollinen lovijännitys Väsymiskestävyysluokka (Fatigue class) Finite Element, äärellinen elementti Finite Element Analysis, äärellisen elementin laskentamenetelmä

6 6 IIW SN-käyrä International Institute of Welding Wöhlerin jännitysvaihtelu-kestoikä käyrä

7 7 1 JOHDANTO Väsymisvauriossa rakenteeseen kohdistuu vaihtelevaa kuormitusta. Jännitysvaihtelun ja mahdollisen väsymisvaurion syntymiseen voi vaikuttaa esimerkiksi rakenteen tai hitsin geometria, kuormituksen suunta ja suuruus sekä alkusärökoko. Hitsatuissa rakenteissa väsymisvaurion syynä on usein hitsin aiheuttamat epäjatkuvuuskohdat tai hitsausvirheet, jotka edesauttavat alkusärön muodostumista. Alkusärön ydintymiseen ja särönkasvuun vaikuttaa hitsin huokoisuus, sulkeumat ja hitsattavan perusaineen laatu. Jännitysvaihtelu alkusärön kohdalla voi johtaa särön ydintymisvaiheeseen ja lopulta rakenneosan murtumiseen. (Niemi 2003, s ) Hitsatuissa rakenteissa väsymisen kannalta eräitä kriittisiä paikkoja ovat hitsin rajaviiva sekä hitsin juuri. Edellä mainituissa pisteissä lovijännitykset ovat suurimmillaan. Korkea lovijännitys yhdistettynä vaihtelevaan kuormitukseen voi johtaa ennakoitua alhaisempaan käyttöikään. (Niemi 2003, s. 94.) Tässä kandidaatintyössä tutkitaan hitsatun T-liitoksen lovijännityksiä hitsin rajaviivalla kuvassa 1 esitetyssä kohdassa, hyödyntäen tehollisen lovijännityksen (ENS) menetelmää sekä FE-laskentaa (Finite Element). Väsymiskestoiän ja rakenteen geometrian välistä riippuvuutta tutkitaan muuttamalla rakenteen suhteellisia geometrisia mittoja. Rakenteen kuormitus tapahtuu sekä puhtaana veto- että taivutuskuormituksena. Periaatekuva tutkittavasta T-liitoksen geometriasta on esitetty kuvassa 1. Kuva 1. T-liitoksen geometria. Tutkittava rajaviiva on merkitty kuvassa punaisella.

8 8 1.1 Työn tausta ja tavoitteet Työn tarjoajana toimii Lappeenrannan teknillisen yliopiston Teräsrakenteiden laboratorio. Työn tarkoitus on tuottaa Teräsrakenteiden laboratorion kehittämälle XFAT-ohjelmalle ENS-laajennusta varten tarvittavaa dataa eli FAT-väsymiskestävyysluokka (Fatigue class) arvoja sekä jännityskonsentraatiokertoimia. Nykyisellä XFAT-ohjelmalla on mahdollista laskea hitsausliitosten väsymiskestävyyttä ainoastaan murtumismekaniikan avulla. Tulosten keräämiseen lisäksi työssä tutkitaan rakenteen geometristen mittojen ja väsymiskestävyyden välistä suhdetta. Parametreinä käytetään osien levynpaksuutta, hitsin liittymäkulmaa, sekä tunkeuman ja hitsin a-mitan vaikutusta liitoksen väsymiskestävyyteen. Tutkimusongelmana on rakenteen geometrian mittojen vaikutus liitoksen väsymiskestävyyteen. Tällä hetkellä ei ole tarjolla yleistä laajaa tietoa siitä, kuinka rakenteen suhteelliset mitat ja kuormitustyyppi vaikuttavat liitoksen väsymiskestävyyteen. Tutkimusongelman pohjalta on laadittu seuraavat tutkimuskysymykset, joihin tämän työn avulla pyritään vastaamaan. Kuinka hitsin liittymäkulma vaikuttaa liitoksen rajaviivan väsymiskestävyyteen? Kuinka hitsin a-mitta vaikuttaa liitoksen rajaviivan väsymiskestävyyteen? Kuinka liitoksen levynpaksuudet vaikuttavat liitoksen rajaviivan väsymiskestävyyteen? Kuinka hitsin tunkeuma vaikuttaa liitoksen rajaviivan väsymiskestävyyteen? Tutkimustyö pohjautuu työssä XFAT-ohjelmaan varten taulukoitaviin tuloksiin. Tutkimus toteutetaan vertaamalla saatuja jännityskonsentraatiokertoimia käytettyihin parametreihin. Tavoitteena on löytää yhtäläisyyksiä jännityskonsentraatiokertoimien ja käytettyjen parametrien välillä. 1.2 Rajaukset Työssä tutkittavat hitsit perustuvat Teräsrakenteiden laboratoriolta ennalta saatuihin parametreihin. Työssä tutkitaan vain kuvassa 1 merkittyä hitsin rajaviivaa. Jännityskonsentraatiokertoimet lasketaan jokaisen liitoksen kohdalla tehollisen lovijännityksen menetelmällä hyödyntäen FE-menetelmää. Kaikki elementtimenetelmämallit luodaan samalla tavoin.

9 9 2 TEHOLLISEN LOVIJÄNNITYKSEN MENETELMÄ Tehollisen lovijännityksen menetelmä tutkii hitsiliitoksen väsymiskestävyyttä hitsin juuren tai rajaviivan loveen muodostuneen paikallisen jännityskeskittymän avulla. ENS perustuu materiaalin elastiseen kimmoteoriaan, jossa jännityksillä on lineaarinen suhde venymiin. ENS ei ota huomioon kimmoplastista käyttäytymistä. Kuvassa 2 on esitettynä lovijännityksen muodostuminen eri jännityskomponenteista. Kuva 2. Lovijännitys ja jännityskomponentit. (Hobbacher 2016, s. 14). Muokattu. Rajaviivalla esiintyvä jännitys muodostuu kolmesta jännityskomponentista; kalvojännityksestä σm, taivutusjännityksestä σb, sekä epälineaarisesta jännityksestä σnl. ENS-menetelmässä jännityslukema luetaan fiktiivisen rajaviivan pyöristyksen pohjalta. Fiktiivisen pyöristyksen käyttö hitsausliitoksissa on esitetty kuvassa 3. Kuva 3. Pyöristykset hitsien rajaviivalla ja juuren puolella. (Fricke 2010, s. 2).

10 10 IIW-dokumentissa (International Institute of Welding, lyhennettä käytetään myöhemminkin viitatessa dokumenttiin Hobbacher, 2016) on erikseen mainittu suositukset pyöristyksen säteen pituudelle. Fiktiivisen loven pyöristyssäde ρ f voidaan laskea seuraavasti. ρ f = ρ + s ρ (1) Yhtälön 1 ρ on rajaviivan todellinen pyöristyssäde, s kolmiaksiaalisuuskerroin loven pohjalla ja ρ materiaalin mikrorakenteellinen pituus. Todellista rajaviivapyöristystä kaikille hitseille on vaikea selvittää, joten IIW:n mukaan yleisin ja konservatiivisin tapa on olettaa, että loven todellinen pyöristyssäde ρ = 0. Tällöin fiktiivisen loven pyöristyssäteen määrääviksi tekijöiksi jää materiaaliominaisuudet ja käytetty lujuushypoteesi (Niemi 1996, s. 18.) Kun kyseessä on tasovenymätila terävän loven pohjalla, voidaan olettaa että s = 2,5. Matalalujuusteräksen mikrorakenteelliselle pituudelle voidaan olettaa ρ = 0,4 mm kuvan 4 mukaisesti. (Radaj, Sonsino & Fricke 2006, s. 128) Kuva 4. Materiaalin mikrorakenteesta riippuva kerroin materiaalin myötölujuuden funktiona. (Radaj et al. 2006, s. 127.) IIW:n suosittelemilla arvoilla ρ = 0,4 mm ja s = 2,5 saadaan teholliseksi pyöristyssäteeksi ρ f = 1 mm. Yhden millimetrin pyöristyssädettä pidetään konservatiivisena, mutta siitä on muodostunut referenssipituus ENS-menetelmän hitsin rajaviivan pyöristyssäteeksi. (Fricke 2010, s. 3.)

11 11 Pyöristyssäde riippuu myös kappaleen levyn paksuudesta. IIW:n suositus ρ f = 1 mm on tarkoitettu yli 5 mm paksuisille levyille. Tätä ohuemmille levyille on erikseen kehitetty menetelmä, jossa käytetään pyöristyssäteenä ρ f = 0,05 mm. (Fricke 2010, s. 4.) Loven pohjalla esiintyvä lovijännitys sisältää hitsiliitoksen elastisen jännityskonsentraatiokertoimen K t, jonka arvo yleensä mitataan lovijännityksen yhteydessä hyödyntäen elementtimenetelmää (FEA), mutta on myös laskettavissa analyyttisesti. Jännityskonsentraatiokerrointa käytetään laskettaessa väsymisen jännityskonsentraatiokerroin eri lovivaikutusluku K f. (Radaj et al. 2006, s. 127.) K f = 1 + K t 1 1+ s ρ ρ (2) Yhtälön 2 lovivaikutusluku K f on usein yhtä suuri kuin K t. Yhtälö 2 voidaan supistaa yksinkertaisempaan muotoon, kun ρ f = 1 mm. (Radaj et al. 2006, s. 128.) K fmax = K t (3) Yhtälön 3 mukaan, pyöristyssäteen ollessa 1 mm, lovivaikutusluku ja jännityskonsentraatiokerroin ovat yhtä suuret. Lovijännitys muodostuu lovivaikutusluvusta ja nimellisestä jännityksestä. σ D = K f σ nom (4) Yhtälössä 4 σ D on elementtimallin lovijännitys ja σ nom nimellinen kalvo- tai taivutusjännitys. Hitsiliitoksen kestoikä vakioamplitudiselle nimelliselle jännitysvaihtelulle voidaan laskea pyöristyssäteen lovijännityksen avulla. N D = ( FAT σ D ) m (5)

12 12 Yhtälössä 5 N D on kuormitussyklien määrä, m SN-käyrän (Wöhler-käyrien) kulmakerroin ja FAT-väsymiskestävyysluokka. 2.1 FAT-luokat Väsymisluokkaa kuvaava arvo vastaa mitä väsymislujuuden käyrää tulee käyttää väsymisen selvitykseen. Väsymislujuuden käyrät (SN- tai Wöhler-käyrä) kuvaavat sitä kuormitussyklien määrää, joka lopulta johtaa kappaleen murtumiseen. Tähän liittyen, vakio m kuvaa käyrien kulmakerrointa. Käytettävä kulmakerroin riippuu, onko kuormitus vakiovai vaihtuva-amplitudista: vakioamplitudisella m = 3 ja m = 22, vaihtuva-amplitudisella m = 3 ja m = 5. Jos kuormitus on high-cycle-alueella, kulmakertoimet ovat m = 5 ja m = 22 ja vastaavasti low-cycle-alueella m = 3 ja m = 5. Kuvassa 5 on esitettynä nimellisen jännityksen menetelmän FAT-väsymiskestävyysluokkia esittävät SN-käyrät. (Hobbacher 2016, s. 40.) Kuva 5. Nimellisen jännityksen menetelmän SN-käyrät teräkselle pienillä kuormitusmäärillä. Kuvan pystyakseli kuvaa nimellisen jännitystä ja vaaka-akseli syklien määrää. Käyrät kuvaavat eri FAT väsymiskestävyysluokkia. (Hobbacher 2016, s. 38.) IIW:n SN-käyrien lisäksi myös Eurocode 3:lla on oma nimellisen jännitysvaihtelun väsymislujuuskäyrästö. Käyrästössä on pieniä eroja IIW:n vastaavaan. Käyrien taitekohdat, joissa kulmakerroin m = 3 muuttuu, ovat syklimääriltään eri. IIW:n käyrissä käännekohtana

13 13 on sykliä kun taas Eurocode 3 raja on (SFS EN-ISO , s. 15; Hobbacher 2016, s. 40.) Tehollisen lovijännityksen menetelmälle FAT-luokat eivät määräydy liitostyypin mukaisesti kuten esimerkiksi nimellisen jännityksen menetelmässä, vaan FAT-luokka on kaikille hitsiliitoksille vakio. FAT-luokka riippuu pyöristyssäteestä ρ f, materiaalin perusaineesta ja käytetyistä jännityksistä. Lovijännitys saadaan selville laskemalla maksimipääjännitys tai von Mises vertailujännitys. Taulukossa 1 on esitettynä muutamia ohjeellisia FAT-luokkia eri tehollisen lovijännityksen tapauksille. Taulukko 1. FAT-luokat [MPa] tehollisen lovijännityksen menetelmälle. Arvoihin vaikuttaa rajaviivapyöristyksen ja materiaalin lisäksi von Mises vertailujännityksen (vm) sekä pääjännitysten (PJ) käyttö. (Sonsino et al. 2010, s. 6.) Hypoteesi PJ vm PJ vm Pyöristyssäde ρ f [mm] Teräs [MPa] Alumiini [MPa] Magnesium [MPa] Taulukon 1 FAT-luokkia käytetään hitsiliitoksen väsymiskestävyyden laskemiseen, mutta hitsiliitokselle voidaan luoda myös nimellinen FAT-luokka. ENS menetelmällä kaavan 5 mukaisesti saatu väsymiskestävyys Nd voidaan muuttaa vastaamaan nimellisen jännityksen menetelmän FAT-luokkia kaavalla (Hobbacher 2016, s. 34). m FAT = N D σ nom (6) Yhtälöllä 6 saadaan nimellinen FAT-luokka. Tämän avulla on mahdollista arvioida hitsiliitoksen laatua väsymiskestävyyden näkökulmasta, esimerkiksi vertaamalla laskettua nimellistä FAT-luokkaa listattuihin IIW:n nimellisen jännityksen FAT-luokkiin.

14 Fillet ja undercut menetelmät Lovijännityksen selvitykseen voidaan käyttää kahta erilaista rajaviivan pyöristysmenetelmää. Pyöristys voidaan toteuttaa joko fillet- tai undercut-menetelmällä. Fillet-menetelmässä rajaviiva pyöristetään kuvassa 6 esiintyvän vasemmanpuolisen havaintokuvan mukaisesti. Perusaineen ja hitsin välinen rajaviiva muuttuu yhtenäiseksi ilman epäjatkuvuuskohtia. Tässä tapauksessa kappaleen paksuus rajaviivan kohdalla kasvaa hieman ja loven pohja jää halutun kriittisen pisteen yläpuolelle. Undercut-menetelmässä lovenpohja pakotetaan haluttuun kriittiseen pisteeseen hitsin rajaviivalle. Tällöin hitsin paksuus rajaviivan ympärillä laskee hieman todellisesta. Kuva 6. Fillet- ja undercut-menetelmät. Vaikka fillet-pyöristyksessä lovenpohja jää hieman halutun kriittisen pisteen yläpuolelle, antaa se tutkimusmielessä riittävän tarkan tuloksen. Fillet-menetelmä on tietokonemallinuksen kannalta yksinkertainen ja nopea toteuttaa; mallinnusohjelmissa on suoraan olemassa reunapyöristyskäskyt. Sen sijaan undercut vaatii käsityötä pyöristyksen aikaansaamiseksi. Tässä työssä lovijännitykset lasketaan fillet-menetelmällä. Työssä tietyillä parametreillä hitsit ovat fillet muotoilun jälkeenkin a-mitaltaan vain 0,5 mm kuten kuvassa 7. Työssä ei suoraan tarkastella fillet-menetelmän mahdollisesti aiheuttamaa virhettä. Tuloksia tulkittaessa otetaan kuitenkin huomioon a-mitan vaikutus väsymiskestävyyteen. Kuvasta 7 on nähtävissä, kuinka 1 mm fillet pyöristys kasvattaa a-mittaa ja muuttaa hitsin yleistä muotoa.

15 15 Kuva 7. Hyvin pienikokoisen hitsin takia hitsin a-mitta kasvaa jonkin verran fillet pyöristyksellä. Kuvassa punaisella katkoviivalla on merkitty levyjen reunat ja keltaisella katkoviivalla hitsin todellinen reunaviiva.

16 16 3 FE-MENETELMÄ JA MALLIT Tutkittavista hitsiliitoksista luodaan 2D-mallit. Malleille luodaan elementtiverkko, materiaaliominaisuudet, reunaehdot sekä kuormitus. Kaikki edeltävä suoritetaan Femap v.11,4 ohjelmalla. Laskenta tapahtuu ohjelmaan integroidulla NX Nastran v.11,0- ratkaisijalla. Työ sisältää vain lineaarisia laskentatapauksia. 3.1 Hitsiliitos, parametrit ja nimeäminen Työn malleissa muuttuu yksi parametrien suhde kerrallaan, suhteiden arvot ovat esitettynä taulukossa 2. Työn FE-mallit nimetään parametrien arvojen mukaan taulukon 4 mukaisesti. Muuttujat ja vakiomitat on esitetty kuvassa 8. Vakiomitoille on annettu kuvassa arvo. Kuva 8. Muuttujat ja vakiomitat, esitetty taulukoissa 2 ja 3. Ilmarako 0.02*t ei esiinny kaikissa malleissa. (Lähde XFAT päivitysraportti, muokattu.) Jokaisessa laskettavassa mallissa muuttuu yksi taulukon 2 mitta tai suhdearvo kerrallaan. Mittojen muutos vaikuttaa myös a-mittoihin. Tulokset osiossa taulukoissa 5 ja 6 on erikseen sarake jokaisen mallin a-mitalle.

17 17 Taulukko 2. Mittojen väliset suhdeluvut. Jokaisessa mallissa yksi arvo muuttuu kerrallaan. Parametri Arvot Suhde w/t Suhde t/t Kulma β Laskettavia malleja on taulukon 2 perusteella yhteensä 3 3 = 27 kpl. Mallien periaatekuvat on listattuna liitteessä I. Parametreillä on vaikutus hitsin a-mittaan. a-mitan kokoa sekä suhdetta a/t verrataan saatuihin Kt kertoimiin. Muuttuvien suhdelukujen lisäksi taulukossa 3 on esitettynä vakiona pysyvät mitat. Taulukko 3. Mallien vakiomitat. Vakiomitat Arvo Pohjalevyn paksuus, T 25 mm Viistekulma tunkeuman ja pohjapalkin välillä 50 Hitsin rajaviivan pyöristyssäde, ρ f 1 mm Pohjapalkin ja pystypalkin väliin jäävä ilmarako 0.02*t Malleissa, joissa w/t suhde on nolla eli rakenne on läpihitsattu, ei ole ilmarakoa 0,02*t. Eri parametrien tapaukset on nimetty taulukon 4 esimerkin mukaisesti. Taulukko 4. Esimerkki mallien nimeämisestä. Jokaisen mallin nimestä ilmenee laskennassa käytettyjen muuttujien arvot. Parametrit on esitelty taulukossa 2 ja kuvassa 8. wt00_tt05_b10 Suhde tai kulma Arvo wt00 w/t 0 tt05 t/t 0,5 B10 β FE-mallin verkotus Rajaviivan pyöristysmenetelmänä käytetään fillet-pyöristystä menetelmän yksinkertaisen mallinnuksen takia. Tulosten laadun kannalta oleellista on verkon laatu ja elementtien määrä

18 18 rajaviivan pyöristyksellä ja sen välittömässä läheisyydessä. Elementtien määrää tai niiden laatu muualla mallissa ei ole kriittinen. Elementtien laadun takaamiseksi hitsin rajaviivan pyöristyksen ympärille luodaan kaikkiin malleihin kuvan 9 tapaan apugeometrioita. Apugeometrioiden koko vaihtelee malleittain, mutta elementtien koko rajaviivan pyöristyksellä on vakio, jotta tulosten vertailukelpoisuus voidaan taata. Kuva 9. Apugeometriat hitsin rajaviivan pyöristyksen ympärillä. Elementtien koko pyöristyksen välittömässä läheisyydessä on ρ f /20. Elementteinä käytetään parabolisia 8-solmuisia kuorielementtejä (CQUAD8), joilla on mahdollista päästä lineaarisia 4-solmuisia kuorielementtejä tarkempiin tuloksiin. Lappeenrannan teknillisen yliopiston teräsrakenteiden laboratorio suosittelee akateemisiin tutkimuksiin elementtikooksi hitsin rajaviivan pyöristykselle ρ f /20 (tai 0,05 mm). Käytettävä elementtikoko hitsin rajaviivan pyöristyksellä on tässä tutkimuksessa, 0,01 mm x 0,05 mm, kasvaen hitsistä poispäin kohti 0,05 mm x 0,05 mm. Tyypillinen elementtimallin verkotus on esitettynä kuvassa 10.

19 19 Kuva 10. Rajaviivan verkotus. Elementtikoko on vakio rajaviivalla, mutta kasvaa hitsistä ulospäin siirryttäessä. Elementtien määrä vaihtelee mallien välillä, mutta rajaviivan pyöristyksen elementtikoko pysyy vakiona. Tiuhalla rajaviivan elementtivälityksellä on mahdollista saada tarkkoja tuloksia siitä huolimatta, ettei tuloksia lueta eksaktisti suurimmalta lovijännityskohdalta. Tarkka piste suurimalle lovijännitykselle olisi työlästä selvittää kymmenille eri malleille ja sen vaikutus tuloksiin olisi käytännössä hyvin pieni. Käytettävä elementtiverkkotarkkuus on huomattavasti suurempi kuin IIW:n ohjeen suositeltu elementtikoko r/4 parabolisille kuorielementeille, kuva 11. Kuva 11. IIW:n suositus elementtien minimikoolle ja -määrälle hitsin rajaviivan pyöristyksellä ja juurenpuolen lovella. (Hobbacher 2016, s. 29.)

20 20 Elementtikoko vaikuttaa suurissa tai vaativammissa laskentamalleissa rajusti laskentaaikoihin. Työn mallit ovat laskennallisesti pieniä ja yksinkertaisia, joten elementtien suurella määrällä ei ole merkittävää vaikutusta työn suoritukseen. 3.3 Reunaehdot ja kuormitus Mallien kuormittamattoman pään reuna on jäykästi tuettu, estämällä reunaviivalla olevien solmujen kiertymät ja siirtymät. Kappaleen kuormitettu pää kuormitustapauksesta riippuen on asetettu joko puhtaalle taivutukselle tai vedolle. Kuormitustapaukset ja reunaehto on havainnollistettu kuvassa 12. Kuva 12. Käytetty reunaehto sekä kuormitustapaukset, puhdas veto ja taivutus. Kuormana käytetään nimellistä σ nom = 1 MPa:n kuormitusta, jotta tuloksista voidaan suoraan lukea todellinen lovijännitys sekä väsymisen jännityskonsentraatiokerroin K t. Käytetty voima F = 125 N saadaan kaavasta F = σ nom A, missä vakio A on levyn poikkileikkauksen pinta-ala, 25 mm x 5 mm. Vetotapauksessa 125 N on jaettu tasaisesti koko reunaviivan solmuille. Taivutustapauksessa voima on jaettu kulmasta kulmaan negatiivisesta -125 N:sta lineaarisesti kasvaen +125 N:iin. Massan aiheuttamaa kuormitusta työssä ei huomioida. Työn malleissa käytettävänä materiaalina toimii teräs. Kimmomoduulina käytetään E = MPa ja poissonin vakiona v = 0.3. Työssä ei huomioida materiaalin omaa painoa, joten teräksen tiheys on jätetty huomioimatta.

21 21 Ajan säästämiseksi laskentamalleissa pyritään usein hyödyntämään mallin symmetristä geometriaa esimerkiksi elementtien määrän optimoimiseksi. Työn mallit ovat laskettavissa puolisymmetrisinä hyödyntäessä symmetriareunaehtoa, mutta pienten mallien takia tämä ei tuo ajallisesti merkittävää hyötyä.

22 22 4 TULOKSET Tässä luvussa esitettävät tulokset koskevat ENS-malleja, niistä kerättyjä jännityskonsentraatiokertoimia ja niiden perusteella laskettuja nimellisiä FAT-lukuja. Taulukoitujen arvojen perusteella on haettu korrelaatiota eri parametrien suhteen kuvaajien muodossa. Kuormituksessa käytetty 1 MPa:n nimellinen jännitys sekä pyöristyssäde ρ f = 1 mm helpottavat tulosten lukemista; todelliset lovijännitysarvot ovat suoraan luettavissa jännityskonsentraatiokertoimina K t. Työssä tulokset luetaan elementtien solmupisteiltä tarkkojen arvojen saamiseksi. Kuvissa on esitettynä havainnekuvat lovijännitysjakaumista ja yleiskuvat veto- ja taivutustapausten deformaatioista. Kuva 13. wt05_tt05_b30. Tyypillinen von Mises lovijännitys vetokuormituksessa.

23 23 Kuva 14. wt05_tt05_b30. Vetokuorma, deformaatiokuva, skaalaus 1: Kuva 15. wt00_tt1_b30. Tyypillinen von Mises lovijännitys taivutuskuormituksessa.

24 Kuva 16. wt00_tt1_b30. Taivutuskuorma, deformaatiokuva, skaalaus 1:

25 25 Taulukossa 5 on esitettynä FE-malleista saadut jännityskonsentraatiokertoimet, Kt. Luvut vastaavat samalla lovijännityksiä, sillä nimellisenä jännityksenä on käytetty 1 MPa. Taulukko 5. Jännityskonsentraatiokertoimet laskettuna veto- ja taivutuskuormille pääjännityksellä sekä von Mises vertailujännityksellä. Kt-Kertoimet Vetokuormitus Taivutuskuormitus # w/t t/t β a a/t PJ vm PJ vm [-] [-] [ ] [mm] [-] [-] [-] [-] [-] ,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,5 0,5 0, ,5 0,5 0, ,5 0,5 0, ,4 3,7 6,5 2,6 7,4 12,9 5,2 14,9 25,8 0,5 3,7 6,5 2,6 7,4 12,9 5,2 14,9 25,8 0,5 1,0 1,3 0,7 1,5 2,6 1,1 3,0 5,2 0,11 0,30 0,52 0,10 0,30 0,52 0,10 0,30 0,52 0,04 0,30 0,52 0,10 0,30 0,52 0,10 0,30 0,52 0,04 0,08 0,10 0,03 0,06 0,10 0,02 0,06 0,10 2,355 2,494 2,343 2,590 2,636 2,347 2,592 2,620 2,348 2,275 2,292 2,207 2,556 2,580 2,350 2,605 2,619 2,351 2,280 2,281 2,200 2,612 2,620 2,367 2,739 2,702 2,364 2,353 2,492 2,341 2,588 2,634 2,344 2,589 2,619 2,346 2,274 2,290 2,205 2,554 2,578 2,348 2,602 2,617 2,348 2,279 2,279 2,198 2,610 2,618 2,364 2,737 2,700 2,362 2,544 2,750 2,488 3,051 3,123 2,496 3,317 3,189 2,493 2,409 2,434 2,296 2,918 2,937 2,351 3,357 3,251 2,523 2,384 2,397 2,278 2,896 2,925 2,520 3,464 3,374 2,574 2,542 2,748 2,486 3,049 3,121 2,344 3,315 3,188 2,490 2,408 2,432 2,295 2,916 2,934 2,509 3,355 3,249 2,521 2,382 2,395 2,276 2,894 2,923 2,518 3,462 3,372 2,572

26 26 Kt kertoimet on käännetty nimellisiksi FAT-luokiksi kaavojen 5 ja 6 avulla. Kuva 17 esittää kuinka lovijännitykset on käännetty nimellisiksi FAT-luokiksi. Nimelliset FATväsymiskestävyysluokat ovat esitettynä taulukossa 6. Kuva 17. Lovijännitysten muunto nimellisiksi FAT-luokiksi. FE-kuvista saatavan lovijännityksen ja ENS FAT-luokan avulla lasketaan ensiksi syklit. Syklien ja nimellisen jännityksen avulla on mahdollista selvittää nimellinen FAT-luokka. Taulukko 6. Nimelliset FAT-luokat laskettuna veto- ja taivutuskuormille pääjännityksellä ja von Mises hypoteesilla sekä parametrit jokaiselle kuormitustapaukselle.

27 27 Taulukko 6 jatkuu. Nimelliset FAT-luokat laskettuna veto- ja taivutuskuormille pääjännityksellä ja von Mises hypoteesilla sekä parametrit jokaiselle kuormitustapaukselle.

28 28 5 TULOSTEN TARKASTELU Tutkimuskysymyksiin pyritään vastaamaan kuvaajien kautta. Kuvaajien avulla pyritään löytämään korrelaatiota Kt-kertoimien ja parametrien välillä. Parametrit ja niillä lasketut Ktkertoimet on esitetty taulukossa 5. Tarkastelut on jaettu karkeasti kahteen osaa; taivutus- ja vetokuormitus. Näiden alla tarkastelut on jaettu vielä 9-osaan, joissa aina kahden eri parametrin vaikutusta verrataan Ktkertoimeen. 5.1 Liittymäkulma β Kuvissa on esitettynä tulokset veto- ja taivutuskuormituksille t/t ja w/t parametreilla, liittymäkulman β pysyessä vakiona. Kuvaajien perusteella selkeimmät korrelaatiot Ktkertoimen ja parametrien välillä löytyvät taivutuskuormituksista kuvista 19 ja 20. Varsinkin taivutustapauksissa T-liitoksen levyjen paksuuksien suhde t/t ja hitsin pienen liittymäkulman arvo vaikuttavat voimakkaasti Kt-kertoimen suuruuteen. Pieni β = 10 liittymäkulman arvo tarkoittaa, että hitsin ja peruslevyn välinen kulma on jyrkkä. Suurella kulmalla β = 60 peruslevyn ja hitsin välinen kulma on jouheva, kuten kuvassa 18 on esitettynä. Kuva 18. β vaikutus liittymäkulman jouhevuuteen. Yleisesti alhaisimmat Kt-arvot ovat t/t = 0,5 ja korkeimmat Kt-arvot t/t = 2 tapauksissa. Korrelaatio vaikuttaa jyrkemmän kulmakertoimen takia vahvemmalta taivutuskuormitus tapauksissa. Taivutuskuormituksen ääritapaukset Kt-kertoimelle ovat kuvassa 19, jossa

29 29 liittymäkulma β = 10 on vakio. Alimmillaan Kt = 2,384, kun t/t = 0,5 ja korkeimmillaan Kt = 3,464, kun t/t = 2. 3,64 Taivutus, B10 vakio 3,45 3,26 K t 3,07 2,88 2,69 2,5 wt08 wt05 wt00 2,31 2,12 tt05 tt1 tt2 Kuva 19. Taivutuskuormitus, β = 10 vakio. t/t vaikuttaa voimakkaasti Kt-kertoimeen. 3,64 Taivutus, B30 vakio 3,45 3,26 K t 3,07 2,88 2,69 2,5 wt08 wt05 wt00 2,31 2,12 tt05 tt1 tt2 Kuva 20. Taivutuskuormitus, β = 30 vakio. t/t vaikuttaa voimakkaasti Kt-kertoimeen. Selkeä parametrien vaikutus Kt-kertoimeen häviää, kun liittymäkulma muuttuu jouhevaksi. Tämä ilmenee sekä taivutus- että vetokuormituksissa kuvissa 21 ja 24.

30 30 K t 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 Taivutus, B60 vakio tt05 tt1 tt2 wt08 wt05 wt00 Kuva 21. Taivutuskuormitus, β = 60 vakio. Levyjen paksuuksien suhde t/t ei enää vaikuta selkeästi Kt-kertoimeen, kuten jyrkemmillä liittymäkulman arvoille. K t 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 Veto, B10 vakio tt05 tt1 tt2 wt08 wt05 wt00 Kuva 22. Vetokuormitus, β = 10 vakio. t/t vaikuttaa selkeästi Kt-kertoimeen. K t 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 Veto, B30 vakio tt05 tt1 tt2 wt08 wt05 wt00 Kuva 23. Vetokuormitus, β = 30 vakio. t/t vaikuttaa selkeästi Kt-kertoimeen.

31 31 K t Veto, B60 vakio 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 tt05 tt1 tt2 wt00 wt08 wt05 Kuva 24. Vetokuormitus, β = 60 vakio. Levyjen paksuuksien suhde t/t ei enää vaikuta selkeästi Kt-kertoimeen, kuten jyrkemmillä liittymäkulman arvoille. 5.2 Levynpaksuuksien suhde t/t Kuvissa on esitettynä tulokset veto- ja taivutuskuormituksille w/t ja β parametreilla, t/t pysyessä vakiona. Kuvaajien perusteella selkeimmät korrelaatiot Kt-kertoimen ja parametrien välillä löytyvät taivutuskuormituksesta kuvasta 25, mutta myös vetokuormitustapauksessa kuvassa 28 on havaittavissa samaa, joskin heikompaa, korrelaatiota. Kuvat 25 ja 28 tuovat ilmi, että t/t = 0,5 tapauksissa tunkeumalla on merkitystä. Mitä pienempi tunkeuma sen pienempi Kt-kerroin. Selvää riippuvuussuhdetta ei ollut enää havaittavissa t/t = 1 tapauksessa. t/t = 2 tapauksessa tulokset vaikuttavat lievästi vastakkaisilta t/t = 0,5 tuloksiin verrattuna. t/t = 2 tapauksessa Kt lievästi kasvoi tunkeuman muuttuessa läpihitsatusta w/t = 0:sta w/t = 0,8:aan. Kaikista kuvaajista on havaittavissa, että Kt-kerroin on aina alhaisin kun liittymäkulma on jouheva, β = 60. Ero jyrkkään liittymäkulmaan kasvaa ja on aina suurimmillaan kaavioissa, joissa t/t = 2, kuvat 27 ja 30.

32 32 K t 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 Taivutus, tt05 vakio wt00 wt05 wt08 B10 B30 B60 Kuva 25. Taivutuskuormitus, t/t = 0,5 vakio. Tunkeuman pienentyessä myös Kt-kerroin pienenee. K t 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 Taivutus, tt1 vakio B10 B30 B60 wt00 wt05 wt08 Kuva 26. Taivutuskuormitus, t/t = 1 vakio. Tunkeuman ja Kt-kertoimen välillä ei ole selkeää korrelaatiota. β = 60 tulokset eroavat selkeästi kahden muun liittymäkulman tuloksista. K t 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 Taivutus, tt2 vakio B10 B30 B60 wt00 wt05 wt08 Kuva 27. Taivutuskuormitus, t/t = 2 vakio. Tunkeuman pienentyminen kasvattaa Ktkerrointa, mutta vaikutus on lievä. β = 60 ero kahden muun liittymäkulman tuloksiin on suuri.

33 33 K t 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 Veto, tt05 vakio B10 B30 B60 wt00 wt05 wt08 Kuva 28. Vetokuormitus, t/t = 0,5 vakio. Tunkeuman pienentyessä myös Kt-kerroin pienenee. K t 3,64 3,45 3,26 3,07 2,88 2,69 2,5 2,31 2,12 Veto, tt1 vakio wt00 wt05 wt08 B10 B30 B60 Kuva 29. Vetokuormitus, t/t = 1 vakio. Tunkeuman ja Kt-kertoimen välillä ei ole selkeää korrelaatiota. β = 60 tulokset eroavat kahden muun liittymäkulman tuloksista. 3,64 3,45 Veto, tt2 vakio 3,26 K t 3,07 2,88 2,69 2,5 B10 B30 B60 2,31 2,12 wt00 wt05 wt08 Kuva 30. Vetokuormitus, t/t = 2 vakio. Tunkeuman pienentyminen kasvattaa Kt-kerrointa, mutta vaikutus on lievä. β = 60 tulokset eroavat kahden muun liittymäkulman tuloksista.

34 Tunkeuma w/t Kuvissa 31 ja 32 on esitettynä tulokset veto- ja taivutuskuormituksille t/t ja β parametreilla. Kuvaajissa on kaikki mukana kaikki kolme tunkeuman w/t parametriä. Kuvaajien perusteella selkeä korrelaatio Kt-kertoimen ja parametrien välillä löytyy jyrkän ja jouhevan liittymäkulman erosta. Kummassakin kuormitustapauksessa Kt-kerroin laskee selvästi, kun hitsin liittymäkulma β muuttuu melko jyrkästä 30 :stä jouhevaan 60. Kummastakin kuvasta 31 ja 32 selviää myös t/t vaikutus Kt-kertoimeen; Kt-kerroin on keskimäärin korkein t/t = 0,5 ja alhaisin t/t = 2 tapauksissa. 3,64 Taivutus K t 3,45 3,26 3,07 2,88 2,69 2,5 2,31 tt05 tt1 tt2 tt05 tt1 tt2 tt05 tt1 tt2 2,12 B10 B30 B60 Kuva 31. Taivutuskuormitus, käyrät kaikkiin tunkeuman w/t-tapauksiin. Kaaviossa mustalla on merkitty läpihitsattu tapaus w/t = 0, punaisella w/t = 0,5 ja sinisellä w/t = 0,8. β = 60 vaikuttaa voimakkaasti tuloksiin riippumatta tunkeumasta tai levyjenpaksuudesta.

35 35 3,64 Veto K t 3,45 3,26 3,07 2,88 2,69 2,5 2,31 tt05 tt1 tt2 tt05 tt1 tt2 tt05 tt1 tt2 2,12 B10 B30 B60 Kuva 32. Vetokuormitus, käyrät kaikkiin w/t-tapauksiin. Kaaviossa mustalla on merkitty läpihitsattu tapaus w/t = 0, punaisella w/t = 0,5 ja sinisellä w/t = 0,8. β = 60 vaikuttaa voimakkaasti tuloksiin riippumatta tunkeumasta tai levyjenpaksuudesta.

36 36 6 JOHTOPÄÄTÖKSET Tulosten tarkastelussa löytyi muutamia tapauksia joissa parametrien ja Kt-kertoimen välillä oli jonkinasteista korrelaatiota. Selkeimmin korrelaatiot ilmenivät aina taivutuskuormituksissa ja hieman heikommin, mutta saman kaltaisesti, vetokuormituksissa. Tulosten tarkastelu ja johtopäätökset keskittyvät Kt-kertoimeen, mutta mitä suurempi jännityskonsentraatiokerroin Kt, sen pienempi nimellinen FAT-luokka ja näin ollen pienempi liitoksen väsymiskestävyys. t/t ja β vaikuttavat voimakkaasti Kt-kertoimen suuruuteen. Yleisesti alhaisimmat Kt-arvot ovat t/t = 0,5 ja korkeimmat Kt-arvot t/t = 2 tapauksissa. T-liitoksen levyjen t/t-suhdetta muuttamalla Kt-kerroin kasvoi parhaimmillaan taivutuskuormitustapauksessa yli 45 %, kuva 19. Vetokuormitustapauksessa vaikutus ei ollut yhtä suuri, Kt-arvo muuttui maksimissaan 20 %. t/t-suhdetta muuttaessa jyrkkien liittymäkulmien β = 10 ja 30 välillä ei ollut suurta eroa tuloksissa. Kt-kerroin kasvoi 45 %, kun β = 10 ja 41 %, kun β = 30. Jouheva hitsin liittymäkulma β = 60 oli kaikissa kaavioissa dominoiva. Tulosten perusteella vaikuttaa, että muilla parametreillä ei ole suurta merkitystä tuloksiin, jos hitsin liittymäkulma on tarpeeksi jouheva, esimerkkinä kuva 31. Kyseisellä kulmalla suurin taivutuksen Kt = 2,574. Arvo on alhainen, sillä merkittävä osa taivutuksen jännityskonsentraatiokertoimista Kt > 3. Jouhevalla liittymäkulmalla Kt on kaikissa tapauksissa pienempi kuin jyrkällä liittymäkulmalla ja muutoin vastaavilla parametreilla. Tutkittaessa liittymäkulman vaikutusta Kt-kertoimeen, tulee myös huomioida a-mitan ja liitettävän levyn paksuuden välinen suhde a/t. Suhde on aina selkeästi suurin, kun β = 60 ja pienin kun β = 10. Kuitenkin, taulukon 6 mukaan riveillä 21, 24 ja 27 a/t = 0.1 kun β = 60. Arvo on samaa luokkaa a/t:lle suurimmassa osaa tapauksissa, kun β = 10 ja β = 30. Näin ollen a/t:lla ei voi olla merkittävää yhteyttä alhaiseen Kt-kertoimeen, kun β = 60. Liittymäkulman β = 60 tuloksilla on muihin tuloksiin verrattuna myös pieni hajonta, esimerkiksi taivutuksella kyseisellä vakiokulmalla Kt = 2,28 2,57 kun taivutuksen koko vaihteluväli Kt = 2,28 3,46.

37 37 Kuvaajista pystyi myös päättelemään, että tunkeumalla on merkitystä; mitä pienempi tunkeuma, sen pienempi Kt-kerroin. Korrelaatio ilmeni vain t/t = 0,5 tapauksissa. Kyse ei ole kovin vahvasta riippuvuussuhteesta, Kt-kerroin pieneni parhaimmillaan 15 % tunkeuman muuttuessa läpihitsatusta w/t = 0:sta w/t = 0,8:aan. Riippuvuussuhde vaikutti häviävän jo t/t = 1 tapauksessa. t/t = 2 tapauksessa sen sijaan Kt-kerroin kasvoi 6 % tunkeuman muuttuessa läpihitsatusta w/t = 0:sta w/t = 0,8:aan. Pienen otannan takia on vaikea arvioida, voidaanko tämä lukea jo luonnollisen hajonnan piikkiin. Tuloksista ei löytynyt selvää korrelaatiota Kt-kertoimen ja hitsin a-mitan tai a/t-suhteen väliltä. Nyt tehtyjen tulkintojen varmistamiseksi työtä tulisi laajentaa. Muuttuville parametreille tulisi keksiä lisää testattavia arvoja, esimerkiksi liittymäkulman tapauksessa β = 45 ja 70. Nyt ero jyrkän ja jouhevan hitsin liitoskulman välillä oli suuri. Lisäksi muuttuvien parametrien määrää voisi lisätä ainakin yhdellä, muuttuvalla pyöristyssäteellä. Nyt käytetty 1 mm pyöristyssäde muutti muutamien mallien hitsin muotoa ja a-mittaa oleellisesti, eikä näiden mallien tuloskelpoisuudesta ole sen vuoksi täyttä varmuutta. Suuremmalla otannalla tehtyjä tuloksia tulisi myös analysoida tilastollisen merkitsevyyden keinoin.

38 38 7 YHTEENVETO Työssä saatiin tulokset XFAT-ohjelmalle T-liitoksen hitsin rajaviivan nimellisistä FATluokista ja jännityskonsentraatiokertoimista. Työssä pyrittiin lisäksi vastaamaan neljään tutkimuskysymykseen tulosten perusteella: Kuinka hitsin liittymäkulma vaikuttaa liitoksen rajaviivan väsymiskestävyyteen? Kuinka hitsin a-mitta vaikuttaa liitoksen rajaviivan väsymiskestävyyteen? Kuinka liitoksen levynpaksuudet vaikuttavat liitoksen rajaviivan väsymiskestävyyteen? Kuinka hitsin tunkeuma vaikuttaa liitoksen rajaviivan väsymiskestävyyteen? Mitä suurempi jännityskonsentraatiokerroin, sen pienempi nimellinen FAT-luokka ja näin ollen pienempi väsymiskestävyys. Liittymäkulman β muutos jyrkästä jouhevaan suurensi väsymiskestävyyttä. Selkein korrelaatio väsymiskestävyyden ja parametrien välillä oli liittymäkulmalla β = 60. Kun β muutettiin arvosta 10 tai 30 arvoon 60, väsymiskestävyys kasvoi selkeästi. Levyjenpaksuuksilla oli selkeä merkitys väsymiskestävyyteen, mitä pienempi t/t-suhde, sen suurempi väsymiskestävyys. Ero oli merkittävin taivutustapauksissa, kun β 30. Tunkeumalla oli havaittava vaikutus väsymiskestävyyteen vain, kun t/t = 0,5. Tällöin pienellä tunkeumalla w/t = 0,8 saatiin suurin rajaviivan väsymiskestävyys. Pienin rajaviivan väsymiskestävyys oli läpi hitsatussa tilanteessa w/t = 0. Tuloksista tai kaavioista ei löytynyt selvää riippuvuussuhdetta hitsin a-mitan ja väsymiskestävyyden väliltä.

39 39 LÄHTEET Fricke, W IIW Recommendations for the Fatigue Assessment by Notch Stress Analysis for Welded Structures. Cambridge: Woodhead Publishing Limited. 36 s. Hobbacher, A. F Recommendations for Fatigue Design of Welded Joints and Components. 2. Painos. Switzerland: Springer International Publishing. 158 s. Niemi, E Hitsattujen rakenteiden väsymistarkastelussa käytettävät jännitykset. Tekninen tiedotus 3/96. Tampere: Tammer-Paino. 45 s. Niemi, E Levyrakenteiden suunnittelu. Tekninen tiedotus 2/2003. Helsinki: Teknologiateollisuus. 136 s. Radaj, D., Sonsino, C.M. & Fricke, W Fatigue assessment of welded joints by local approaches. 2. Painos. Cambridge: Woodhead Publishing Limited. 639 s. SFS EN-ISO Eurocode 3: Teräsrakenteiden suunnittelu. Osa 1-9: Väsyminen Helsinki: Suomen Standardisoimisliitto SFS. 41 s. Vahvistettu ja julkaistu suomenkielisenä Korjattu Sonsino, C. M., Fricke, W., de Bruyne, F., Hoppe. A., Ahmadi, A. & Zhang, G Notch stress concepts for the fatigue assessment of welded joints Background and applications. International Journal of Fatigue, 34: 1. s 16.

40 Lasketut hitsausliitokset w/t = 0.8 tilanteille Liite I Lasketut hitsausliitokset w/t = 0.5 tilanteille

41 Lasketut hitsausliitokset w/t = 0 tilanteille Liite I (2)

ELEMENTTIKOON VAIKUTUS VÄSYMISMENETELMIEN TARKKUUTEEN THE EFFECT OF MESH SIZING TO THE CONVERGENCE OF FATIGUE STRENGTH METHODS

ELEMENTTIKOON VAIKUTUS VÄSYMISMENETELMIEN TARKKUUTEEN THE EFFECT OF MESH SIZING TO THE CONVERGENCE OF FATIGUE STRENGTH METHODS LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT Energiajärjestelmät LUT Kone BK10A0401 Kandidaatintyö ja seminaari ELEMENTTIKOON VAIKUTUS VÄSYMISMENETELMIEN TARKKUUTEEN THE EFFECT OF MESH SIZING TO THE CONVERGENCE

Lisätiedot

Vastaanotettu Hyväksytty Julkaistu verkossa

Vastaanotettu Hyväksytty Julkaistu verkossa Rakenteiden Mekaniikka Vol. 50, Nro 3, 2017, s. 153-157 https://rakenteidenmekaniikka.journal.fi/index https://doi.org/10.23998/rm.23998/rm.65049 Kirjoittaja(t) 2017. Vapaasti saatavilla CC BY-SA 4.0 lisensioitu.

Lisätiedot

HITSATUN LIITOKSEN VÄSYMISKESTÄVYYDEN MÄÄRITTÄMINEN SÄRÖN KASVUN SIMULOINNILLA

HITSATUN LIITOKSEN VÄSYMISKESTÄVYYDEN MÄÄRITTÄMINEN SÄRÖN KASVUN SIMULOINNILLA LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Metalli Teräsrakenteiden laboratorio BK10A0400 Kandidaatintyö ja seminaari HITSATUN LIITOKSEN VÄSYMISKESTÄVYYDEN MÄÄRITTÄMINEN SÄRÖN KASVUN

Lisätiedot

RIVAN KÄRJEN MUOTOILUSUOSITUSTEN VERTAILU HOT SPOT JA TEHOLLISEN LOVIJÄNNITYKSEN MENETELMILLÄ

RIVAN KÄRJEN MUOTOILUSUOSITUSTEN VERTAILU HOT SPOT JA TEHOLLISEN LOVIJÄNNITYKSEN MENETELMILLÄ LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö RIVAN KÄRJEN MUOTOILUSUOSITUSTEN VERTAILU HOT SPOT JA TEHOLLISEN LOVIJÄNNITYKSEN MENETELMILLÄ A COMPARISON

Lisätiedot

LIITOKSEN SYMMETRISYYDEN VAIKUTUS LOVIJÄNNITYKSEEN HITSIN RA- JAVIIVALLA THE EFFECT OF SYMMETRY ON NOTCH STRESS AT WELD TOE

LIITOKSEN SYMMETRISYYDEN VAIKUTUS LOVIJÄNNITYKSEEN HITSIN RA- JAVIIVALLA THE EFFECT OF SYMMETRY ON NOTCH STRESS AT WELD TOE LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0400 Kandidaatintyö ja seminaari LIITOKSEN SYMMETRISYYDEN VAIKUTUS LOVIJÄNNITYKSEEN HITSIN RA- JAVIIVALLA THE EFFECT OF SYMMETRY

Lisätiedot

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)! LUT-Kone Timo Björk BK80A2202 Teräsrakenteet I: 17.12.2015 Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Lisätiedot

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)! LUT-Kone Timo Björk BK80A2202 Teräsrakenteet I: 31.3.2016 Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö KAKSIPUOLEISEN PITKITTÄISEN RIVAN PORRASTUKSEN VAIKUTUS JÄNNITYSKONSENTRAATIOIHIN EFFECT OF TWO-SIDED

Lisätiedot

RAKENTEELLISEN JÄNNITYKSEN MÄÄRITTÄMINEN TEHOLLISEN LOVIJÄNNITYKSEN MALLISTA DETERMINATION OF HOT SPOT STRESS FROM ENS MODEL

RAKENTEELLISEN JÄNNITYKSEN MÄÄRITTÄMINEN TEHOLLISEN LOVIJÄNNITYKSEN MALLISTA DETERMINATION OF HOT SPOT STRESS FROM ENS MODEL LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö RAKENTEELLISEN JÄNNITYKSEN MÄÄRITTÄMINEN TEHOLLISEN LOVIJÄNNITYKSEN MALLISTA DETERMINATION OF HOT SPOT

Lisätiedot

RIVAN KÄRJEN JÄNNITYSKOMPONENTIT STRESS COMPONENTS OF GUSSET S TIP

RIVAN KÄRJEN JÄNNITYSKOMPONENTIT STRESS COMPONENTS OF GUSSET S TIP LAPPEENRANNNAN TEKNILLLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari RIVAN KÄRJEN JÄNNITYSKOMPONENTIT STRESS COMPONENTS OF GUSSET S TIP Lappeenrannassa

Lisätiedot

Hitsaustekniikkaa suunnittelijoille koulutuspäivä Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm

Hitsaustekniikkaa suunnittelijoille koulutuspäivä Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm Hitsaustekniikkaa suunnittelijoille koulutuspäivä 27.9.2005 Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm HITSAUKSEN KÄYTTÖALOJA Kehärakenteet: Ristikot, Säiliöt, Paineastiat, Koneenrungot,

Lisätiedot

Ultralujien terästen hitsausliitosten väsymislujuus

Ultralujien terästen hitsausliitosten väsymislujuus Ultralujien terästen hitsausliitosten väsymislujuus Timo Björk Lappeenrannan teknillinen yliopisto LUT Kone Teräsrakenteiden laboratorio Johdanto Hitsauksen laatu??? - Rakenteen lopullinen käyttötarkoitus

Lisätiedot

NOTCHIKOLOLIITOSTEN FE-ANALYYSIT FE-ANALYSIS OF NOTCH JOINTS

NOTCHIKOLOLIITOSTEN FE-ANALYYSIT FE-ANALYSIS OF NOTCH JOINTS LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari NOTCHIKOLOLIITOSTEN FE-ANALYYSIT FE-ANALYSIS OF NOTCH JOINTS Lappeenrannassa

Lisätiedot

LEVYJÄYKISTEEN PÄÄN KÄÄNTÄMISEN VAIKUTUS JÄNNITYSKONSENT- RAATIOIHIN EFFECT OF INCLINING LONGITUDINAL GUSSET S TIP ON STRESS CONCEN- TRATIONS

LEVYJÄYKISTEEN PÄÄN KÄÄNTÄMISEN VAIKUTUS JÄNNITYSKONSENT- RAATIOIHIN EFFECT OF INCLINING LONGITUDINAL GUSSET S TIP ON STRESS CONCEN- TRATIONS LAPPEENRANNAN TEKNILINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö LEVYJÄYKISTEEN PÄÄN KÄÄNTÄMISEN VAIKUTUS JÄNNITYSKONSENT- RAATIOIHIN EFFECT OF INCLINING LONGITUDINAL GUSSET

Lisätiedot

HITSILIITOSTEN VÄSYMISTARKASTELU ERI MENETELMILLÄ FATIGUE ANALYSIS OF WELDED JOINTS WITH DIFFERENT METHODS

HITSILIITOSTEN VÄSYMISTARKASTELU ERI MENETELMILLÄ FATIGUE ANALYSIS OF WELDED JOINTS WITH DIFFERENT METHODS LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö ja seminaari HITSILIITOSTEN VÄSYMISTARKASTELU ERI MENETELMILLÄ FATIGUE ANALYSIS OF WELDED JOINTS WITH

Lisätiedot

Vauriomekanismi: Väsyminen

Vauriomekanismi: Väsyminen Vauriomekanismi: Väsyminen Väsyminen Väsyminen on vaihtelevan kuormituksen aiheuttamaa vähittäistä vaurioitumista. Erään arvion mukaan 90% vaurioista on väsymisen aiheuttamaa. Väsymisikää voidaan kuvata

Lisätiedot

TEHOLLISEN LOVIJÄNNITYKSEN MENETELMÄN KÄYTETTÄVYYS ULTRALUJIEN TERÄSTEN KORKEALAATUISTEN HITSIEN VÄSYMISMITOITUKSESSA

TEHOLLISEN LOVIJÄNNITYKSEN MENETELMÄN KÄYTETTÄVYYS ULTRALUJIEN TERÄSTEN KORKEALAATUISTEN HITSIEN VÄSYMISMITOITUKSESSA LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Kone Olli Assinen TEHOLLISEN LOVIJÄNNITYKSEN MENETELMÄN KÄYTETTÄVYYS ULTRALUJIEN TERÄSTEN KORKEALAATUISTEN HITSIEN VÄSYMISMITOITUKSESSA Työn

Lisätiedot

Valkonen, Ilkka; Valkonen, Antti Tuotantokäyttöön soveltuva edullinen menetelmä hitsin juuren puolen väsymiseliniän arvioimiseksi

Valkonen, Ilkka; Valkonen, Antti Tuotantokäyttöön soveltuva edullinen menetelmä hitsin juuren puolen väsymiseliniän arvioimiseksi Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Valkonen, Ilkka; Valkonen, Antti

Lisätiedot

Väsymissärön ydintyminen

Väsymissärön ydintyminen Väsymissärön ydintyminen 20.11.2015 1 Vaurio alkaa särön muodostumisella Extruusio Intruusio Deformoitumaton matriisi S-N käyrät Testattu sauvan katkeamiseen Kuvaavat aikaa "engineering särön muodostumiseen"

Lisätiedot

Pienahitsien materiaalikerroin w

Pienahitsien materiaalikerroin w Pienahitsien materiaalikerroin w Pienahitsien komponenttimenettely (SFS EN 1993-1-8) Seuraavat ehdot pitää toteutua: 3( ) ll fu w M ja 0,9 f u M f u = heikomman liitettävän osan vetomurtolujuus Esimerkki

Lisätiedot

TkL. Matti Koskimäki

TkL. Matti Koskimäki LAPPEENRANNNAN TEKNILLLINEN YLIOPISTO Teknillinen tiedekunta Teräsrakenteiden laboratorio Konetekniikan koulutusohjelma Antti Raskinen DIGITAALISEN VALMISTUKSEN VAIKUTUS HITSATUN RAKENTEEN VÄSYMISKESTÄVYYTEEN

Lisätiedot

Hitsattavien teräsrakenteiden muotoilu

Hitsattavien teräsrakenteiden muotoilu Hitsattavien teräsrakenteiden muotoilu Kohtisuoraan tasoaan vasten levy ei kanna minkäänlaista kuormaa. Tässä suunnassa se on myös äärettömän joustava verrattuna jäykkyyteen tasonsa suunnassa. Levyn taivutus

Lisätiedot

VÄSYMISMITOITUS Pasila. Antti Silvennoinen, WSP Finland

VÄSYMISMITOITUS Pasila. Antti Silvennoinen, WSP Finland TIESILTOJEN VÄSYMISMITOITUS Siltaeurokoodikoulutus- Teräs-, liitto- ja puusillat 29.-30.3.2010 Pasila Antti Silvennoinen, WSP Finland TIESILTOJEN VÄSYMISMITOITUS Väsymisilmiö Materiaaliosavarmuuskertoimet

Lisätiedot

HOT SPOT MENETELMÄN KÄYTTÖ SILTANOSTURIN PÄÄDYN VÄSYMISMITOITUKSESSA BRIDGE CRANE END FATIGUE ANALYSIS BASED ON THE HOT SPOT STRESSES

HOT SPOT MENETELMÄN KÄYTTÖ SILTANOSTURIN PÄÄDYN VÄSYMISMITOITUKSESSA BRIDGE CRANE END FATIGUE ANALYSIS BASED ON THE HOT SPOT STRESSES LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari HOT SPOT MENETELMÄN KÄYTTÖ SILTANOSTURIN PÄÄDYN VÄSYMISMITOITUKSESSA BRIDGE

Lisätiedot

Stalatube Oy. P u t k i k a n n a k k e e n m a s s o j e n v e r t a i l u. Laskentaraportti

Stalatube Oy. P u t k i k a n n a k k e e n m a s s o j e n v e r t a i l u. Laskentaraportti P u t k i k a n n a k k e e n m a s s o j e n v e r t a i l u Laskentaraportti 8.6.2017 2 (12) SISÄLLYSLUETTELO 1 EN 1.4404 putkikannakkeen kapasiteetti... 4 1.1 Geometria ja materiaalit... 4 1.2 Verkotus...

Lisätiedot

3R-menetelmän käyttö vaihtuva-amplitudisesti kuormitettujen hitsausliitosten väsymisanalysoinnissa

3R-menetelmän käyttö vaihtuva-amplitudisesti kuormitettujen hitsausliitosten väsymisanalysoinnissa Rakenteiden Mekaniikka Vol. 49, Nro 4, 2016, s. 176-201 rmseura.tkk.fi/rmlehti/ Kirjoittajat 2016. Vapaasti saatavilla CC BY-SA 4.0 lisensioitu. 3R-menetelmän käyttö vaihtuva-amplitudisesti kuormitettujen

Lisätiedot

KUPARISAUVOJEN KOVUUS-, VETO-, JA VÄSYTYSKOKEET ANU VÄISÄNEN, JARMO MÄKIKANGAS, MARKKU KESKITALO, JARI OJALA

KUPARISAUVOJEN KOVUUS-, VETO-, JA VÄSYTYSKOKEET ANU VÄISÄNEN, JARMO MÄKIKANGAS, MARKKU KESKITALO, JARI OJALA KUPARISAUVOJEN KOVUUS-, VETO-, JA VÄSYTYSKOKEET 18.12.2008 ANU VÄISÄNEN, JARMO MÄKIKANGAS, MARKKU KESKITALO, JARI OJALA 1 Johdanto Muovauksen vaikutuksesta metallien lujuus usein kasvaa ja venymä pienenee.

Lisätiedot

ETUTELIN RUNGON VÄSYMISKESTÄVYYDEN TARKASTELU HOT SPOT- MENETELMÄÄ KÄYTTÄEN

ETUTELIN RUNGON VÄSYMISKESTÄVYYDEN TARKASTELU HOT SPOT- MENETELMÄÄ KÄYTTÄEN LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö ETUTELIN RUNGON VÄSYMISKESTÄVYYDEN TARKASTELU HOT SPOT- MENETELMÄÄ KÄYTTÄEN FATIGUE RESISTANCE ANALYSIS

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Myötölujuuden ja vetomurtolujuuden arvot f R ja f R y eh u m tuotestandardista tai taulukosta 3.1 Sitkeysvaatimukset: - vetomurtolujuuden ja myötörajan f y minimiarvojen

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin

Lisätiedot

TILTTISANGAN VÄSYMISKESTÄVYYS FATIGUE RESISTANCE OF TILT HANDLE

TILTTISANGAN VÄSYMISKESTÄVYYS FATIGUE RESISTANCE OF TILT HANDLE LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Kone BK10A0401 Kandidaatintyö ja seminaari TILTTISANGAN VÄSYMISKESTÄVYYS FATIGUE RESISTANCE OF TILT HANDLE Pekka Vesanen 22.4.2014 Työn ohjaaja

Lisätiedot

Ultralujien terästen ominaisuudet lopputuotteeseen osaavan suunnittelun ja valmistuksen avulla

Ultralujien terästen ominaisuudet lopputuotteeseen osaavan suunnittelun ja valmistuksen avulla 26 Ultralujien terästen ominaisuudet lopputuotteeseen osaavan suunnittelun ja valmistuksen avulla Pertti Mikkonen, Timo Björk, Tuomas Skriko ja Niko Tuominen DIMECC:n BSA- ja MANU-ohjelmassa SSAB ja Lappeenrannan

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

TURVEPERÄVAUNUN VÄSYMISKESTÄVYYDEN PARANTAMINEN IMPROVING THE FATIGUE STRENGTH OF A PEAT TRAILER

TURVEPERÄVAUNUN VÄSYMISKESTÄVYYDEN PARANTAMINEN IMPROVING THE FATIGUE STRENGTH OF A PEAT TRAILER LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari TURVEPERÄVAUNUN VÄSYMISKESTÄVYYDEN PARANTAMINEN IMPROVING THE FATIGUE STRENGTH

Lisätiedot

Ultralujien terästen käyttö dynaamisesti kuormitetuissa koneen rakenteissa

Ultralujien terästen käyttö dynaamisesti kuormitetuissa koneen rakenteissa Diplomityö Ultralujien terästen käyttö dynaamisesti kuormitetuissa koneen rakenteissa Johdanto Työn tarkoituksena perehtyä ultralujien S550-S700 -terästen mahdollisuuksiin ja selvittää keinot niiden hyväksikäyttämiseksi

Lisätiedot

ULTRALUJAN TERÄKSEN KIINNITYSHITSIEN VÄSYMISKESTÄVYYDEN MÄÄRITYS

ULTRALUJAN TERÄKSEN KIINNITYSHITSIEN VÄSYMISKESTÄVYYDEN MÄÄRITYS LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Metalli Teräsrakenteiden laboratorio BK10A0400 Kandidaatintyö ja seminaari ULTRALUJAN TERÄKSEN KIINNITYSHITSIEN VÄSYMISKESTÄVYYDEN MÄÄRITYS

Lisätiedot

PUUTAVARAPANKON VÄSYMISLUJUUDEN MÄÄRITYS DETERMINATION OF FATIGUE LIFE OF TIMBER BUNK

PUUTAVARAPANKON VÄSYMISLUJUUDEN MÄÄRITYS DETERMINATION OF FATIGUE LIFE OF TIMBER BUNK LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari PUUTAVARAPANKON VÄSYMISLUJUUDEN MÄÄRITYS DETERMINATION OF FATIGUE LIFE OF

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34 SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillisen suunnitteluprosessin kulku

Lisätiedot

Liite A : Kuvat. Kuva 1.1: Periaatekuva CLIC-kiihdyttimestä. [ 1 ]

Liite A : Kuvat. Kuva 1.1: Periaatekuva CLIC-kiihdyttimestä. [ 1 ] Liite A : Kuvat Kuva 1.1: Periaatekuva CLIC-kiihdyttimestä. [ 1 ] Kuva 2.1: Jännityksen vaihtelu ajan suhteen eri väsymistapauksissa. Kuvaajissa x-akselilla aika ja y-akselilla jännitys. Kuvien merkinnöissä

Lisätiedot

PUHDAS, SUORA TAIVUTUS

PUHDAS, SUORA TAIVUTUS PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso

Lisätiedot

Hitsattu rakenne vikojen vaikutus lujuuteen ja elinikään

Hitsattu rakenne vikojen vaikutus lujuuteen ja elinikään Hitsattu rakenne vikojen vaikutus lujuuteen ja elinikään Pertti Auerkari & Jorma Salonen VTT, Espoo sähköposti: pertti.auerkari@vtt.fi SHY NDT-päivät, Turku 24.9.2013 22/09/2013 2 Hitsaus heikentää? Hitsausliitos

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö. 05/1 ELEMENTTIMENETELMÄN PERUSTEET SESSIO 05: FEM-analyysista saatavat tulokset ja niiden käyttö. YLEISTÄ Laskentamallin luonnin ja varsinaisen laskennan lisäksi FEM-analyysi sisältää myös tulosten tarkastelun

Lisätiedot

KESKIPAKOISPUHALTIMEN SIIPIPYÖRÄN LUJUUSTEKNISEN MITOITUK- SEN KEHITTÄMINEN

KESKIPAKOISPUHALTIMEN SIIPIPYÖRÄN LUJUUSTEKNISEN MITOITUK- SEN KEHITTÄMINEN LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone Antti-Pekka Hyökkäri KESKIPAKOISPUHALTIMEN SIIPIPYÖRÄN LUJUUSTEKNISEN MITOITUK- SEN KEHITTÄMINEN Työn tarkastajat: Professori Timo

Lisätiedot

Sekundäärisen momentin vaikutus hitsin lujuuteen

Sekundäärisen momentin vaikutus hitsin lujuuteen Rakenteiden Mekaniikka Vol. 49, Nro 4, 016, s. 7-51 rmseura.tkk.fi/rmlehti/ Kirjoittajat 016. Vapaasti saatavilla CC BY-SA 4.0 lisensioitu. Sekundäärisen momentin vaikutus hitsin lujuuteen Niko Tuominen

Lisätiedot

Murtumismekanismit: Väsyminen

Murtumismekanismit: Väsyminen KJR-C2004 Materiaalitekniikka Murtumismekanismit: Väsyminen 11.2.2016 Väsyminen Väsyminen on dynaamisen eli ajan suhteen aiheuttamaa vähittäistä vaurioitumista. Väsymisvaurio ilmenee särön, joka johtaa

Lisätiedot

Teräsrakentamisen T&K-päivät Lujista rakenneputkista valmistettavien liitosten kestävyys

Teräsrakentamisen T&K-päivät Lujista rakenneputkista valmistettavien liitosten kestävyys 5/2012 Teräsrakentamisen T&K-päivät 28.-29.5.2013 Lujista rakenneputkista valmistettavien liitosten kestävyys Niko Tuominen Lappeenranta University of Technology Laboratory of Steel Structures Sisältö

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari

LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0401 Kandidaatintyö ja seminaari VÄÄNTÖRASITETUN RAKENNEOSAN EURONORMIIN PERUSTUVA KESTÄVYYSLASKENTAYHTÄLÖIDEN

Lisätiedot

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ

ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ Henna Tahvanainen 1, Jyrki Pölkki 2, Henri Penttinen 1, Vesa Välimäki 1 1 Signaalinkäsittelyn ja akustiikan laitos Aalto-yliopiston sähkötekniikan

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Rakenneterästen myötörajan f y ja vetomurtolujuuden f u arvot valitaan seuraavasti: a) käytetään suoraan tuotestandardin arvoja f y = R eh ja f u = R m b) tai käytetään

Lisätiedot

JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA

JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA DIPLOMITYÖN SISÄLTÖ Teoria osuus Väsymismitoitus Eurokoodin mukaan Väsymisluokka Hitsin jälkikäsittelymenetelmät Mitatut liikennekuormat Jännevirran

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone. Tuomas Tuomaala PUUKUROTTAJAN PUOMIN VÄSYMISTARKASTELU.

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone. Tuomas Tuomaala PUUKUROTTAJAN PUOMIN VÄSYMISTARKASTELU. LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone Tuomas Tuomaala PUUKUROTTAJAN PUOMIN VÄSYMISTARKASTELU Työn tarkastajat: Professori Timo Björk TkT Timo Nykänen Työn ohjaaja: DI

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin

Lisätiedot

ULTRALUJAN TERÄKSISEN RAKENNEPUTKEN JA VEITSILEVYN LIITOKSEN MUOTOILU HAURASMURTUMAA VASTAAN

ULTRALUJAN TERÄKSISEN RAKENNEPUTKEN JA VEITSILEVYN LIITOKSEN MUOTOILU HAURASMURTUMAA VASTAAN LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0400 Kandidaatintyö ja seminaari ULTRALUJAN TERÄKSISEN RAKENNEPUTKEN JA VEITSILEVYN LIITOKSEN MUOTOILU HAURASMURTUMAA

Lisätiedot

TRUKKITRAKTORIN RUNGON SUUNNITTELU JA LASKENTA

TRUKKITRAKTORIN RUNGON SUUNNITTELU JA LASKENTA LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Teräsrakenteiden laboratorio Konetekniikan koulutusohjelma Antti Matikainen TRUKKITRAKTORIN RUNGON SUUNNITTELU JA LASKENTA Työn tarkastajat: Professori

Lisätiedot

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Janne Lehtonen, m84554 GENERAATTORI 3-ULOTTEISENA Dynaaminen kenttäteoria SATE2010 Harjoitustyö, joka on jätetty tarkastettavaksi Vaasassa 10.12.2008

Lisätiedot

Koneenosien lujuuslaskenta

Koneenosien lujuuslaskenta Koneenosien lujuuslaskenta Tavoitteet Koneiden luotettavuuden parantaminen Materiaalin säästö Rakenteiden keventäminen Ongelmat Todellisen kuormituksen selvittäminen Moniakselinen jännitys ja muodonmuutos

Lisätiedot

Murtumissitkeyden arvioimisen ongelmia

Murtumissitkeyden arvioimisen ongelmia Master käyrä Murtumissitkeyden arvioimisen ongelmia Charpy kokeissa suuri hajonta K Ic kokeet kalliita ja vaativat isoja näytteitä Lämpötilariippuvuuden huomioiminen? (pitääkö testata kaikissa lämpötiloissa)

Lisätiedot

Konetekniikan koulutusohjelman opintojaksomuutokset

Konetekniikan koulutusohjelman opintojaksomuutokset Konetekniikan koulutusohjelman opintojaksomuutokset 2016-2017 UUDET OPINTOJAKSOT: BK10A3800 Principles of Industrial Manufacturing Processes BK10A3900 Reliability Based Machine Element Design BK10A4000

Lisätiedot

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä. JÄNNITYS-JAMUODONMUUTOSTILANYHTYS Materiaalimalleista Jännitys- ja muodonmuutostila ovat kytkennässä toisiinsa ja kytkennän antavia yhtälöitä sanotaan materiaaliyhtälöiksi eli konstitutiivisiksi yhtälöiksi.

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jouko Esko n85748 Juho Jaakkola n86633 Dynaaminen Kenttäteoria GENERAATTORI Sivumäärä: 10 Jätetty tarkastettavaksi: 06.03.2008 Työn tarkastaja Maarit

Lisätiedot

Laskuharjoitus 2 Ratkaisut

Laskuharjoitus 2 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.

Lisätiedot

Tuukka Yrttimaa. Vaurioituminen. Sitkeä- ja haurasmurtuma. Brittle and Ductile Fracture

Tuukka Yrttimaa. Vaurioituminen. Sitkeä- ja haurasmurtuma. Brittle and Ductile Fracture Tuukka Yrttimaa Vaurioituminen Sitkeä- ja haurasmurtuma Brittle and Ductile Fracture Sitkeä- ja haurasmurtuma Metallin kyky plastiseen deformaatioon ratkaisee murtuman luonteen (kuva 1) [3] Murtumaan johtaa

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,

Lisätiedot

SHY- Seminaari TURKU

SHY- Seminaari TURKU 1 SHY /TURKU 5.5.017 HITSATUN RAKENTEEN RAKENNERATKAISUT JA NIIDEN VAIKUTUS TUOTTEEN KESTÄVYYTEEN Miksi hitsit väsyvät Lujat teräkset tulevat Esimerkkitehtävä LUT-Digitalisaatio HRO-foorumi Timo Björk

Lisätiedot

EKVIVALENTIN PAKSUUDEN MÄÄRITTÄMINEN KAHDEN PAKSUUDEN LEVYRAKENTEELLE DETERMINING THE EQUIVALENT THICKNESS FOR THE TWO-THICKNESS PLATE STRUCTURE

EKVIVALENTIN PAKSUUDEN MÄÄRITTÄMINEN KAHDEN PAKSUUDEN LEVYRAKENTEELLE DETERMINING THE EQUIVALENT THICKNESS FOR THE TWO-THICKNESS PLATE STRUCTURE LAPPEENRANNAN TEKNILLINEN YLIOPISTO LUT School of Energy Systems LUT Kone BK10A0402 Kandidaatintyö ja seminaari EKVIVALENTIN PAKSUUDEN MÄÄRITTÄMINEN KAHDEN PAKSUUDEN LEVYRAKENTEELLE DETERMINING THE EQUIVALENT

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

METSÄPERÄVAUNUN RUNGON DYNAAMINEN VÄSYMIS- TARKASTELU

METSÄPERÄVAUNUN RUNGON DYNAAMINEN VÄSYMIS- TARKASTELU OPINNÄYTETYÖ - AMMATTIKORKEAKOULUTUTKINTO TEKNIIKAN JA LIIKENTEEN ALA METSÄPERÄVAUNUN RUNGON DYNAAMINEN VÄSYMIS- TARKASTELU Farmi Forest Oy T E K I J Ä : Tero Halonen SAVONIA-AMMATTIKORKEAKOULU OPINNÄYTETYÖ

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

Kuva 1. LL13 Haponkestävä naulalevyn rakenne.

Kuva 1. LL13 Haponkestävä naulalevyn rakenne. LAUSUNTO NRO VTT-S-04187-14 1 (4) Tilaaja Tilaus Yhteyshenkilö Lahti Levy Oy Askonkatu 11 FI-15100 Lahti 15.9.2014 Kimmo Köntti VTT Expert Services Oy Ari Kevarinmäki PL 1001, 02044 VTT Puh. 020 722 5566,

Lisätiedot

MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/16

MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen 1/16 1/16 MITOITUSTEHTÄVÄ: I Rakennemallin muodostaminen Mitoitettava hitsattu palkki on rakenneosa sellaisessa rakennuksessa, joka kuuluu seuraamusluokkaan CC. Palkki on katoksen pääkannattaja. Hyötykuorma

Lisätiedot

B.3 Terästen hitsattavuus

B.3 Terästen hitsattavuus 1 B. Terästen hitsattavuus B..1 Hitsattavuus käsite International Institute of Welding (IIW) määrittelee hitsattavuuden näin: Hitsattavuus ominaisuutena metallisessa materiaalissa, joka annetun hitsausprosessin

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

HSL-3 Raskas kiila-ankkuri

HSL-3 Raskas kiila-ankkuri HSL-3 Ankkurin tyyppi HSL-3 Kuusiokanta Mutterikanta HSL-3-B Momenttihattu HSL-3-SH Kuusiokolokanta (ei Suomessa) HSL-3-SK Uppokanta (ei Suomessa) Hyödyt - soveltuu halkeilemattomaan ja halkeilleeseen

Lisätiedot

FE-ANALYYSIN SOVELTAMINEN S960 QC TERÄKSISEN I-PROFIILIN ÄÄRIKESTÄVYYDEN MÄÄRITTÄMISESSÄ

FE-ANALYYSIN SOVELTAMINEN S960 QC TERÄKSISEN I-PROFIILIN ÄÄRIKESTÄVYYDEN MÄÄRITTÄMISESSÄ LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Kone Konstruktiotekniikan koulutusohjelma Tuomas Laamanen FE-ANALYYSIN SOVELTAMINEN S960 QC TERÄKSISEN I-PROFIILIN ÄÄRIKESTÄVYYDEN MÄÄRITTÄMISESSÄ

Lisätiedot

Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 2

Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 2 Ruiskuvalumuotin kanavisto 2 Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat Ruiskuvalumuotin täyttäminen CAD työkalut harjoituksessa Ruiskuvalumuotin

Lisätiedot

HRO SUUNNITTELUFOORUMIN TEEMAPÄIVÄT 2014

HRO SUUNNITTELUFOORUMIN TEEMAPÄIVÄT 2014 HRO SUUNNITTELUFOORUMIN TEEMAPÄIVÄT 2014 Lappeenrannan teknillinen yliopisto, Lappeenranta 20.-21.8.2014 Lappeenrannan teknillinen yliopisto Lappeenranta University of Technology PL 20/P.O. Box 20 FI-53851

Lisätiedot

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

KANSALLINEN LIITE (LVM) SFS-EN 1993-2 TERÄSRAKENTEIDEN SUUNNITTELU Sillat LIIKENNE- JA VIESTINTÄMINISTERIÖ

KANSALLINEN LIITE (LVM) SFS-EN 1993-2 TERÄSRAKENTEIDEN SUUNNITTELU Sillat LIIKENNE- JA VIESTINTÄMINISTERIÖ KANSALLINEN LIITE (LVM) SFS-EN 1993-2 TERÄSRAKENTEIDEN SUUNNITTELU Sillat LIIKENNE- JA VIESTINTÄMINISTERIÖ 1.6.2010 Kansallinen liite (LVM), 1.6.2010 1/9 Alkusanat KANSALLINEN LIITE (LVM) STANDARDIIN SFS-EN

Lisätiedot

Murtumismekaniikka III LEFM => EPFM

Murtumismekaniikka III LEFM => EPFM Murtumismekaniikka III LEFM => EPFM LEFM Rajoituksia K on validi, kun plastisuus rajoittuu pienelle alueelle särön kärkeen mitattavat TMMT-tilassa Hauraille materiaaleille Validiteetti Standardin kokeellinen

Lisätiedot

Laskuharjoitus 7 Ratkaisut

Laskuharjoitus 7 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan

Lisätiedot

Mikko Borgström VÄÄNTÖKUORMITETUN KOTELOPROFIILIPUOMIN VÄSYMISKESTÄVYYS

Mikko Borgström VÄÄNTÖKUORMITETUN KOTELOPROFIILIPUOMIN VÄSYMISKESTÄVYYS LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Kone Mikko Borgström VÄÄNTÖKUORMITETUN KOTELOPROFIILIPUOMIN VÄSYMISKESTÄVYYS Työn tarkastajat: Professori Timo Björk Diplomi-insinööri Jouni

Lisätiedot

TEKNILLINEN TIEDEKUNTA JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA. Tarmo Iso-Junno

TEKNILLINEN TIEDEKUNTA JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA. Tarmo Iso-Junno TEKNILLINEN TIEDEKUNTA JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA Tarmo Iso-Junno KONETEKNIIKAN TUTKINTO-OHJELMA Diplomityö 2017 TIIVISTELMÄ Jännevirran sillan väsymismitoitus mitatulla

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

Betonin lujuus ja rakenteiden kantavuus. Betoniteollisuuden kesäkokous Hämeenlinna prof. Anssi Laaksonen

Betonin lujuus ja rakenteiden kantavuus. Betoniteollisuuden kesäkokous Hämeenlinna prof. Anssi Laaksonen Betonin lujuus ja rakenteiden kantavuus Betoniteollisuuden kesäkokous 2017 11.8.2017 Hämeenlinna prof. Anssi Laaksonen Sisältö 1) Taustaa 2) Lujuuden lähtökohtia suunnittelussa 3) Lujuus vs. rakenteen

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet. 0/ ELEMENTTIMENETELMÄN PERUSTEET SESSIO 0: Johdanto. Elementtiverkko. Solmusuureet. JOHDANTO Lujuuslaskentatehtävässä on tavoitteena ratkaista annetuista kuormituksista aiheutuvat rakenteen siirtmätilakenttä,

Lisätiedot

Laskuharjoitus 1 Ratkaisut

Laskuharjoitus 1 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.

Lisätiedot

Tuulen nopeuden mittaaminen

Tuulen nopeuden mittaaminen KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2

Lisätiedot

PROMATECT -200 Teräsrakenteiden palosuojaus

PROMATECT -200 Teräsrakenteiden palosuojaus PROMATECT -00 Teräsrakenteiden palosuojaus Vers. 0-06 PROMATECT -00 PROMATECT -00 on palamaton levy teräsrakenteiden suojaukseen kuivassa tilassa. PROMATECT -00 on valmistettu kasiumsilikaatin ja kipsimassan

Lisätiedot

KANSALLINEN LIITE STANDARDIIN. SFS-EN EUROKOODI 3: TERÄSRAKENTEIDEN SUUNNITTELU. Osa 1-1: Yleiset säännöt ja rakennuksia koskevat säännöt

KANSALLINEN LIITE STANDARDIIN. SFS-EN EUROKOODI 3: TERÄSRAKENTEIDEN SUUNNITTELU. Osa 1-1: Yleiset säännöt ja rakennuksia koskevat säännöt LIITE 9 1 KANSALLINEN LIITE STANDARDIIN SFS-EN 1993-1-1 EUROKOODI 3: TERÄSRAKENTEIDEN SUUNNITTELU. Osa 1-1: Yleiset säännöt ja rakennuksia koskevat säännöt Esipuhe Tätä kansallista liitettä käytetään yhdessä

Lisätiedot

Vaurioiden tyypilliset syyt

Vaurioiden tyypilliset syyt Vaurioituminen II Vaurioiden tyypilliset syyt 18.9.2013 2 Loppumurtuma Hauras tai sitkeä murtuma Ei juurisyy, vaan viimeinen vaihe pitkässä tapahtumaketjussa. 18.9.2013 3 Väsyminen (Fatigue) 1998 Eschede

Lisätiedot

Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 1

Teoriatausta. Mallinnuksen vaiheet. CAD työkalut harjoituksessa. Ruiskuvalumuotin kanavisto 1 http://www.valuatlas.net ValuAtlas & CAE DS 2007 Muotinsuunnitteluharjoitukset Ruiskuvalumuotin kanavisto 1 Tuula Höök Tampereen teknillinen yliopisto Teoriatausta Ruiskuvalumuotin kanavistot: kylmäkanavat

Lisätiedot