Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0

Koko: px
Aloita esitys sivulta:

Download "Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0"

Transkriptio

1 Luento Sähköstaattiset vuorovaikutukset Poissonoltzmann yhtälö Varatut pinnat nesteessä Varatut pallomaiset partikkelit nesteessä Veden ominaisuudet Hydrofobinen vuorovaikutus = 0

2 Sähköstaattiset vuorovaikutukset iomolekyylit ja kalvot yleensä sähköisesti varattuja Sähköisten vuorovaikutusten suuruusluokka: n. 150 vesimolek. Esim. Paljonko energiaa kuluu, kun 1 % ilmassa olevan vesipisaran vesimolekyyleistä ionisoidaan, kun pisaran säde on 1 mm? Entä kun pisara on vedessä ( = 80) ja säde on 1 m tai 1 nm? 3 q m V 4 R E ½ qv ( R), q N Ae N Ae N Ae 8 R M M 3M Ilmassa R E Vedessä : Terminen energia kykenee ionisoimaan neutraaleja molekyylejä soluissa! 0 11 : 1mm : 10 J R1μm : E 6,7 10 J 1 R 1nm : E,7 10 J 0,7 ktr (vesi ei enää kontinuumi nmskaalassa!)

3 Makromolekyylien ionisoituminen 3 Dissosiaatio termisesti Vapaa energia kilpailu : Vuorovaikutusenergian minimointi pyrkii pitämään vastaionit makromolekyylin lähellä Entropian kasvu pyrkii viemään vastaioneja kauemmas makromolekyylistä Vastaionivaippa neutraloi makroionin sijaitsee nmetäisyydellä makroionista varjostaa makroionia lyhentää sähköstaattisten vuorovaikutusten kantaman nmluokkaan H DNA

4 Pintojen (solukalvon) ionisoituminen 4 Dissosiaatio muodostaa diffuusin varauskerroksen Sähköinen kaksoiskerros Kiinteä pintavaraus Nesteeseen dissosioitunut varaus Negat. pintavaraus Ylimäärin posit. varausta pinnan lähellä

5 5 Solujen makromolekyylien väliset vuorovaikutukset Attraktiivisia vuorovaikutuksia (mm. van der Waals, tyhjennysvv.) Yleensä negatiivisesti varautuneita (netto) repulsiivinen vv. Sähköstaattisilla vuorovaikutuksilla lyhyt kantama soluissa Vastaionivarjostus Makroionit vuorovaikuttavat vain lyhyillä etäisyyksillä Lähivuorovaikutus molekyylin pinnan muoto varausjakauma Makromolekyylien sitoutuminen toisiinsa Paljon heikkoja vuorovaikutuksia Stereospesifisyys

6 Gaussin laki Sähkövuo suljetun pinnan läpi, sisällä varaus q : q da A Tasaisesti jakautunut negat. varaus tasopinnalla: E A pinta q q = pintavaraustiheys, [ q ] = C m Nesteessä tasopinnan ulkopuolella: Vastaionien varjostus (tässä ei muita ioneja) E = sähkökentän voimakkuus, [E] = V m 1 = väliaineen permittiivisyys, [ ] = C N 1 m Vain suuntainen kenttä (varaustiheys ei muutu y ja zsuunnissa) Sähkökenttä heikkenee etäisyyden pinnasta kasvaessa: q 1 1 ( d) ( d) E( 1 ) da q( ) dda q( ) d da d q Gaussin laki d Varjostuksen voimakkuus kuvaa varaustiheyttä

7 Keskimääräisen kentän ( mean field ) approksimaatio Olkoon varattu (negat.) pinta Varauspilvi ympärillä Vastaionit ( counterions ) Koionit ( coions ): pintavarauksen kanssa saman merkkiset varaukset Kenttä vaikuttaa varausjakaumaan, kukin ioni vaikuttaa kenttään Sähköstaattisen vuorovaikutuksen kantama pitkä kukin ioni vuorovaikuttaa ison määrän muita ioneja kanssa, miten kuvata tilanne? Oletukset: Kunkin ionin ympärillä runsaasti muita ioneja Keskimääräinen varausjakauma q Kukin ioni kokee muiden ionien (suuri määrä) synnyttämän potentiaalin, keskimääräisen kentän V() (pieni fluktuaatio)

8 Poissonoltzmann yhtälö (1dim.) Gauss: d q dv ( ) d d dv q Poissonyhtälö d Oletetaan, että ionit liikkuvat toisistaan riippumattomasti keskimääräisessä potentiaalikentässä V() : ziev ( ) kpl k T ci( ) ci0 e [ c] 3 m ( ) z ec ( ) z ec e i i i i i 0 dv d i ze i ci0e ziev ( ) k T ziev ( ) k T Poissonoltzmann yhtälö Pituusskaala: Alkeisvarausten välinen etäisyys, jolla sähköinen energia termisen energian suuruinen = jerrumpituus l l e 4 kt, vedessä / 80 0

9 Poissonoltzmannyhtälön ratkaisu (1dimensioinen tapaus): Liuoksen ionikoostumus: Pelkät vastaionit? Lisäksi 1arvoisia ioneja? Mukana tai 3arvoisia ioneja? Geometria reunaehdot P: d V d e n i1 c z e i0 i ziev k T Tarkastellaan ratkaisua kahdessa yksinkertaisessa geometriassa: Kaksi negat. varattua tasoa Vain vastaionit liuoksessa Yksi negat. varattu taso Yksiarvoinen suola liuoksessa = 0 = 0

10 Kaksi samanlaista negatiivisesti varattua tasoa vastaionit: P: d V d Valitaan potentiaalin V = V () taso: V 0 = V (0) = 0 e i1 i0 ziev k T Varaustiheys kohdassa = 0: n c z e i (0) = 0 (= c 0 z) = 0 Nyt Poissonoltzmann: zev ( ) d V ( ) ( ) 0 kt e d Oletetaan neste isotrooppiseksi: = vakio

11 Kaksi negatiivisesti varattua tasoa vastaionit (jatkuu): Reunaehdot: Symmetria: dv d 0 0 Elektroneutraalisuus: = 0 D D i 0 0 dv d d dv d s s d, s surface dv Es d Poisson:

12 Kaksi negatiivisesti varattua tasoa vastaionit (jatkuu): ( ) e 0 zev ( ) k T Käytetään P: dv d ze dv d V zev ( ) k T d ze dv 0 e d k T d d ze d dv kt d d Integroidaan puolittain: d ze d dv d d k T d d d k T d d 0 e zev k T ze dv dv 0 0 k T d d 0 s 0 = 0 d ze dv ze k T d k T

13 Kaksi negatiivisesti varattua tasoa vastaionit: P ratkaisu: P: dv d 0 e zev k T k T kt ze ( ze) c V( ) ln(cos ), missä D D 0 Debyepituus kt ( ) e 0 zev cos 0 D ½D = 0 ½D Kun pintojen välinen etäisyys D ja pintavaraus tunnetaan, voidaan potentiaali V ja varausjakauma laskea

14 Yksi negatiivisesti varattu pinta liuennut suola: 14 P: d V d i0 Valitaan potentiaalin taso: e n i1 c z e i ziev k T V () = 0 ja V (0) = V 0 Reunaehto: = 0 Suolapitoisuus c () = c 0 Dissosioituneiden ionien osuus pieni verrattuna suolaan voidaan jättää huomioimatta n ziev d V e kt dv ci0zie d i1 d dv d V dv e d d d Integroitavissa puolittain n i1 c z e i0 i ziev k T

15 d dv dv d V d d d d Integroidaan puolittain käyttäen integrointirajoina ja : n ziev n dv d V dv e k T kt d i 0 i i 0 i1 i1 c z e c e d d d d ziev k T n ziev ( ) ziev ( ) ( ) ( ) dv dv kt kt kt ci 0 e e d d i1 n ziev ( ) ( ) dv kt kt ci 0 e 1 d i1 Tarkastellaan symmetristä suolaa, esim. NaCl, z = 1 ev ( ) ev ( ) dv ( ) kt c kt 0 kt i e e d Vasemmman puolen etumerkki riippuu pintavarauksesta

16 Negatiiviselle pintavaraukselle: ev ( ) ev ( ) ( ) dv k Tci0 kt kt e e d ev ( ) ev ( ) dv ( ) k Tci0 kt kt e e d dv ( ) k Tc ev ( ) d kt i0 sinh e e e e a a a a Tämä voidaan integroida D kt 1 e ev0 V( ) ln, missä =tanh e kt 1 e D Debyepituus kt D ( z e) c i i V 0 on potentiaali varautuneella pinnalla Tämä tunnetaan GouyChapman teoriana 0

17 Pintavaraukselle (1:1 suola): d V dv (0) ( ) d d d d ev0 ktci0 sinh kt GouyChapman: D kt 1 e ev0 e kt V( ) ln, missä =tanh D 1 e D kt ( z e) c i i 0 Pienillä potentiaaleilla linearisointi: sinh (DebyeHückel teoria) Debyepituus ev ev ev D Jos 1 sinh V ( ) V e k T k T k T 0 kt V e = 5 mv huoneenlämmössä

18 Ionimäärän (suolan) lisäys ohentaa diffuusin varauskerroksen paksuutta: pintavarauksen varjostus jo pinnan lähellä Samanmerkkisesti varautuneet kalvot: Repulsio diffuusin varauspilven päällekkäisyydestä Osmoottinen paine Vastakkaismerkkisesti varautuneet kalvot: Vastaionien poistuminen: entropia kasvaa, F laskee, attraktio Eivät kompleksoidu vaan liikkuvat vapaasti

19 DebyeHückel teoria liuenneille ioneille mm NaCl liuoksessa osmolaarisuus 187 mm Mistä epäideaalisuus? Oletukset: Keskusioni vastakkaismerkkisen varausjakauman ympäröimä: keskimääräinen kenttä Ioniioni attraktio ~ 1/r Terminen energia Liuotin dielektrinen kontinuumi Ioniliuotin vuorovaikutuksia ei huomioida V(r) Poissonoltzmann varausjakauma

20 DebyeHückel teoria liuenneille ioneille 0 Pallosymmetrinen Poissonoltzmann: 1 d r dr r dv e dr i 0i ziev k T Matalilla potentiaaleilla zev << kt linearisointi: ziev kt i 0ie 0i 0i i i i i 0 ziev kt c z e V r dr dr k T 1 d dv 0i i 1 r i D ra D q e V() r 4 a r(1 ) D elektroneutraalisuus V q z ec i i i 1 Keskusionin säde = a D V(r) ionin säde = a varausjakauma

21 Veden ominaisuudet (vähän kertaustakin) Vesi polaarinen molekyyli Happi elektronegatiivinen negat. varausta hapella, posit. vedyillä dipolimomentti Vesi polaroituva väliaine Ulkoinen sähkökenttä kääntää molekyylejä Vetyioni = protoni: pieni! Vesi pystyy muodostamaan vetysidoksia

22 Vesimolekyylien väliset voimat huomattavia Jää: säännöllinen kiderakenne 4 vetysidosta/molekyyli Vesi: osittain järjestynyt rakenne Keskimäärin 3,4 vetysidosta/molekyyli Vetysidokset katkeavat ja syntyvät jatkuvasti kuvat 1 ps välein

23 Makromolekyylien väliset vuorovaikutukset, veden entropia:

24 Vesi tuomassa vetysidoksia makromolekyylien sisällä:

25 Veden ja ionien välinen vuorovaikutus: Ionit vaikuttavat veteen; vesi ioneihin Liukeneminen: solvaatio (vedessä hydraatio) Epäorgaaniset ionit: Sähköstaattinen vuorovaikutus Orgaaniset ionit: Sähköstaattinen vuorovaikutus ja vetysidokset Primäärihydraatioalue: Ionin sähkökenttä määrää vesimolekyylien orientaation Sekundäärihydraatioalue: Ionin sähkökenttä ei jaksa orientoida vesimolekyylejä, mutta hajottaa vetysidosrakenteen bulkkivesi Vesimolekyyleihin merkityt nuolet osoittavat dipolimomentin suuntaan Sekundäärihydraatioalue Primäärihydraatioalue

26 Ionit vedessä vaikuttavat: entropiaan dielektrisyysvakioon lämpökapasiteettiin tilavuuteen kompressibiliteettiin Kullakin ionilajilla oma kontribuutionsa Ionivesi vuorovaikutus riippuu etäisyydestä mistä ionikoon estimaatti? Oikean ionikoon käytöllä merkitystä: Hydraatio Permeaatio Ioniselektiivisyys Ionikoon estimaatin saanti eitriviaalia: Neutraalit atomit kiteestä helposti: Riippuvat ionivesi vuorovaikutuksesta Identtiset atomit vierekkäin kiteessä (esim. O); jaetaan etäisyys :lla muut at. Ionit: esim. röntgendiffraktio NaClkiteestä NaCletäisyys.814 Å (18 ºC); mikä osuus Na, Cl

27 Hydraatiosäteelle estimaatti johtavuusmittauksilla: Approksimaatiot: Hydratoitunut ioni makroskooppinen pallo Ympäröivä vesi muodostaa kontinuumin Ei rakennetta Voidaan kuvata viskositeetilla Ionien ajo sähkökentällä, virtamittaus F qe 6 rv Veden vaihtonopeus ionin ympärillä Riippuu ionisäteestä Pieni ionisäde voimakas sähkökenttä Suuri ionisäde heikko sähkökenttä Kun suurempi kuin H OH O vaihtotaajuus: Veden rakennetta hajottavat ionit Kun pienempi kuin H OH O vaihtotaajuus: Veden rakennetta lisäävät ionit

28 Hydraatiovaippa dynaaminen Vaihtotaajuus > 10 8 s 1 fysiologisille ioneille (paitsi Mg, jolle ~ 10 5 s 1 ) H OH O vaihtotaajuus ~ s 1 Veden vaihtotaajuus merkitsevä esim. ionikanavapermeaation kannalta, samoin hydraatiosäde

29 9

30 Hydrofobinen vuorovaikutus: Entrooppinen Vedellä 6 mahdollista orientaatiota vetysidosverkossa Kun yksi vetysidos poistuu, vain 3 mahd. orientaatiota S k ln3 k ln 6 hydrophobic k ln

31 iomolekyylien väliset vuorovaikutukset vedessä:

Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0

Luento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0 Luento 9 11.3.016 1 Sähköstaattiset vuorovaikutukset Poissonoltzmann yhtälö Varatut pinnat nesteessä Varatut pallomaiset partikkelit nesteessä Veden ominaisuudet Hydrofobinen vuorovaikutus = 0 Sähköstaattiset

Lisätiedot

HEIKOT VUOROVAIKUTUKSET MOLEKYYLIEN VÄLISET SIDOKSET

HEIKOT VUOROVAIKUTUKSET MOLEKYYLIEN VÄLISET SIDOKSET HEIKOT VUOROVAIKUTUKSET MOLEKYYLIEN VÄLISET SIDOKSET Tunnin sisältö 2. Heikot vuorovaikutukset Millaisia erilaisia? Missä esiintyvät? Biologinen/lääketieteellinen merkitys Heikot sidokset Dipoli-dipolisidos

Lisätiedot

Chapter 7. Entropic forces at work

Chapter 7. Entropic forces at work Chapter 7. Entropic forces at work 1 Luento 8 4.3.2016 Osmoottinen paine Pintajännitys Tyhjennysvuorovaikutus MIKSI? Vapaa energia F a = E a -TS a voi pienentyä 1. Pienentämällä energiaa 2. Kasvattamalla

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali

Lisätiedot

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä

Luku 23. Esitiedot Työ, konservatiivinen voima ja mekaaninen potentiaalienergia Sähkökenttä Luku 23 Tavoitteet: Määritellä potentiaalienergia potentiaali ja potentiaaliero ja selvittää, miten ne liittyvät toisiinsa Määrittää pistevarauksen potentiaali ja sen avulla mielivaltaisen varausjakauman

Lisätiedot

782630S Pintakemia I, 3 op

782630S Pintakemia I, 3 op 782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne.

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine on hyvä erottaa kiinteästä aineesta, johon kuuluu myös

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Luento Pääteemat: Vetysidos Veden ominaisuudet Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely

Luento Pääteemat: Vetysidos Veden ominaisuudet Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Luento 0.1.017 1 Pääteemat: Vetysidos Veden ominaisuudet Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Vetysidos Varattujen ja myös neutraalien molekyylien välillä Kaksi elektronegatiivista

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

VIELÄ KÄYTÄNNÖN ASIAA

VIELÄ KÄYTÄNNÖN ASIAA VIELÄ KÄYTÄNNÖN ASIAA Kurssin luentomuis8inpanot (ja tulevat laskarimallit) näkyvät vain kun olet kirjautunut sisään ja rekisteröitynyt kurssille WebOodin kauga Kurssi seuraa oppikirjaa kohtuullisen tarkkaan,

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Nesteen sisäinen kitka ja diffuusio

Nesteen sisäinen kitka ja diffuusio Nesteen sisäinen kitka ja diffuusio 1 Luento.1.016 (oppikirjan luku 4) Nesteen sisäinen kitka Satunnaiskävelyilmiöitä Diffuusio Diffuusio kalvon läpi Diffuusiotensorikuvaus: Magneettiresonanssi (MR) Hermoratojen

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)

12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =!  0 E loc (12.4) 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

8. Chemical Forces and self-assembly

8. Chemical Forces and self-assembly Luento 10 24.3.2017 1 Kemiallinen potentiaali Sähkökemiallinen potentiaali Kemiallisen reaktion suunta Reaktiokoordinaatti Entsymaattisten reaktioiden kinetiikka Elektro-osmoottiset ilmiöt solukalvolla

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELECA4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 2 Gaussin laki (YF 22) Oppimistavoitteet Varaus

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä kaikessa fysiikassa. Sähköja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään

Lisätiedot

SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki

SATE2180 Kenttäteorian perusteet syksy / 5 Laskuharjoitus 5 / Laplacen yhtälö ja Ampèren laki STE80 Kenttäteorian perusteet syksy 08 / 5 Tehtävä. Karteesisessa koordinaatistossa potentiaalin nollareferenssitaso on y = 4,5 cm. Määritä johteelle (y = 0) potentiaali ja varaustiheys, kun E = 6,67 0

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Seoksen pitoisuuslaskuja

Seoksen pitoisuuslaskuja Seoksen pitoisuuslaskuja KEMIAA KAIKKIALLA, KE1 Analyyttinen kemia tutkii aineiden määriä ja pitoisuuksia näytteissä. Pitoisuudet voidaan ilmoittaa: - massa- tai tilavuusprosentteina - promilleina tai

Lisätiedot

Ionisidos ja ionihila:

Ionisidos ja ionihila: YHDISTEET KEMIAA KAIK- KIALLA, KE1 Ionisidos ja ionihila: Ionisidos syntyy kun metalli (pienempi elek.neg.) luovuttaa ulkoelektronin tai elektroneja epämetallille (elektronegatiivisempi). Ionisidos on

Lisätiedot

12. Eristeet Vapaa atomi

12. Eristeet Vapaa atomi 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

Vesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen

Vesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen Vesi Hyvin poolisten vesimolekyylien välille muodostuu vetysidoksia, jotka ovat vahvimpia molekyylien välille syntyviä sidoksia. Vetysidos on sähköistä vetovoimaa, ei kovalenttinen sidos. Vesi Vetysidos

Lisätiedot

Kemiallinen reaktio

Kemiallinen reaktio Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä

Lisätiedot

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

BECS-C2101 Biofysiikka

BECS-C2101 Biofysiikka BECS-C2101 Biofysiikka 1 Luento 2 16.1.2015 Solujen sisustan koostumus Biomolekyylien vuorovaikutukset ja rakenne Veden ominaisuudet Chapter 2. What s Inside Cells 2 Biologinen kysymys: Miten solut toteuttavat

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion

Lisätiedot

Teddy 1. harjoituksen malliratkaisu kevät 2011

Teddy 1. harjoituksen malliratkaisu kevät 2011 Teddy 1. harjoituksen malliratkaisu kevät 2011 1. Dipolimomentti voidaan määritellä pistevarauksille seuraavan vektoriyhtälön avulla: µ = q i r i, (1) i missä q i on i:nnen varauksen suuruus ja r i = (x

Lisätiedot

Liukeneminen 31.8.2016

Liukeneminen 31.8.2016 Liukeneminen KEMIAN MIKROMAAILMA, KE2 Kertausta: Kun liukenevan aineen rakenneosasten väliset vuorovaikutukset ovat suunnilleen samanlaisia kuin liuottimen, niin liukenevan aineen rakenneosasten välisiä

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

VESI JA VESILIUOKSET

VESI JA VESILIUOKSET VESI JA VESILIUOKSET KEMIAA KAIKKIALLA, KE1 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

Potentiaali ja potentiaalienergia

Potentiaali ja potentiaalienergia Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit

Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

8. Chemical Forces and self-assembly

8. Chemical Forces and self-assembly 8. Chemical Forces and self-assembly Biologinen kysymys: Miten voi hyvin sekoittuneessa liuoksessa oleva molekulaarinen moottori tehdä hyötytyötä? Eikö sen tarvitsisi olla sellaisten kompartmenttien rajalla,

Lisätiedot

JÄÄTYMISPISTEEN ALENEMA Johdanto. 2 Termodynaaminen tausta

JÄÄTYMISPISTEEN ALENEMA Johdanto. 2 Termodynaaminen tausta JÄÄTYMISPISTEEN ALENEMA 2-2010 1 Johdanto Kolligatiiviset ominaisuudet ovat liuosten ominaisuuksia, jotka riippuvat ainoastaan liuotetun aineen määrästä (konsentraatiosta) ei sen laadusta. Kolligatiivisia

Lisätiedot

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Kertausta IONIEN MUODOSTUMISESTA Jos atomi luovuttaa tai

Lisätiedot

2 Eristeet. 2.1 Polarisoituma

2 Eristeet. 2.1 Polarisoituma 2 Eristeet Eristeissä kaikki elektronit ovat sitoutuneita atomeihin tai molekyyleihin, eivätkä voi siis liikkua vapaasti kuten johdeelektronit johteissa. Ulkoinen sähkökenttä aiheuttaa kuitenkin vähäisiä

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Orgaaninen reaktio Opettava tutkija Pekka M Joensuu Orgaaniset reaktiot Syyt Pelkkä törmäys ei riitä Varaukset (myös osittaisvaraukset) houkuttelevat molekyylejä

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

1. Malmista metalliksi

1. Malmista metalliksi 1. Malmista metalliksi Metallit esiintyvät maaperässä yhdisteinä, mineraaleina Malmiksi sanotaan kiviainesta, joka sisältää jotakin hyödyllistä metallia niin paljon, että sen erottaminen on taloudellisesti

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

Chapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely

Chapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance 1 Luento 15.1.016 Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen

Lisätiedot

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus 11.5.2017 Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä

Lisätiedot

Jakso 5. Johteet ja eristeet Johteista

Jakso 5. Johteet ja eristeet Johteista Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä Sähköstatiikasta muuta SISÄLTÖ Sähköinen ipoli Konensaattori Sähköstaattisia laskentamenetelmiä Sähköinen ipoli Tässä on aluksi samaa asiaa kuin risteet -kappaleen alussa ja lopuksi vähän uutta asiaa luentomonisteesta.

Lisätiedot

1. a) Selitä kemian käsitteet lyhyesti muutamalla sanalla ja/tai piirrä kuva ja/tai kirjoita kaava/symboli.

1. a) Selitä kemian käsitteet lyhyesti muutamalla sanalla ja/tai piirrä kuva ja/tai kirjoita kaava/symboli. Kemian kurssikoe, Ke1 Kemiaa kaikkialla RATKAISUT Maanantai 14.11.2016 VASTAA TEHTÄVÄÄN 1 JA KOLMEEN TEHTÄVÄÄN TEHTÄVISTÄ 2 6! Tee marinaalit joka sivulle. Sievin lukio 1. a) Selitä kemian käsitteet lyhyesti

Lisätiedot

Biofysiikka, Luento

Biofysiikka, Luento Biofysiikka, Luento 4 3..017 1 Diffuusio eri geometrioissa ja sovelluksia Varattujen partikkelien diffuusio (elektrodiffuusio) Johdatus matalien Reynolds-lukujen maailmaan Aikariippuvat diffuusioprosessit

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Hapot, Emäkset ja pk a Opettava tutkija Pekka M Joensuu Jokaisella hapolla on: Arvo, joka kertoo meille kuinka hapan kyseinen protoni on. Helpottaa valitsemaan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

Luku Sähköinen polarisoituma

Luku Sähköinen polarisoituma Luku 3 Sähkökenttä väliaineessa Tässä luvussa tutustutaan sähkökenttään väliaineessa (RMC luku 4, CL luku 4; esitiedot KSII luku 2, osa 2.9). Väliaineiden sähköisiin ja magneettisiin ominaisuuksiin tutustutaan

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

9. JAKSOLLINEN JÄRJESTELMÄ

9. JAKSOLLINEN JÄRJESTELMÄ 9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

Energia, energian säilyminen ja energiaperiaate

Energia, energian säilyminen ja energiaperiaate E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman

Lisätiedot

Chapter 4. Random Walks, Friction and Diffusion

Chapter 4. Random Walks, Friction and Diffusion Chapter 4. Random Walks, Friction and Diffusion 1 Luento3 6.1.017 Diffuusiotensorikuvaus: Magneettiresonanssi (MR) Hermoratojen kuvantaminen Chapter 4. Random Walks, Friction and Diffusion Dissipaatio:

Lisätiedot

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä

Lisätiedot

Stanislav Rusak CASIMIRIN ILMIÖ

Stanislav Rusak CASIMIRIN ILMIÖ Stanislav Rusak 6.4.2009 CASIMIRIN ILMIÖ Johdanto Mistä on kyse? Mistä johtuu? Miten havaitaan? Sovelluksia Casimirin ilmiö Yksinkertaisimmillaan: Kahden tyhjiössä lähekkäin sijaitsevan metallilevyn välille

Lisätiedot

Fysiikka 1. Kondensaattorit ja kapasitanssi. Antti Haarto

Fysiikka 1. Kondensaattorit ja kapasitanssi. Antti Haarto Fysiikka Konensaattorit ja kapasitanssi ntti Haarto 4..3 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja jännitteen suhe Yksikkö

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa

Lisätiedot

L10 Polyelektrolyytit pinnalla

L10 Polyelektrolyytit pinnalla CHEM-2230 Pintakemia L10 Polyelektrolyytit pinnalla Monika Österberg Polyelektrolyyttiadsorptio (mg/m 1 0.5 2 ) C Muistatteko kemisorption ja fysisorption ero? Adsorptiota kuvataan adsorptioisotermin avulla

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2017 Emppu Salonen Lasse Laurson Touko Herranen Toni Mäkelä Luento 11: Faasitransitiot Ke 29.3.2017 1 AIHEET 1. 1. kertaluvun transitioiden (esim.

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

Käsitteitä. Hapetusluku = kuvitteellinen varaus, jonka atomi saa elektronin siirtyessä

Käsitteitä. Hapetusluku = kuvitteellinen varaus, jonka atomi saa elektronin siirtyessä Sähkökemia Nopea kertaus! Mitä seuraavat käsitteet tarkoittivatkaan? a) Hapettuminen b) Pelkistyminen c) Hapetusluku d) Elektrolyytti e) Epäjalometalli f) Jalometalli Käsitteitä Hapettuminen = elektronin

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot