Ch12 Kokeita spin-1/2 systeemillä. Yksinkertaisia mittauksia usean vuorovaikuttamattoman spin-1/2 ytimen systeemillä

Koko: px
Aloita esitys sivulta:

Download "Ch12 Kokeita spin-1/2 systeemillä. Yksinkertaisia mittauksia usean vuorovaikuttamattoman spin-1/2 ytimen systeemillä"

Transkriptio

1 Ch Kokeita spin-/ systeemillä Yksinkertaisia mittauksia usean vuorovaikuttamattoman spin-/ ytimen systeemillä

2 Palautuminen inversiosta: T -mitttaus Seuraavassa tarkastellaan mittausta jolla määrätään pitkittäinen relaksaatioaika T Mittauksessa käytetään kahta pulssia kuvan esittämällä aikajanalla. ( ) τ : Miitaan signaali s t kullekin signaalia s ( τ ), t. Data muodostaa D-matriisin. n arvolle ja merkitään tätä D Eri τ : n arvoon liittyvien mittausten välillä pidetään riittävän pitkä tauko τ jotta systeemi ehtii relaksoitua termiseen tasapainoon wait

3 T -mittaus jatkuu Pulssin kehittyminen mittaussekvenssin aikana: Eq ˆ ˆ ρ ˆ = ˆ ρ = + BI ( π ) ˆ ρ ˆ ˆ = BI τ ˆ ρ ˆ 3 = + B - ( π / ) z z - τ / T ( e ) Iˆ ( ) ( ) ˆ - τ / T ˆ / / B( - ) ˆ ρ = Rˆ π ρ Rˆ π = e Iˆ z 4 3 y - τ / T ( ) ( ) { } ( ) ( ) ( ) Jos φ = ja resonanssi offset = Ω niin signaali on s τ, t = a τ ep iω λ t rec Populaatiot ja koherenssit inversion-recovery sekvenssissä missä amplitudi a τ = iρ = B - e, huom λ = / T

4 T -mittaus jatkuu Oletetaan seuraavaksi, että näytteessä on useita osasysteemeitä (eri isotooppeja eri isotopomeerejä tai staattinen kenttä epähomogeeninen. { } ( τ, ) = j ( τ ) ep ( Ω j λ j ) s t a i t missä a j ( ) ( - τ / T ) τ = B - e j j j ja T on osasysteemin j spin-hila relaksaatioaika. Data matriisi Fourier muunnetaan: iωt ( τ, Ω ) = ( τ, ) = j ( τ ) L( Ω; Ω j, λ j ) S s t e dt a j Huippuamplitudin muutos τ:n funktiona Data matriisin s ( τ ),t reaaliosa

5 T voidaan määrätä kokeellisesti mitatuista huippuamplitudeista a ( ) ( τ ) T -mittaus jatkuu ( τ ) piirtämällä log a a τ:n funktiona ja fittaamalla tämä sopivan suoran avulla, jolloin suoran kulmakerroin on /T Joukko inversio-recovery spektrejä

6 T -mittaus Vaikka T = / λ on kääntäen verrannollinen absorptiopiikin leveyteen ei kokeellinen sen kokeellinen määrittäminen ole helppoa epähomogeenisestä levenemisestä johtuen. T määräytyy homogeenisen leveyden perusteella eli mikroskooppisten kenttäfluktuaatioiden mukaan. Epähomogeenisella levenemisellä tarkoitetaan muita efektejä jotka leventävät spektriviivaa kuten makroskooppisia kentän vaihteluita näytteen alueella. Spinkaikumenetelmä mahdollistaa näiden levenemismekaanismien erottamisen toistaan. Epähomogeninen leveneminen aiheuttaa eritaajuisten signaalien summautumisen. Signaalit interferoivat siten, että vaimeneminen nopeutuu.

7 Spinkaiku-menetelmä Spinkaikumenetelmässä vaimenemisen epähomogeeninen komponetti voidaan kääntää toisella rf-pulssilla. Tämä mahdollistaa T :n mittauksen myös epähomogeenisessa kentässä. Mittauksesa pulsien väliaika on aina sama kuin aika. pulssin jälkeen ennen mittauksen aloittamista. Tarkastellaan aluksia yhtä spinsysteemiä ˆ ρ ˆ ˆ = + BI ˆ ρ ( π / ) ˆ = BIˆ z y Seuraavassa jätetään tiheysmatriisin diagonaalitermit pois sillä toinen rf-pulssi ei muuta niitä koherensseiksi.

8 Spinkaiku-menetelmäjatkuu Pulssien välinen aikakehitys ˆ ρ ˆ = BI y +.. τ ˆ ˆ ˆ ρ 3 = B I y cosω τ + I sin Ω τ e λτ / Spektraalidata matriisi S spinkaiku mittauksessa ( τ, Ω) Huojunta pulssien välisenä aikana

9 Spinkaiku-menetelmäjatkuu Toisen pulssin aikainen kehitys / ˆ ˆ ˆ λτ ρ 3 = B I y cos τ I sin τ e.. Ω + Ω + π y / ˆ ˆ ˆ λτ ρ 4 = B I y cosω τ I sin Ω τ e +.. ( pois jätettyjä populaatiotermejä) Magnetisaation rotaatio π y pulssin aikana

10 Spinkaiku-menetelmäjatkuu Toisen pulssin jälkeen, ennen mittauksen aloittamista odotetaan jakso τ /. Tänä aikana magnetoituma kiertyy kulman Ω τ. Lopputuloksena pulssi on mittauksen alkaessa ˆ ˆ ρ 5 = BI ye λτ +.. NMR spektrin amplitudimaksimi on a / T ( τ ) = Be τ Mittauksen alkaessa signaali on riippumaton resonanssioffsetista ja siksi myös magneettikentän epähomogeenisuudesta. Signaaliamplitudin riippuvuus ajasta τ spinkaikumittauksessa

11 Spinkaiku-menetelmäjatkuu Menetelmän idea on siinä, että pulssin kehittyminen pulssijonon toisella puoliskolla vastaa epähomogeenisen vaimenemiskomponentin suunnan muutosta. Π y pulssi aiheuttaa epähomogeenisten signaalikomponettien vahvistavan intereferenssin. Nykyinen pulsseihin perustuva NMR-spektroskopia Perustuu pitkälti Erwin Hahnin 95 tekemään havaintoon spinkaiusta.

12 Spinkaiku-menetelmäjatkuu Kentän voimakkuuden vaihtelu aiheuttaa sen että magnetisaatiovektori kiertyy näytteen eri alueissa siaitsevissa osasysteemeissä eri nopeudella. Allaoleva kuva havinnollistaa aikakehitystä ensimmäisen (π/) pulssin jälkeen. Heti pulssin päätyttyä kaikki osamagnetisaatiot ovat -akselin suuntaisia. Ne kuitenkin huojuvat eri nopeudella ja näin jakauma levenee pulssien välisenä aikana τ/! Ilmiötä kutsutaan vaiheistuksen menetykseksi (dephasing) se heikentää keskimääräistä magnetisaatiota (myös relaksaatio heikentää sitä)

13 Spinkaiku-menetelmäjatkuu Seuraavaksi magnetisaation suunta vaihdetaan päinvastaiseksi π y pulsilla ks kuva.5. Tällöin hitaimmat komponentit tulevat etummaisiksi ja päinvastoin Huojuntanopeudet ovat kullakin magnetisaatiokomponentilla samat kuin ennen nopeimmin kiertyvät alkavat saavuttaa hitaimpia ja kaikki osamagnetisaatiot kohtaavat hetkellä τ/ π y pulssin npäättymisestä lukien ja ovat silloin kaikki y suuntaisia. Vaihekoherenssin uudelleen muodostuminen. Jotta koherenssi olisi täydellinen paikalliset kentät eivät saa muuttua pulssisekvenssin aikana. Huom. Pulssit ovat hyvin nopeita niiden aikana ei tapahdu dephasingiä!

14 Spinkaiku-menetelmäjatkuu Spinnien epätäydellinen uudellenvaiheistus voi olla merkki paitsi magneettikentän muuttumisesta pulssien aikana myös spinnien virtaamisesta alueesta toiseen näin spinkaiulla voidaan tutkia diffuusiota näytteessä. Relaksaatioajan T määrittäminen perustuu siihen, että hetkellä 5 signaalin vaimeneminen sen alkuperäisestä arvosta aiheutuu ainoastaan poikittaisesta relaksaatiosta: Hetkellä 5 kaikkien osasysteemien signaaliamplitudi on a - / T ( τ ) = Be τ

15 Koherenssiin perustuva tulkinta Spinkaikua voidaan tarkastella myös yksittäisten spinien koherenssien aikakehityksen avulla. Tämä on parempi lähestymistapa korkean spinluvun ytimille. Koherenssit (tiheysmatriisin vastaavat ei diagonaalikomponentit kiertyvät toisikseen π y pulsissa. Koherenssien aikakäyttäytyminen voidaan muodostaa tiheysmatriisin aikakäyttäytymisestä ks sicut 3-3.

16 Koherenssiin perustuva tulkintajatkuu π/ pulssi muuttaa termisen jakauman ρ koherenssiksi ( ρ ei tuota mittausvaiheeseen ρ osuutta joka voitaisiin mitata) 5 Ajatuksena on seurata pulssisekvenssin aikana vain sitä keherenssikomponenttia joka tuottaa mittauksen alkaessa ρ ( i ) { } ρ = ρ ep Ω λ τ / ( i ) { } ρ = ρ ep + Ω λ τ / { } ρ = ρ ep λτ Koherenssin muuttumista sekvenssissä voidaan kuvata tällä diagrammilla. Vain se koherenssipolku joka johtaa lopussa mitattavaan signaaliin on esitetty. + koherenssin ja siis mitattavan signaalin. Koherenssin kehitys on siis ρ = ρ

17 Spinlukitus T ρ mittaus Spinlukitusmenetelmässä magnetisaation suunta lukitaan johonkin suuntaan R-framessa π Magnetisaatio kierretään ensin / pulsilla -akselin suuntaan. Sen jälkeen rf-pulssin vaihe asetetaan nollaksi φ = jolloin pyörivässä koordinaatistossa rf-kenttä on -akselin suuntainen. Jos kenttä on tarpeeksi voimakas se estää spinien huojunnan - ts spinien sanotaan olevan lukitun. Ajan τ kuluttua lukituskenttä poistetaan jolloin huojuva magnetisaatio muodostaa NMR signaalin. Lukittu magnetisaatio kuolee eksponentiaalisesti ja voidaan mitata varioimalla aikaa τ näin mitataan spin-hila relaksaatioaika R-framissä T ρ

18 Gradientti kaiku Spin-kaiku saadaan aikaan myös kääntämällä kenttägradientin suunta. Aluksi luodaan (π/) pulsilla poikittainen magnetisaatio ja kytketään kenttägradientti z-suuntaan. Hetken päästä gradientin suunta vaihdetaan. Spinkaiku muodostuu kun gradientin aikaintegraali on nolla. Jos gradientti on z-akselin suuntaan z-akselilla eri alueissa olvat spinit huojuvat eri nopeudella.

19 Gradienttikaiku Kun gradientin suunta vaihdetaan, spinien huojunnan nopeuderot vaihtavat merkkinsä. Kun integroitu kokonaisvaaikutus (gradientin itseisarvo kertaa aika) on sama kuin edellisellä gradienttipulsilla palataan alkutilanteesen ja spinosasysteemien magnetisaatiot ovat jälleen samansuuntaiset Gradienttikaiku ei eliminoi kemiallisten siirtymien ja lokaalisten kenttäfluktuaatioiden aiheuttamaa epävaiheistusta. Gradienttipulssien päätyttyä osamagnetisaatiot ovat samansuuntaiset, mutta kemiallisesta siirtymästä johtuen magnetisaatiolla on vaihesiirto vrt kuvia 3 ja 4. Gradientin kääntäminen ei vaikuta kemialliseen siirtymään.

20 Kuvantaminen - leikemittaus Gradientilla ja rf pulssilla voidaan valita spektriin kapea kaista tai viipale näytettä - ainoastaan resonanssi taajuuden omaavat ytimet muodostavat signaalin. Pulssisekvenssi eroaa gradienttikausta siinä, että gradientti kytketään ennen rf-pulssia joka ajoitetaan positiivisen gradienttipulssin puoliväliin. Rf-pulssi ei ole suorakaide vaan tasainen aaltopaketti. Negatiivinen gradienttipulssi on kestoltaan puolet positiivisesta.

21 ( ) Kuvantaminen - leikemittaus jatkuu Vain ne ytimet joiden Larmor taajuus vastaa rf-pulssin taajuutta ( π ) näkevät tarkalleen / pulssin. Kuitenkin myös spinit joilla on resonanssioffset reagoivat pulssiin Ω δ z = γ G δ z z Offresonanssipulssi muodostaa yhä magnetisaation ellei resonanssioffset ole paljon suurempi kuin nutaatiotaajuus ω Efektiivisesti resonanssiehdon rajoittama viipale on paksuudeltaan ω / γ G. Heikko Rf-kenttä ja suuri kenttägradientti mahdollistavat hyvän erotuskyvyn (ohuen mitattavan viipaleen). nut nut z

22 ( π ) Kuvantaminen - leikemittaus jatkuu Kuvanmuodostuksen kannalta myös poikittaisen magnetisaation vaihetekijä on merkityksellinen. Niille ytimille jotka ovat tarkalleen resonansissa magnetisaatio on / pulssin jälkeen tarkalleen -y suuntainen. Niille ytimille joiden resonanssioffset on nollasta poikkeava muodostuu resonanssioffsetista riippuva ylimääräinen vaihekulma (.8.5). Voidaan osoittaa, että muodostunut vaihekulma on sama kuin silloin jos rf-pulssi olisi hyvin lyhyt ja viittaisi pulssin keskikohdan aikaan jonka jälkeen huojunta tapahtuu kenttä gradientin läsnäollessa. Tänä puolen gradienttipulssin aikana muodostunut huojunnan vaihe-ero kompensoidaan käänteisellä gradienttipulssilla.

23 MRI-kuvausmenetelmä lyhyt esitysjtk Tarkastellaan kuvan muodostamista ohuessa sauvassa olevasta vesimolekyylijakaumasta. Kenttä on z-suuntainen, mutta gradientti - suuntainen: B ( B G ) = + Larmor-taajuus on paikkariippuva ( ) ( ) ( ) Resonanssioffset paikkariippuva ( ) ( ) z ω = γ B + G = ω γ G Ω = ω ω = γ G e ref Ohuessa sauvassa joka on kohtisuorassa kenttää vastaan on pari vesimolekyylitihentymää Mittausmenetelmässä on olennaista Larmor-taajuuden yksinkertainen riippuvuus paikkakoordinaatista, jolloin tietyllä Larmor taajuudella havaittavan NMR-signaali voidaan helposti yhdistää -koordinaatin arvoon.

24 MRI-kuvausmenetelmä lyhyt esitysjtk Larmortaajuuden ja paikan välille saadaan siis seuraava yhteys Ω Ω = γ G Ω = γ G Ω NMR-signaalin intensiteetti on verrannollinen kullakin resonanssitaajuudella huojuvien spinien lukumäärään S ( Ω ) d ( Ω ) D jakaumalle -suuntainen gradientti ei anna enempää kuin projektion spintiheydestä

25 MRI-kuvausmenetelmä lyhyt esitysjtk Tarkastellaan kuvan muodostamista oheisesta D-leikkeestä allaolevalla pulssisekvenssillä. ( B G ) ( B G y y) ( π ) Alussa ajetun / pulssin jälkeen systeemi kehittyy gradientissa G B z (jakson t aikana) hetkellä t implementoidaan y-gradientti B = + = + e e z (jakson t aikana)

26 MRI-kuvausmenetelmä lyhyt esitysjtk Mittaus suoritetaan siten, että kullakin t ( π ) ( ) arvolla mitataan signaali s t,t Jakson t aikana Larmorfrekvenssi on Jakson t aikana Larmorfrekvenssi on Ensimmäisen / pulssin jälkeen pisteessä,y ( ( ) ) Ω Ω ( ) ( ) = γ G = γ G y ρ ˆ ˆ = BI y Tässä pisteessä mittauksessa havaittava ρ koherenssi on ρ = B 4i ρ = { } 3 Bep i Ω λ t missä λ /T 4i tiheysmatriisi on jakson t aikana huojunta tapahtuu taajuudella Ω y ( )

27 MRI-kuvausmenetelmä lyhyt esitysjtk Jakson t aikana huojunta jatkuu taajuudella ( ( ) ) ( ) ( ) ( ) ρ = { } 4 Bep iω λ t + iω λ t 4i Kukin D-leikkeen piste, y muodostaa siis osasysteemin, jonka vaste on tämän yhtälön mukainen. Kukin näistä osasignaaleista ( ), Ω ( ) muodostaa kuvapisteen D Fourier muunnoksessa siten, että signaalin intensiteetti taajuustason pisteessä Ω edustaa spinien tiheyttä pisteessä,y. NMR-osasignaali on vastaavasti ( ) ( ) ( λ ) ( ( ) λ ) { } s t, t ep iω t + iω t ja sen Fourier muunnoksessa havaitaan resonanssi taajuuksilla S ( ), Ω ( ) ( λ ) ( Ω Ω y) L Ω Ω Ω ( ) λ Ω ( ), ;,, ;,,, Ω Ω

28 MRI-kuvausmenetelmä lyhyt esitysjtk Kuvattavan leikkeen eri pisteet,y kuvautuvat Fourier muunnoksessa eri taajuus avaruuden pisteeksi Ω, Ω. Tietyn taajuustason pisteen intensiteetti määräytyy sen mukaan kuinka monta spinia on vastaavassa lekepisteessä,y: ( Ω Ω ) ( Ω Ω ) S, d, missä Ω Ω = = γ G Ω ja Ω γ G Intensiteettiin perustuva korkeuskartta leikkeestä.

29 MRI-kuvausmenetelmä lyhyt esitysjtk 3D-kuvan muodostaminen perustuu kolmen kenttägradientin ja vastaavan 3D Fourier muunnoksen hyödyntämiseen.

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

761359A Spektroskooppiset menetelmät NMR-SPEKTROSKOPIA

761359A Spektroskooppiset menetelmät NMR-SPEKTROSKOPIA 761359A Spektroskooppiset menetelmät NMR-SPEKTROSKOPIA Ville-Veikko Telkki, kevät 2015 1 Sisällysluettelo Sisällysluettelo... 2 Johdanto... 4 1. Ytimen spin ja magneettinen momentti... 8 2. Ytimen energiatilat...

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Tuomo Saloheimo SYVENTÄVÄÄ MAGNEETTIKUVAUKSEN FYSIIKKAA JA LAITEOPPIA

Tuomo Saloheimo SYVENTÄVÄÄ MAGNEETTIKUVAUKSEN FYSIIKKAA JA LAITEOPPIA Tuomo Saloheimo SYVENTÄVÄÄ MAGNEETTIKUVAUKSEN FYSIIKKAA JA LAITEOPPIA 14.8.2015 8. Nopeat kuvausmenetelmät Perinteisessä SE-kuvauksessa kuvauksessa yhdellä sekvenssillä pystytään ottamaan informaationa

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

Leikepaksuus magneettikuvauksen laadunvalvonnassa. Kandidaatintyö

Leikepaksuus magneettikuvauksen laadunvalvonnassa. Kandidaatintyö Leikepaksuus magneettikuvauksen laadunvalvonnassa Kandidaatintyö Lauri Lehmonen 06.04.2015 Sisältö 1 Johdanto 1 2 Teoria 1 2.1 Magneettikuvauksen perusteet...................... 1 2.1.1 Larmor-taajuus

Lisätiedot

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sonifikaatio Menetelmä Sovelluksia Mahdollisuuksia Ongelmia Sonifikaatiosovellus: NIR-spektroskopia kariesmittauksissa

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama

Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama ESY Q16.2/2006/4 28.11.2006 Espoo Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI 28.11.2006 Tekijät Matti Oksama Raportin laji Tutkimusraportti

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. 1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat

Lisätiedot

Ongelmia mittauksissa Ulkoiset häiriöt

Ongelmia mittauksissa Ulkoiset häiriöt Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

Visibiliteetti ja kohteen kirkkausjakauma

Visibiliteetti ja kohteen kirkkausjakauma Visibiliteetti ja kohteen kirkkausjakauma Interferoteriassa havaittava suure on visibiliteetti V (u, v) = P n (x, y)i ν (x, y)e i2π(ux+vy) dxdy kohde Taivaannapa m Koordinaatisto: u ja v: B/λ:n projektioita

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Infarktialueen määrittäminen T 1ρ -, T RAFF - ja T 2 -relaksaatiomenetelmillä sekä gadolinium-myöhäistehostuman avulla

Infarktialueen määrittäminen T 1ρ -, T RAFF - ja T 2 -relaksaatiomenetelmillä sekä gadolinium-myöhäistehostuman avulla Infarktialueen määrittäminen T 1ρ -, T RAFF - ja T 2 -relaksaatiomenetelmillä sekä gadolinium-myöhäistehostuman avulla Elias Ylä-Herttuala Pro gradu-tutkielma Sovelletun fysiikan koulutusohjelma Itä-Suomen

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p87432. Dynaaminen kenttäteoria SATE2010 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jani Vitikka p87434 Hannu Tiitinen p87432 Dynaaminen kenttäteoria SATE2010 KESTOMAGNEETTI Sivumäärä: 10 Jätetty tarkastettavaksi: 16.1.2008 Työn tarkastaja

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

JUHANA SORVARI Kahteen gradienttipariin perustuvan diffuusiopainotetun magneettikuvaussekvenssin

JUHANA SORVARI Kahteen gradienttipariin perustuvan diffuusiopainotetun magneettikuvaussekvenssin JUHANA SORVARI Kahteen gradienttipariin perustuvan diffuusiopainotetun magneettikuvaussekvenssin in vivo -implementointi ja testaus Diplomityö Tarkastaja: professori Ilpo Vattulainen Tarkastaja ja aihe

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen 34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla

Lisätiedot

PANK PANK-4122 ASFALTTIPÄÄLLYSTEEN TYHJÄTILA, PÄÄLLYSTETUTKAMENETELMÄ 1. MENETELMÄN TARKOITUS

PANK PANK-4122 ASFALTTIPÄÄLLYSTEEN TYHJÄTILA, PÄÄLLYSTETUTKAMENETELMÄ 1. MENETELMÄN TARKOITUS PANK-4122 PANK PÄÄLLYSTEALAN NEUVOTTELUKUNTA ASFALTTIPÄÄLLYSTEEN TYHJÄTILA, PÄÄLLYSTETUTKAMENETELMÄ Hyväksytty: Korvaa menetelmän: 9.5.2008 26.10.1999 1. MENETELMÄN TARKOITUS 2. MENETELMÄN SOVELTAMISALUE

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Kojemeteorologia (53695) Laskuharjoitus 1

Kojemeteorologia (53695) Laskuharjoitus 1 Kojemeteorologia (53695) Laskuharjoitus 1 Risto Taipale 20.9.2013 1 Tehtävä 1 Erään lämpömittarin vertailu kalibrointistandardiin antoi keskimääräiseksi eroksi standardista 0,98 C ja eron keskihajonnaksi

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Luku 21. Kemiallisten reaktioiden nopeus

Luku 21. Kemiallisten reaktioiden nopeus Luku 21. Kemiallisten reaktioiden nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista tasapainoreaktiota:

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

SAMPOSUUREET Matti Oksama

SAMPOSUUREET Matti Oksama ESY Q16.2/2006/6 28.11.2006 Espoo SAMPOSUUREET Matti Oksama 1 GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI Päivämäärä / Dnro 28.11.2006/ Tekijät Matti Oksama Raportin laji tutkimusraportti Toimeksiantaja Raportin

Lisätiedot

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Liitännät ja lisälaitteet

Liitännät ja lisälaitteet Liitännät ja lisälaitteet PC:n yleiset liitännät GPIB USB, LAN, sarja, rinnakkais,... Lisänäyttö, hiiri, näppäimistö Korppuasema (3,5 ) Lämpöpaperikirjoitin 109 Kannettavat oscilloskoopit Handheld (Fluke:

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Aaltoputket ja resonanssikaviteetit

Aaltoputket ja resonanssikaviteetit Luku 12 Aaltoputket ja resonanssikaviteetit Tässä luvussa tutustutaan ohjattuun aaltoliikkeeseen. Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla.

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

DIAGNOSOINTI MAGNEETTITUTKIMUKSELLA KORKEAN B ARVON DIFFUUSIOKUVAUKSELLA

DIAGNOSOINTI MAGNEETTITUTKIMUKSELLA KORKEAN B ARVON DIFFUUSIOKUVAUKSELLA Pro gradu tutkielma Fysiikan opettajan suuntautumisvaihtoehto DIAGNOSOINTI MAGNEETTITUTKIMUKSELLA KORKEAN B ARVON DIFFUUSIOKUVAUKSELLA Touko Kaasalainen 20.12.2007 Ohjaaja: FT Veli Pekka Poutanen Tarkastajat:

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.

Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

Fysikaalisten tieteiden esittely puolijohdesuperhiloista Fysikaalisten tieteiden esittely puolijohdesuperhiloista "Perhaps a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing the same thing."

Lisätiedot

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Luku 35 Interferenssi PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Johdanto Interferenssi-ilmiö tapahtuu, kun kaksi aaltoa yhdistyy

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi.

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi. Tehtävä 1 Kirjoita neljä eri funktiota (1/2 pistettä/funktio): 1. Funktio T tra saa herätteenä 3x1-kokoisen paikkavektorin p. Se palauttaa 4x4 muunnosmatriisin, johon sijoitettu p:n koordinaattien mukainen

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

Luento 4: Kiertomatriisi

Luento 4: Kiertomatriisi Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Kuulohavainnon perusteet

Kuulohavainnon perusteet Kuulohavainnon ärsyke on ääni - mitä ääni on? Kuulohavainnon perusteet - Ääni on ilmanpaineen nopeaa vaihtelua: Tai veden tms. Markku Kilpeläinen Käyttäytymistieteiden laitos, Helsingin yliopisto Värähtelevä

Lisätiedot

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia

OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot