Titaani. Titaani. Yleistä. Yleistä

Koko: px
Aloita esitys sivulta:

Download "Titaani. Titaani. Yleistä. Yleistä"

Transkriptio

1 Titaani Sulamislämpötila 1668 C Titaani Hilarakenne Heksagoninen α- faasi 882 C saakka Tilakeskinen β-faasi 882 C yläpuolella Tiheys 4,54 g/cm 3 Kimmokerroin 105 kn/mm 2 Murtolujuus 280 N/mm 2 2 Käytännön titaanit ja titaaniseokset ovat enimmäkseen heksagonista α-faasia, jonka pysyvyyttä edistävät seosaineet kuten alumiini, happi, typpi ja hiili Hilarakenteensa vuoksi näiden seosten kylmämuovattavuus on rajallista, mutta muodonmuutoskyky on parempi kuin muiden HTP -metallien (Zn, Mg) Muista HTP-rakenteellisista metalleista poiketen α-faasititaanit ovat yleensä sitkeitä myös kylmässä hyvä korroosionkestävyys hyvä lujuus/paino -suhde 3 4 1

2 Seokset Seostamattomia titaanilajeja on olemassa neljää eri puhtausastetta. Puhtain laji (99,5 % Ti) sisältää epäpuhtauksia enintään 0,5 % ja sen lujuusarvot ovat lähellä puhtaan titaanin arvoja Korkea hinta, n. 10X ruostumattoman teräksen hinta Allotropia -> lämpökäsiteltävyys Faasirajoja voidaan muuttaa seostuksella Valmistettavuus Titaanin valmistettavuuden ja käsittelyn vaikeus. Koska titaani pyrkii sitomaan tai liuottamaan itseensä happea ja vetyä, se joudutaan sulattamaan ja valamaan tyhjiössä tai suojakaasussa Hitsauksessa ei riitä tavallinen suojaus inertillä kaasulla, vaan suojausta tarvitaan myös hitsisauman juuren puolelta. Jos ei suojakaasuja Haurastuminen hapen ja typen vaikutuksesta 5 6 Lastuttavuus Lastuttaessa titaania ja sen seoksia ongelmat ovat samantapaisia kuin ruostumattomien terästen lastuamisessa Voimakas muokkauslujittuminen Huono lämmönjohtuminen Suuri reaktiivisuus terä leikkautuu helposti kiinni työkappaleeseen tai lastut alkavat palaa Reaktiivisuus Reaktiivisuus Passivoituu 525 C alapuolella Korroosio-ominaisuudet Seostuksen ja lämpökäsittelyjen avulla saatavat lujuus-, sitkeys- ja väsymisominaisuudet parhaita metalliseosten joukossa 7 8 2

3 Suuri Affiniteetti Titaanilla on suuri affiniteetti happeen, typpeen ja vetyyn, joita voi tunkeutua metalliin eri ympäristöistä. Nämä alkuaineet nostavat titaanin lujuutta huomattavasti, mutta laskevat sitkeyttä Vety voi aiheuttaa vetyhaurautta Käyttökohteet Titaanin ja sen seosten käyttö suuntautuu kohteisiin, joissa tarvitaan hyvää lujuus/paino -suhdetta (Suuri lujuus, alhainen tiheys) ja hyvää korroosion-kestävyyttä Tällaisia ovat esim. ilmailu- ja avaruustekniikka, laivanrakennusteollisuus, kemian- ja puunjalostusteollisuus, sentrifugit, urheiluvälineet Kun pyritään suureen lujuuteen, joudutaan käyttämään runsaammin seostettuja laatuja ja samalla tinkimään esim. muokattavuudesta Hyvä väsymiskestävyys Hyvä väsymislujuus. Teräksen tapaan titaani saavuttaa väsymisrajan (terävä väsymisraja) Kuormanvaihtoluvun 10 7 jälkeen väsymislujuus ei enää laske Titaanien väsymisraja on useimmiten 0,5-0,6 kertaa vetomurtolujuus Titaani ja titaaniseokset kestävät korkealämpötilankäyttöä aina 550 C Muut sovellukset Koska titaani ja titaaniseokset ovat hyvin sitkeitä myös alhaisissa lämpötiloissa, ne soveltuvat kylmätekniikkakäyttöön Titaania käytetään myös lääketieteellisissä sovellutuksissa; proteeseissa ja luunauloissa Ei ärsytä kudoksia, ei hylkimisreaktioita

4 Korroosionkestävyys Titaanin korroosionkestävyys perustuu sen pinnassa olevaan ja hyvin kiinnipysyvään oksidikerrokseen Oksidikerros kasvaa huoneilmassa n nm paksuiseksi. Muodostuu yleensä eri oksideista Hapettavissa oloissa kasvu nopeutuu selvästi Oksidikalvo on huomattavasti lujempi ja stabiilimpi kuin alumiinin ja ruostumattoman teräksen passivaatiokalvo Korroosionkestävyys Kestää jopa klorideja Erityisesti merivedessä titaanin korroosionkestävyys on erinomainen Pienellä palladiumseostuksella saadaan korroosionkestävyys hyväksi myös lievästi pelkistävissä oloissa Titaani syöpyy sellaisissa oloissa, joissa oksidikalvo liukenee Titaani kestää huonosti rikki-, suola- ja fluorivetyhapoissa jatkuu Yleisin korroosiolaji on pistekorroosio voi syntyä jo melko hapettavissakin olosuhteissa, jos hapen pääsy pinnalle estyy Titaanin jännityskorroosionkesto on erittäin hyvä, tosin joissakin olosuhteissa (rikkihappo) α-titaanilla saattaa esiintyä taipumusta jännityskorroosioon. β-titaanilla parempi kesto jännityskorroosiota vastaan Titaanin lujuudesta Puhtaalla seostamattomalla titaanilla on alhaisin lujuus ja parhaat sitkeysominaisuudet Seostamattomien titaanien lujuus kasvaa epäpuhtauspitoisuuksien (O-, N- ja C- pitoisuudet) lisääntyessä Seostamattoman titaanin lujuusarvot laskevat 50 % lämpötilan noustessa huoneenlämpötilasta 300 C:een

5 Titaanin lujuudesta Yleisimmän titaaniseoksen (Ti-6Al-4V) lujuusarvot ovat nuorrutusterästen luokkaa Lujuuden kannalta seostamattomien titaanien korkein mahdollinen käyttölämpötila on noin C Kuormittamattomissa rakenteissa hapettuminen rajoittaa ylimmäksi käyttölämpötilaksi 550 C 19 Syitä titaanin käyttöön Ominaisuuksia Korroosion kesto Tiheys keskiluokkaa (4.5 g/cm3) Puhtaan (kauppalaatu) titaanin lujuus 480 MPa Seostetut < 1100 MPa Ja erikoistapauksissa jopa 1725 MPa Tietyillä laaduilla ei ole sitkeä-hauras transitiolämpötilaa Kaksi kiderakennetta Eriseosaineet muuttavat alfa-beeta faasimuutoksen lämpötilaa -> seostuksella, lämpökäsittelyillä ja muokkauksella voidaan ominaisuuksia muuttaa merkittävästi Kuumalujuus, virumisen kesto lämpötilaan 540 C asti 20 Kaupallisesti puhdas titaani Puhtausaste luokkaa p-% Käytetään pääasiassa hyvän korroosion keston vuoksi Käytetään kun murtovenymän on oltava suuri ja lujuus voi olla pieni Korroosio Titaani on reaktiivinen metalli, mutta samalla sen pintaan syntyy kestävä ja suojaava oksidikerros Oksidikerros syntyy itsestään metallisen titaanin pintaan ilman ja/tai kosteuden vaikutuksesta Heikkoutena on oksidikerroksen rikkoutuminen hapettomassa ympäristössä, mikä mahdollistaa titaanin syöpymisen. Rakokorroosio on tästä eräs esimerkki (kuumat kloridi, bromidi, jodidi, fluoridi ja sulfaattiympäristöt ympäristöt) Kaupallisesti puhdas titaani Kiderakenne Heksagonaalinen tiivispakkaus (alfa) matalissa lämpötiloissa (alle 885 C) Tilakeskinen kuutiollinen (beeta) korotetussa lämpötilassa (yli 885 C) Epäpuhtaudet ja seosaineet muuttavat faasimuutoslämpötilaa Seostaminen saa aikaa kaksifaasi alueen synnyn alpha transus (solvus) beta transus

6 Kaupallisesti puhdas titaani Mikrorakenne 100% alfa Epäpuhtaudet (rauta) mahdollistavat beeta-faasin (vertaa jäännösausteniittiin) läsnäolon (alfa faasin raerajoilla) Alfa faasi on tasa-akselista tai asikulaarista (neulasmainen) Tasa-akselinen rakenne Tasa-akselista alfa faasia syntyy rekristallisaatiossa kun muokkaus tehdään alfa faasin stabiilisuusalueella Asikulaarinen (acicular) rakenne Asikulaarinen faasi syntyy kun beta-faasi hajoaa alfaksi tietyllä lämpötila-alueella ja tietyllä jäähtymisnopeudella Asikulaarisen alfa faasin levyt ohenevat kun jäähtymisnopeus kasvaa Asikulaarinen alfa faasi osoittaa että lämpötila on ollut jossain vaiheessa beta faasin stabiilisuusalueella Kaupallisesti puhdas titaani Epäpuhtaudet ja mekaaniset ominaisuudet Faasimuutoslämpötila ja hilamittojen lisäksi epäpuhtaudet kuten C, N, Si ja Fe nostavat lujuutta ja laskevat murtovenymää Kaupallisesti puhtaan titaanin lujuus riippuu pääasiassa happi- ja rautapitoisuudesta. Niitä lisätään korkealujuuksisiin versioihin Hiili- ja typpipitoisuus pyritään pitämään pienenä jotta sitkeys ei laskisi ELI = Extra-low interstitial -> hyvä murtovenymä ja sitkeys Kauppalaatujen ominaisuudet Kimmomoduli on keskitasoa Kauppalaatujen ominaisuudet Iskusitkeys on nuorrutusteräksen luokkaa Pienillä epäpuhtauspitoisuuksilla sitkeys kasvaa matalissa lämpötiloissa

7 Kauppalaatujen ominaisuudet Virumista ei juuri tapahtu lämpötiloissa C. Korkeammissa lämpötiloissa virumisella voi olla merkitystä Kauppalaatujen ominaisuudet Titaanin lämmönjohtavuus on matala W/mK (99.6% Ti) W/mK (AISI 403) W/mK (AA 1050) W/mK (Cu-ETP) Titaani käytetään lämmönvaihtimissa koska pinnalla oleva oksidikerros johtaa hyvin lämpöä, seinämät voivat olla ohuita, titaani kestää hyvin korroosiota Suuri lujuus ja hyvä korroosion kesto mahdollistavat ohuet seinämät Vähän seostetut kauppalaadut Ti-0.2Pd ja Ti- 0.3Mo-0.8Ni Seostus parantaa korroosion kestoa ja/tai lujuutta Tyypilliset seokset Ti-6Al-4V (yleisin) Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al-2Sn-4Zr-6Mo (suuri lujuus korotetussa lämpötilassa) Ti-6242S, IMI 829, Ti-6442 (virumisen kesto) Ti-6Al-2Nb-1Ta-1Mo, Ti-6Al-4V-ELI (jännityskorroosion kesto ja suuri murtositkeys) Ti-5Al-2.5Sn (hitsattavuus) Ti-5Al-2.5Sn-ELI (matalat lämpötilat) Ti-6Al-6V-2Sn, Ti-6Al-4V, Ti-10V-2Fe-3Al (suuri lujuus)

8 Seostaminen Pääasiallinen vaikutus on alfa-beeta -faasimuutoksen vaikuttaminen Jotkut seosaineet stabiloivat alfa faasia ja nostavat alfabeeta faasimuutoslämpötilaa Jotkut seosaineet stabiloivat beeta faasia ja laskevat alfa-beeta faasimuutoslämpötilaa Seostaminen saa aikaa kaksifaasialueen (alfa transus ja beeta transus) Alumiini on tärkein alfa faasin stabiloija. Muita ovat Ga, Ge, C, O ja N Beta stabiloijat jaetaan kahteen ryhmään: isomorfisen (Mo, V, Ta, Nb) ja eutektoidisen (Mn, Fe, Cr, Co, Ni, Cu, Si) tasapainopiirroksen muodostaviin Isomorfisen seosaineen tapauksessa rakenteeksi voi syntyä 100% beta faasia (vertaa Ni-Cu) Eutektoidisen seosaineen tapauksessa rakenteeksi voi syntyy alfa-beta faasiseos (vertaa Fe-C) Eutektoidiset seosaineet jaetaan aktiivisiin ja hitaisiin. Aktiiviset (Ni, Cu) seosaineet muodostavat eutektisen rakenteen nopeasti, hitaat (Fe, Mn) hitaasti Alumiini Tärkein alfa-stabiloija Nostaa murtolujuutta, virumisen kestoa ja kimmomodulia Yli 6% lisääminen kasvattaa hauraan Ti 3 Al (α 2 ) faasin syntymisen todennäköisyyttä. Ti 3 Al syntyy etenkin jos seoksessa on happea Tina Suuri liukoisuus sekä alfa että beeta faasiin, pieni vaikutus faasimuutoslämpötilaan Liuolujittaja, käytetään usein yhdessä alumiinin kanssa ilman sitkeyden laskua Voi korvata alumiinin Ti 3 Al yhdisteessä jolloin syntyy Ti 3 (Al,Sn) Zirkonium Stabiloi heikosti beeta faasia, muodostaa aukottoman liukoisuuden, liuoslujittuminen Suurempi kuin 5-6% lisäys voi aiheuttaa murtovenymän ja virumiskeston laskemista Molybdeeni Stabiloi beeta faasia, edistää karkenevuutta ja lyhyen ajan kuumalujuutta Heikentää hitsattavuutta ja pitkän ajan kuumalujuutta (Miten lyhyt ja pitkä aika eroavat?)

9 Niobi Beeta stabiloija jota käytetään korkean lämpötilan hapettumisen keston parantamiseen Rauta Beeta stabiloija joka laskee virumislujuutta Hiili Alfa stabiloija joka kasvattaa alfan ja betan välistä kaksifaasi aluetta (helpottaa seoksen lämmittämistä kaksi faasialueelle) Nostaa lujuutta ja väsymisen kestoa 36 Seosten jaottelu Alfa, alfa-beeta ja beeta Usein alfa jaetaan edelleen täysin alfaksi (fully-alpha) ja lähes alfa (near alpha) seoksiksi Melkein alfa seoksista käytetään myös superalpha ja lean-beta nimitystä Joskus lähes alfa luetaan alfa-beeta seokseksi Harvemmin puhutaan myös lähes beeta (near-beta) tai metastabiilista beeta (metastable-beta) seoksista Alfa seokset Hiukan vähemmän korroosiota kestäviä kuin kauppalaadut. Lujuus on parempi Varsin sitkeitä (muista heksagonaalinen rakenne), ELI laadut sitkeitä matalissa lämpötiloissa Lujittamiseen ei voida käyttää faasimuutosta, koska alfa faasi on stabiili huoneen lämpötilassa 37 Alfa seokset Lujuuteen ja virumisen kestoon vaikutetaan pääasiassa seostuksen (liuoslujitus)raekoon avulla Esimerkiksi Ti-5Al-2.5Sn Tasapainopiirroksen mukaan Ti3Al alkaa syntyä noin 6% Alpitoisuudelle ja Ti3Sn noin 11% Sn-pitoisuuden kohdalla Eri seosaineet pienentävät titaanin sitkeyttä. Alumiiniekvivalentin tulisi olla alle 9% Al + Sn/3 + Zr/ O + 10 C + 20 N Lähes alfa seokset Pieni määrä beeta faasin stabiloijaa mahdollistaa monipuolisemmat lämpökäsittelyt Mikrorakenne on pääasiassa alfaa, mutta seassa on pienimäärä beeta faasia Rakenteeseen vaikuttaa oleellisesti hehkutus/muokkaus lämpötila

10 Seuraavilla kalvoilla lähes alfa seoksen Ti-8Al- 1Mo-1V mikrorakenteita a) tasa-akselisia primäärisiä alfa rakeita (vaalea) ja tummaa beeta faasia. Muokkaus tehty α-β alueella b) tasa-akselisia primäärisiä alfa rakeita (vaalea) ja beeta faasia (tumma) jossa asikulaarista alfa-faasia. Muokattu α-β alueella, mutta korkeammassa lämpötilassa c) Beeta faasia (tumma), jossa asikulaarista alfaa. Muokattu beeta alueella ja sammutettu nopeasti Alfa-beeta seokset Seoksissa on sekä alfa että beeta faasia stabiloivia seosaineita Near alfa täyttää määritelmän, mutta koska sen ominaisuudet ovat lähempänä alfa seosta, se luokitellaan useimmiten alfa seosten alalajiksi Hyvät mahdollisuudet erilaisia termomekaanisiin lämpökäsittelyihin Jos halutaan hyvä lujuus, niin kappale jäähdytetään nopeasti alfa-beeta tai beeta alueelta sekä päästetään (erkaumien muodostuminen) Seuraavalla kalvolla hehkutuslämpötilan ja jäähtymisnopeuden vaikutus Ti-6Al-4V seoksen rakenteeseen Parhaaseen lujuuden ja sitkeyden yhdistelmään päästään α-β alueella tehdyllä hehkutuksella, vesisammutuksella ja päästöllä Beeta seokset Paljon beeta-faasia stabiloivia aineita, vähän alfaa stabiloivia aineita Metastabiileissa beeta seoksissa martensiittireaktion alkamislämpötilaa ei saavuteta Vanhennuksen avulla metastabiilin beetan sekaan voidaan erkauttaa lujittavaa alfa faasia Stabiileissa beeta seoksissa seos pysyy tasapainopiirroksessa esitetyn beetafaasin stabiilisuus alueella Ei mahdollisuutta lämpökäsittelyyn Harvemmin käytettyjä

11 Beetaseosten lämpökäsittelyt ovat hankalampia. Käytetään koska Murtositkeydet parempia Hyvä korroosion kesto Mo seostuksen takia (miksi taas Mo?) Hyvä muokattavuus huoneen lämpötilassa (tilakeskinen kuutiollinen rakenne) Karkenevat syvempään kuin alfa-beeta seokset Beeta seokset voidaan jakaa kahteen luokkaan erkautumiskäyttäytymisen mukaan Lean beta seoksissa erkautuminen tapahtuu nopeasti Rich beta seoksissa erkautuminen tapahtuu hitaasti Usein kysymyksessä on jonkin muun metastabiilin rakenteen muodostumisesta (seuraava kalvo) Esitiedot Mitä tarkoittavat alfa, alfa-beeta ja beeta seokset kun kysymys on titaanin seostuksesta? Miksi on olemassa alfa, alfa-beeta ja beeta seoksia? Mitkä ovat näiden seosten vahvuudet (ja/tai heikkoudet) toisiinsa verrattuna? Mitä vaihtoehtoja on alfa-beeta rakenteen aikaan saamiseksi? Esitiedot Esitiedot Mitkä ovat Ti-6Al-4V seoksen ominaisuudet ja mihin sitä käytetään? Se on eniten käytetty titaaniseos. Sen mikrorakenne on alfa-beeta, joten se on lujaa. Sillä on suhteellisen huono muovattavuus huoneenlämpötilassa verrattuna teräkseen ja alumiiniin. Käyttökohteita ovat ilmailu, energia- ja kemianteollisuuden laitteet. Miten arvostelisit vastauksen? Tiedot Taidot Asenne Mitä eroa on seuraavissa kysymyksissä? Miten seosten AZ91A ja AZ91D koostumus poikkeaa toisistaan? Mitä eroa on seoksilla AZ91A ja AZ91D? Kysymyksen asetteluun liittyen Mistä metalliseoksesta on kysymys? Mitkä ovat seosaineet? Mitä epäpuhtauksia seoksessa voi olla? Miten puhtausaste vaikuttaa seoksen mekaanisiin ja korroosio-ominaisuuksiin?

12 Magnesium Sulamislämpötila 649 C Höyrystymislämpötila 1107 C Hilarakenne HTP Kimmokerroin 44 kn/mm 2 Murtolujuus 120 N/mm 2 Tiheys 1,74 g/cm 3 50 Magnesium on maankuoressa noin 2,5 % Merivedessä on magnesiumia 0,13 % Osa magnesiumin tuotannosta tapahtuu tätä kautta Magnesium on reaktiivinen metalli, joka esiintyy oksideina, karbonaatteina, silikaatteina Metallisen magnesiumin tuotanto vaatii runsaasti energiaa Voidaan valmistaa pelkistämällä magnesiumoksidia ferrosilikaatilla korkeissa lämpötiloissa ja kaasuatmosfäärissä Kaasumaista magnesiumia, joka kondensoidaan metalliksi. Jopa puhtausasteella 99,95 % olevaa magnesiumia Elektrolyyttinen prosessi, sulaelektrolyysi, saadaan 99,8 % magnesiumia 51 Magnesium on kevyin kontruktiometalli, sen tiheys on vain noin 20 % teräksen tiheydestä. Seostus nostaa hieman tiheyttä Vain lievästi alumiinia alhaisemmat lujuusarvot hyvä lujuus/paino -suhde Yleensä kuitenkin seostus on tarpeen lujuusominaisuuksien parantamiseksi Hyvin alhainen kimmomoduli, noin 20 % teräksen vastaavasta Jäykkyys ongelmana Reaktiivisuus: kestää ilmastollista korroosiota oksidikerroksen ansiosta, syöpyy kloridipitoisissa liuoksissa Heikohkoja väsymis- ja kulumiskestävyydeltään Käytetään yleensä vain seostettuna Seostetaan lujuuden kasvattamiseksi Tärkeimmät seosaineet Al, Mn, Zn, Zr sekä harvinaiset maametallit

13 Käyttökelpoisten seosatomien määrä vähäinen johtuen magnesiumatomin suuresta koosta Useimpien metallien liukoisuus magnesiumiin vähäistä jähmeässä tilassa Seosaineina lähinnä alumiini, sinkki ja mangaani Yleisin seosaine on alumiini pitoisuuksina 2-10 % Lujuus kasvaa alumiinipitoisuuden kasvaessa, alumiinipitoisuuden ylittäessä 6 % seokset ovat erkautuskarkenevia Koska magnesiumin hilarakenne on heksagonaalinen tiivispakkaus, sitä on vaikea muokata, varsinkin kylmänä Magnesiumia voidaan muokata kuumana erinomaisesti, kuumapuristaa tai valssata, mutta kylmämuokkaus onnistuu vain n. 10 % muokkausasteeseen saakka Magnesiumseoksia voidaan lastuta erittäin suurella lastuamisnopeudella käyttäen suurta lastuamissyvyyttä ja syöttöä Saman lastumäärän poistamiseen tarvitaan vain 15 % hiiliteräksen lastuamisen tehosta Lastuttaessa on käytettävä myös vedetöntä jäähdytysainetta, jotta lastut eivät kuumenisi liikaa ja syttyisi räjähdyksenomaisesti palamaan Palovaara on otettava huomioon myös magnesiumseosten sulatuksessa ja valussa sekä hitsauksessa Sula on suojattava hapen vaikutukselta Jos suojaukseen kiinnitetään riittävästi huomiota, voidaan hitsaus tehdä tavanomaisilla TIG/MIG -menetelmillä argontai helium -suojakaasussa. Myös vastushitsaus käy magnesiumille

14 Magnesiumin normaalipotentiaali on alhaisin metallien joukossa Pintaan muodostuu kuitenkin suojaava oksidikalvo Magnesium ja sen seoksen pysyvät monissa olosuhteissa syöpymättä, kestää esim. ilmastollista korroosiota paremmin kuin hiiliteräs Emäksisissä liuoksissa magnesiumin ja sen seosten pintaan muodostuu hydroksidikerros, joka pysäyttää metallin liukenemisen. Magnesium-metallit kestävätkin hyvin emäksisissä oloissa Mineraalihapot, hiilidioksidi, rikkidioksidi, rikkitrioksidi, kloridi-ionit syövyttävät magnesiumia Ei sovellu teollisuus- tai meriilmastoon Hitsausrakenteissa on vaarana jännityskorroosio ellei jännityksiä ole poistettu hehkuttamalla Tuotanto Galvaaninen (kosketus) korroosio on vaarana, kun magnesiumkappaleet joutuvat kosketuksiin muiden metallien kanssa ja ympäristössä on sähköäjohtavaa liuosta Alumiiniseostus parantaa magnesiumseosten korroosioominaisuuksia nimenomaan galvaanisen korroosion osalta Voidaan käyttää muiden metallien korroosiosuojaukseen uhrautuvana anodina Magnesiumin primäärituotanto vuona 1997 oli noin tonnia. Kierrätettyä magnesiumia valmistetaan noin tonnia. Kiina 10% Norja 10% Primääri Mg tuottajamaat Venäjä 12% Muut 14% Kanada 17% USA 37%

15 Käyttökohteita Käyttökohteita Karkenemattomat AlMgseokset kestävät hyvin merivesikorroosiota ovat hitsattavia ovat erinomaisia anodisointiin liuoslujittuvat Mg-atomien ollessa korvausijoissa Karkenevat AlMgSi-seokset Mg 2 Si erkaumat nostavat lujuutta sekä korroosion kestävyys että korkea lujuus Alumiinin seostus 43% Painevalu 31% Rikinpoisto 13% Pallografiitin valmistus 3% Sähkökemiallinen käyttö 3% Kemiallinen käyttö 2% Muokatut metallit 1% Metallien pelkitys 1% Gravittaatiovalu 1% Muut 2% Painevalettujen magnesiumseosten käyttökohteita erilaiset kevyet rungot: matkapuhelimet, kamerat, porakoneet jne. urheiluvälineet autoteollisuus autourheilu ilmailuteollisuus aseteollisuus avaruussovellukset Alumiinin seostus 43% Painevalu 31% Rikinpoisto 13% Pallografiitin valmistus 3% Sähkökemiallinen käyttö 3% Kemiallinen käyttö 2% Muokatut metallit 1% Metallien pelkitys 1% Gravittaatiovalu 1% Muut 2% Käyttökohteita Käyttökohteita Magnesium reagoi hanakasti rikin kanssa ja koska se liukenee sulaan (toisin kuin monet muut rikin poistoon käytetyt kemikaalit) saadaan rikkipitoisuus hyvin pieneksi (alle 0.002%) Alumiinin seostus 43% Painevalu 31% Rikinpoisto 13% Pallografiitin valmistus 3% Sähkökemiallinen käyttö 3% Kemiallinen käyttö 2% Muokatut metallit 1% Metallien pelkitys 1% Gravittaatiovalu 1% Muut 2% Magnesium muodostaa sulan raudan sekaan ytimiä joiden ympärille hiili muodostaa pallon. Pallografiitti valuraudan sitkeysominaisuudet ovat suomugrafiittia paremmat. Alumiinin seostus 43% Painevalu 31% Rikinpoisto 13% Pallografiitin valmistus 3% Sähkökemiallinen käyttö 3% Kemiallinen käyttö 2% Muokatut metallit 1% Metallien pelkitys 1% Gravittaatiovalu 1% Muut 2%

16 Käyttökohteita Käyttökohteita Uhrautuvat anodit magnesium on epäjalompi verrattuna suurimpaan osaan metalleista terästen katodinen suojaus vedessä ja maaperässä teräs toimii katodina ja magnesium syöpyy anodina Virranlähteet Mg-Ag merivesipatteri pelastusliivien valot sonarpoiju Alumiinin seostus 43% Painevalu 31% Rikinpoisto 13% Pallografiitin valmistus 3% Sähkökemiallinen käyttö 3% Kemiallinen käyttö 2% Muokatut metallit 1% Metallien pelkitys 1% Gravittaatiovalu 1% Muut 2% Kemialliset reagenssit pinta-alan lisäys LLDPE polyeteenin valmistus Ziegler-Natta katalyytti Alumiinin seostus 43% Painevalu 31% Rikinpoisto 13% Pallografiitin valmistus 3% Sähkökemiallinen käyttö 3% Kemiallinen käyttö 2% Muokatut metallit 1% Metallien pelkitys 1% Gravittaatiovalu 1% Muut 2% Nimeäminen Nimeäminen Magnesium seoksia nimettäessä ilmoitetaan vain seosaineiden pitoisuudet Kaikkihan tietysti heti arvaavat että kysymyksessä on Mg seos ;-) Seosaineille käytetään yhden kirjaimen lyhenteitä (seuraava kalvo) Samoja lyhenteitä käytetään sinkiseoksilla Pitoisuuden merkitään kokonaislukuina Viimeinen kirjan kertoo saman seoksen eri modifikaatiot (yleensä puhtausasteen) A alumiini B vismuutti C kupari D kadnium E harvinaiset maametallit F rauta G magnesium H thorium K zirkonium L litium M mangaani N nikkeli P lyijy Q hopea R kromi S pii T tina W yttrium Y antimoni Z sinkki

17 Nimeäminen Toimitustiloille käytetään vastaavia merkintöjä kuin alumiinille F Toimitustila O Hehkutettu H10, H11 Muokkauslujitettu T4 Liuoshehkutettu T5 Keinovanhennettu T6 Liuoshehkutettu ja keinovanhennettu Seostus Yleisen seosaine on alumiini, jonka liukenevuus pienenee lämpötilan laskiessa (437 C -> 93 C, 12.7% -> 3%) Alumiinin lisääminen nostaa lujuutta ja pienillä pitoisuuksilla murtovenymää Useimmiten hauraan Mg 17 Al 12 faasin syntyy tarvitaan yli 8% Al pitoisuus Muita tyypillisiä seosaineita ovat sinkki ja mangaani Sinkki parantaa korroosionkestävyyttä ja lujuutta Mangaani eliminoin epäpuhtautena olevan raudan haitalliset vaikutuksen korroosio-ominaisuuksiin Legendat Magnesium on kallista. Kilohinta on korkea, mutta pieni tiheys ja lujuus muuttaa vertailua. Eräs esimerkki Myötö- Kilo- Myötölujuus / Myötölujuus / lujuus Tiheys hinta tiheys (tiheys * hinta) AZ Al-12Si ZA Legendat Magnesium syöpyy helposti Magnesium passivoituu helposti ja passivaatiokerros suojaa korroosiolta Tietyt seokset alttiimpia korroosiolle Fe, Ni, Cu ja Co liuokoisuus magnesiumiin pientä Syntyvä sekundäärinen faasi toimii katodisena alueena Magnesium syttyy palamaan helposti Magnesiumjauhe syttyy helposti palamaan (paljon pintaalaa tilavuuteen nähden) Kokonaisen magnesium kappaleen syttyminen hankalaa

Titaani. Hilarakenne Heksagoninen α- faasi 882 C saakka. Tilakeskinen β-faasi 882 C yläpuolella. Tiheys 4,54 g/cm 3. Kimmokerroin 105 kn/mm 2

Titaani. Hilarakenne Heksagoninen α- faasi 882 C saakka. Tilakeskinen β-faasi 882 C yläpuolella. Tiheys 4,54 g/cm 3. Kimmokerroin 105 kn/mm 2 Titaani Titaani Sulamislämpötila 1668 C Hilarakenne Heksagoninen α- faasi 882 C saakka Tilakeskinen β-faasi 882 C yläpuolella Tiheys 4,54 g/cm 3 Kimmokerroin 105 kn/mm 2 Murtolujuus 280 N/mm 2 2 Yleistä

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Valettavat alumiiniseokset Tyypilliset valumenetelmät Hiekkavalu Kestomuottivalu (kokillivalu) Painevalu Alumiinivalujen hyviä puolia Pieni tiheys Matala sulamispiste

Lisätiedot

RUOSTUMATTOMAT TERÄKSET

RUOSTUMATTOMAT TERÄKSET 1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja

Lisätiedot

Alumiinin ominaisuuksia

Alumiinin ominaisuuksia Alumiini Alumiini Maaperän yleisin metalli Kuuluu kevytmetalleihin Teräksen jälkeen käytetyin metalli Käytetty n. 110 v. Myrkytön Epämagneettinen Kipinöimätön 1 Alumiinin ominaisuuksia Tiheys, ~ teräs/3

Lisätiedot

Mikä on ruostumaton teräs? Fe Cr > 10,5% C < 1,2%

Mikä on ruostumaton teräs? Fe Cr > 10,5% C < 1,2% Cr > 10,5% C < 1,2% Mikä on ruostumaton teräs? Rautaseos, johon on seostettu 10,5 % kromia ja 1,2 % hiiltä. Seostuksen ansiosta ruostumattomaan teräkseen muodostuu korroosiolta suojaava sekä itsekorjautuva

Lisätiedot

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Vapaa energia ja tasapainopiirros Allotropia - Metalli omaksuu eri lämpötiloissa eri kidemuotoja. - Faasien vapaat

Lisätiedot

Faasimuutokset ja lämpökäsittelyt

Faasimuutokset ja lämpökäsittelyt Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja

Lisätiedot

Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa

Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa Rikasta pohjoista 10.4.2019 Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa Lapin alueen yritysten uudet teräsmateriaalit Nimi Numero CK45 / C45E (1.1191) 19MnVS6 / 20MnV6 (1.1301) 38MnV6 /

Lisätiedot

FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi

FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi FERRIITTISET RUOSTUMATTOMAT TERÄKSET www.polarputki.fi Polarputken valikoimaan kuuluvat myös ruostumattomat ja haponkestävät tuotteet. Varastoimme saumattomia ja hitsattuja putkia, putkenosia sekä muototeräksiä.

Lisätiedot

SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA.

SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1 HITSAVONIA PROJEKTI Teemapäivä 13.12.2005. DI Seppo Vartiainen Savonia-amk/tekniikka/Kuopio SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1. Hitsiaine

Lisätiedot

Dislokaatiot - pikauusinta

Dislokaatiot - pikauusinta Dislokaatiot - pikauusinta Ilman dislokaatioita Kiteen teoreettinen lujuus ~ E/8 Dislokaatiot mahdollistavat deformaation Kaikkien atomisidosten ei tarvitse murtua kerralla Dislokaatio etenee rakeen läpi

Lisätiedot

Binäärinen tasapaino, ei täyttä liukoisuutta

Binäärinen tasapaino, ei täyttä liukoisuutta Tasapainopiirrokset Binäärinen tasapaino, ei täyttä liukoisuutta Binäärinen tasapaino Kiinteässä tilassa koostumuksesta riippuen kahta faasia Eutektisella koostumuksella ei puuroaluetta Faasiosuudet muuttuvat

Lisätiedot

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaation jännitystila Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta

Lisätiedot

Metalliseokset. Alumiiniseokset. ValuAtlas Suunnittelijan perusopas Seija Meskanen, Tuula Höök

Metalliseokset. Alumiiniseokset. ValuAtlas Suunnittelijan perusopas Seija Meskanen, Tuula Höök Metalliseokset Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Alumiiniseokset Eri tavoin seostettu alumiini sopii kaikkiin yleisimpiin valumenetelmiin. Alumiiniseoksia

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 3

KJR-C2004 materiaalitekniikka. Harjoituskierros 3 KJR-C2004 materiaalitekniikka Harjoituskierros 3 Tänään ohjelmassa 1. Tasapainopiirros 1. Tulkinta 2. Laskut 2. Faasimuutokset 3. Ryhmätyöt 1. Esitehtävän yhteenveto (palautetaan harkassa) 2. Ryhmätehtävä

Lisätiedot

KOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi

KOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi KOVAJUOTTEET 2009 fosforikupari hopea messinki alumiini juoksutteet Somotec Oy www.somotec.fi SISÄLLYSLUETTELO FOSFORIKUPARIJUOTTEET Phospraz AG 20 Ag 2% (EN 1044: CP105 ). 3 Phospraz AG 50 Ag 5% (EN 1044:

Lisätiedot

Luento 5 Hiiliteräkset

Luento 5 Hiiliteräkset Luento 5 Hiiliteräkset Hiiliteräkset Rauta (

Lisätiedot

Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy. Teräsvalujen raaka-ainestandardit

Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy. Teräsvalujen raaka-ainestandardit Teräsvalut Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy Teräsvalujen raaka-ainestandardit - esitelmän sisältö Mitä valun ostaja haluaa? Millaisesta valikoimasta valuteräs

Lisätiedot

Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit.

Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit. Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit www.outokumpu.com Johdanto Tuotantokaavio AOD-konvertteri AOD Senkka-asema SA Yhteenveto Ruostumaton teräs Ruostumaton teräs koostuu

Lisätiedot

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 A B B Piirroksen alue 1: Sularajan yläpuolella on seos aina täysin sula => yksifaasialue (L). Alueet 2 ja 5: Nämä ovat

Lisätiedot

Raerajalujittuminen LPK / Oulun yliopisto

Raerajalujittuminen LPK / Oulun yliopisto Raerajalujittuminen 1 Erkautuslujittuminen Epäkoherentti erkauma: kiderakenne poikkeaa matriisin rakenteesta dislokaatiot kaareutuvat erkaumien väleistä TM teräksissä tyypillisesti mikroseosaineiden karbonitridit

Lisätiedot

Sinkki. Esitiedot. Yleistä. Yleistä

Sinkki. Esitiedot. Yleistä. Yleistä Esitiedot Mikä periaattellinen ero on 4% ja 8% alumiinia sisältävien sinkkiseosten välillä? Hypoeutectic = alieutektinen Hypereutectic = ylieutektinen Miten alieutektinen ja ylieutektinen rakenne muuttaa

Lisätiedot

Esitiedot. Mikä periaattellinen ero on 4% ja 8% alumiinia sisältävien sinkkiseosten välillä?

Esitiedot. Mikä periaattellinen ero on 4% ja 8% alumiinia sisältävien sinkkiseosten välillä? Esitiedot Mikä periaattellinen ero on 4% ja 8% alumiinia sisältävien sinkkiseosten välillä? Hypoeutectic = alieutektinen Hypereutectic = ylieutektinen Miten alieutektinen ja ylieutektinen rakenne muuttaa

Lisätiedot

Titaanilaadut. Kaupalliset titaanilaadut jaetaan kiderakenteen mukaan -, - ja seoksiin. Niukasti seostetuista -seoksista käytetään nimitystä lähes

Titaanilaadut. Kaupalliset titaanilaadut jaetaan kiderakenteen mukaan -, - ja seoksiin. Niukasti seostetuista -seoksista käytetään nimitystä lähes Titaani Titaani Sulamispiste 1680 C Tiheys 4,5 g/cm³ (57 % teräs) Pieni lämpölaajeneminen (noin puolet austeniittisesta ruostumattomasta teräksestä) Alhainen lämmönjohtavuus (noin 1/10 alumiini tai kupari)

Lisätiedot

Tärkeitä tasapainopisteitä

Tärkeitä tasapainopisteitä Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen

Lisätiedot

Ferriittiset ruostumattomat teräkset ja niiden hitsaus. May 12, 2011 www.outokumpu.com

Ferriittiset ruostumattomat teräkset ja niiden hitsaus. May 12, 2011 www.outokumpu.com Ferriittiset ruostumattomat teräkset ja niiden hitsaus May 12, 2011 www.outokumpu.com Ruostumattomat teräkset Ferriittisten ominaisuudet Ferriittisten hitsaus 2 12.5.2011 Hannu-Pekka Heikkinen Ruostumaton

Lisätiedot

Lujat termomekaanisesti valssatut teräkset

Lujat termomekaanisesti valssatut teräkset Lujat termomekaanisesti valssatut teräkset Sakari Tihinen Tuotekehitysinsinööri, IWE Ruukki Metals Oy, Raahen terästehdas 1 Miten teräslevyn ominaisuuksiin voidaan vaikuttaa terästehtaassa? Seostus (CEV,

Lisätiedot

Pehmeä magneettiset materiaalit

Pehmeä magneettiset materiaalit Pehmeä magneettiset materiaalit Timo Santa-Nokki Pehmeä magneettiset materiaalit Johdanto Mittaukset Materiaalit Rauta-pii seokset Rauta-nikkeli seokset Rauta-koboltti seokset Amorfiset materiaalit Nanomateriaalit

Lisätiedot

JAKSOLLINEN JÄRJESTELMÄ

JAKSOLLINEN JÄRJESTELMÄ JASOLLINEN JÄRJESTELMÄ Oppitunnin tavoite: Oppitunnin tavoitteena on opettaa jaksollinen järjestelmä sekä sen historiaa alkuainepelin avulla. Tunnin tavoitteena on, että oppilaat oppivat tieteellisen tutkimuksen

Lisätiedot

Kon Harjoitus 8: Ruostumattomat teräkset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Kon Harjoitus 8: Ruostumattomat teräkset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Kon-67.3110 Harjoitus 8: Ruostumattomat teräkset Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto EN AISI/SAE Tyyppi 1.4021 1.4301 1.4401 1.4460 304L 201 316LN 321H EN vs AISI/SAE tunnukset

Lisätiedot

18 Hakemisto. Hakemisto

18 Hakemisto. Hakemisto 18 230 A Alumiini ja ympäristö... 29 Alumiini, kulutus ja käyttö... 13 Alumiini, käyttökohteet - aurinkopaneelit... 19 - folio... 25 - ilmailu ja avaruusteknologia... 28, 29 - juomatölkit... 26 - konepajateollisuus...

Lisätiedot

465102A Konetekniikan materiaalit, 5op

465102A Konetekniikan materiaalit, 5op 465102A Konetekniikan materiaalit, 5op Luento n:o 2 kevytmetallit (Al, Ti, Mg) Timo Kauppi 2 Alumiini 3 Yleistä Alumiini on maankuoren kolmanneksi yleisin alkuaine hapen ja piin jälkeen. Alumiini ei esiinny

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Lämpökäsittely Austenointi tehdään hyvin korkeassa lämpötilassa verrattuna muihin teräksiin Liian korkea lämpötila tai liian pitkä aika voivat aiheuttaa vetelyjä, rakeenkasvua,

Lisätiedot

17VV VV Veden lämpötila 14,2 12,7 14,2 13,9 C Esikäsittely, suodatus (0,45 µm) ok ok ok ok L. ph 7,1 6,9 7,1 7,1 RA2000¹ L

17VV VV Veden lämpötila 14,2 12,7 14,2 13,9 C Esikäsittely, suodatus (0,45 µm) ok ok ok ok L. ph 7,1 6,9 7,1 7,1 RA2000¹ L 1/5 Boliden Kevitsa Mining Oy Kevitsantie 730 99670 PETKULA Tutkimuksen nimi: Kevitsan vesistötarkkailu 2017, elokuu Näytteenottopvm: 22.8.2017 Näyte saapui: 23.8.2017 Näytteenottaja: Eerikki Tervo Analysointi

Lisätiedot

17VV VV 01021

17VV VV 01021 Pvm: 4.5.2017 1/5 Boliden Kevitsa Mining Oy Kevitsantie 730 99670 PETKULA Tutkimuksen nimi: Kevitsan vesistötarkkailu 2017, huhtikuu Näytteenottopvm: 4.4.2017 Näyte saapui: 6.4.2017 Näytteenottaja: Mika

Lisätiedot

Esitiedot. Luento 6. Esitiedot

Esitiedot. Luento 6. Esitiedot Esitiedot Luento 6 Miten terästen karkenevuutta voidaan parantaa? Miten päästölämpötila ja aika vaikuttavat karkaistun rakenteen mekaanisiin ominaisuuksiin? Mitä tarkoittaa päästöhauraus? 2 Esitiedot Epäselviä

Lisätiedot

Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000

Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000 Deformaatio Kertaus Deformaatio Kiteen teoreettinen lujuus: σ E/8 Todelliset lujuudet lähempänä σ E/1000 3 Dislokaatiot Mekanismi, jossa deformaatio mahdollista ilman että kaikki atomisidokset murtuvat

Lisätiedot

Mak Sovellettu materiaalitiede

Mak Sovellettu materiaalitiede .106 tentit Tentti 21.5.1997 1. Rekristallisaatio. 2. a) Mitkä ovat syyt metalliseosten jähmettymisen yhteydessä tapahtuvalle lakimääräiselle alijäähtymiselle? b) Miten lakimääräinen alijäähtyminen vaikuttaa

Lisätiedot

Ultralujien terästen hitsausmetallurgia

Ultralujien terästen hitsausmetallurgia 1 Ultralujien terästen hitsausmetallurgia CASR-Steelpolis -seminaari Oulun yliopisto 16.5.2012 Jouko Leinonen Nostureita. (Rautaruukki) 2 Puutavarapankko. (Rautaruukki) 3 4 Teräksen olomuodot (faasit),

Lisätiedot

Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos

Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Kon-67.3110 Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri

Lisätiedot

B.3 Terästen hitsattavuus

B.3 Terästen hitsattavuus 1 B. Terästen hitsattavuus B..1 Hitsattavuus käsite International Institute of Welding (IIW) määrittelee hitsattavuuden näin: Hitsattavuus ominaisuutena metallisessa materiaalissa, joka annetun hitsausprosessin

Lisätiedot

Joitain materiaaleja Kriittinen lämpötila

Joitain materiaaleja Kriittinen lämpötila Suprajohteet Suprajohteet Joitain materiaaleja Kriittinen lämpötila Pb 7.3 Nb 9.3 Nb-Ti 8.9-9.3 Nb 3 Sn 18 Nb 3 Ge 23 NbN 16-18 PbMo 6 S 8 14-15 YBa 2 Cu 3 O 7 92 2 Suprajohteet Niobi-titaani seoksia Nb-46.5Ti

Lisätiedot

Valurauta ja valuteräs

Valurauta ja valuteräs Valurauta ja valuteräs Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Valurauta ja valuteräs ovat raudan (Fe), hiilen (C), piin (Si) ja mangaanin (Mn) sekä muiden seosaineiden

Lisätiedot

UDDEHOLM UNIMAX 1 (5) Yleistä. Käyttökohteet. Mekaaniset ominaisuudet. Ominaisuudet. Fysikaaliset ominaisuudet

UDDEHOLM UNIMAX 1 (5) Yleistä. Käyttökohteet. Mekaaniset ominaisuudet. Ominaisuudet. Fysikaaliset ominaisuudet 1 (5) Yleistä Uddeholm Unimax on kromi/molybdeeni/vanadiini - seosteinen muovimuottiteräs, jonka ominaisuuksia ovat: erinomainen sitkeys kaikissa suunnissa hyvä kulumiskestävyys hyvä mitanpitävyys lämpökäsittelyssä

Lisätiedot

Tig hitsauslangat KORJAUS- JA KUNNOSSAPIDON AMMATTILAISILLE SEOSTAMATTOMAT NIUKKASEOSTEISET RUOSTUMATTOMAT KUPARI ALUMIINI NIKKELI MAGNESIUM TITAANI

Tig hitsauslangat KORJAUS- JA KUNNOSSAPIDON AMMATTILAISILLE SEOSTAMATTOMAT NIUKKASEOSTEISET RUOSTUMATTOMAT KUPARI ALUMIINI NIKKELI MAGNESIUM TITAANI Tig hitsauslangat KORJAUS- JA KUNNOSSAPIDON AMMATTILAISILLE SEOSTAMATTOMAT NIUKKASEOSTEISET RUOSTUMATTOMAT KUPARI ALUMIINI NIKKELI MAGNESIUM TITAANI KOBOLTTI www.somotec.fi SISÄLLYSLUETTELO SEOSTAMATTOMAT

Lisätiedot

METALLITEOLLISUUDEN PINTAKÄSITTELYN PERUSTEET - KORROOSIO

METALLITEOLLISUUDEN PINTAKÄSITTELYN PERUSTEET - KORROOSIO METALLITEOLLISUUDEN PINTAKÄSITTELYN PERUSTEET - KORROOSIO 25.9.2014 Juha Kilpinen Tekninen Palvelu 1 METALLIN KORROOSIO Metallin korroosiolla tarkoitetaan sen syöpymistä ympäristön kanssa tapahtuvissa

Lisätiedot

SYLINTERIPUTKET JA KROMATUT TANGOT

SYLINTERIPUTKET JA KROMATUT TANGOT SYLINTERIPUTKET JA KROMATUT TANGOT URANIE INTERNATIONAL {Thalachrome} Ranskalainen URANIE INTERNATIONAL on maailman johtava kromattujen tankojen valmistaja. Jatkuva kehitystyö ja investoinnit uudenaikaisimpiin

Lisätiedot

1. Malmista metalliksi

1. Malmista metalliksi 1. Malmista metalliksi Metallit esiintyvät maaperässä yhdisteinä, mineraaleina Malmiksi sanotaan kiviainesta, joka sisältää jotakin hyödyllistä metallia niin paljon, että sen erottaminen on taloudellisesti

Lisätiedot

Chem-C2400 Luento 3: Faasidiagrammit Ville Jokinen

Chem-C2400 Luento 3: Faasidiagrammit Ville Jokinen Chem-C2400 Luento 3: Faasidiagrammit 16.1.2019 Ville Jokinen Oppimistavoitteet Faasidiagrammit ja mikrorakenteen muodostuminen Kahden komponentin faasidiagrammit Sidelinja ja vipusääntö Kolmen faasin reaktiot

Lisätiedot

AKKU- JA PARISTOTEKNIIKAT

AKKU- JA PARISTOTEKNIIKAT AKKU- JA PARISTOTEKNIIKAT H.Honkanen Kemiallisessa sähköparissa ( = paristossa ) ylempänä oleva, eli negatiivisempi, metalli syöpyy liuokseen. Akussa ei elektrodi syövy pois, vaan esimerkiksi lyijyakkua

Lisätiedot

Suprajohteet. Suprajohteet. Suprajohteet. Suprajohteet. Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti

Suprajohteet. Suprajohteet. Suprajohteet. Suprajohteet. Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti Joitain materiaaleja Kriittinen lämpötila Pb 7.3 Nb 9.3 Nb-Ti 8.9-9.3 Nb 3 Sn 18 Nb 3 Ge 23 NbN 16-18 PbMo 6 S 8 14-15 YBa 2 Cu 3 O 7 92 2 Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti Sulatus kahteen

Lisätiedot

81 RYHMÄ MUUT EPÄJALOT METALLIT; KERMETIT; NIISTÄ VALMISTETUT TAVARAT

81 RYHMÄ MUUT EPÄJALOT METALLIT; KERMETIT; NIISTÄ VALMISTETUT TAVARAT 81 RYHMÄ MUUT EPÄJALOT METALLIT; KERMETIT; NIISTÄ VALMISTETUT TAVARAT Alanimikehuomautus 1. Edellä 74 ryhmän 1 huomautusta, jossa määritellään "tangot, profiilit, lanka, levyt, nauhat ja folio", noudatetaan

Lisätiedot

MIG 350 DIN 8555: MSG 2 GZ 350 kovahitsaus, koneistettavaa... 3-2 MIG 600 DIN 8555: MSG 6 GZ 60 iskut, hankauskuluminen. 3-3

MIG 350 DIN 8555: MSG 2 GZ 350 kovahitsaus, koneistettavaa... 3-2 MIG 600 DIN 8555: MSG 6 GZ 60 iskut, hankauskuluminen. 3-3 MIG-hitsauslangat KOVAHITSAUS MIG 350 DIN 8555: MSG 2 GZ 350 kovahitsaus, koneistettavaa..... 3-2 MIG 600 DIN 8555: MSG 6 GZ 60 iskut, hankauskuluminen. 3-3 RUOSTUMATTOMAT MIG 307Si AWS A5.9: ~ ER307 sekaliitos

Lisätiedot

Teollinen kaivostoiminta

Teollinen kaivostoiminta Teollinen kaivostoiminta Jouni Pakarinen Kuva: Talvivaara 2007 -esite Johdanto Lähes kaikki käyttämämme tavarat tai energia on tavalla tai toisella sijainnut maan alla! Mineraali = on luonnossa esiintyvä,

Lisätiedot

Sulametallurgia (Secondary steelmaking)

Sulametallurgia (Secondary steelmaking) Sulametallurgia (Secondary steelmaking) 1 Senkkauuni Raahessa näytteenotto/ happi- ja lämpötilanmittaus seosainejärjestelmä apulanssi 3-4 C/min 20 MVA 105-125 t Ar langansyöttö Panoskoko 125 t (min 70

Lisätiedot

Lkm keski- maksimi Lkm keski- maksimi. Lkm keski- maksimi Lkm keski- maksimi

Lkm keski- maksimi Lkm keski- maksimi. Lkm keski- maksimi Lkm keski- maksimi Firan vesilaitos Lahelan vesilaitos Lämpötila C 12 9,5 14,4 12 7,9 8,5 ph-luku 12 6,6 6,7 12 8,0 8,1 Alkaliteetti mmol/l 12 0,5 0,5 12 1,1 1,1 Happi mg/l 12 4,2 5,3 12 11,5 13,2 Hiilidioksidi mg/l 12 21

Lisätiedot

kansainvälisyys JACQUET johtava, maailmanlaajuinen ruostumattomien kvarttolevyjen käyttäjä 483 työntekijää

kansainvälisyys JACQUET johtava, maailmanlaajuinen ruostumattomien kvarttolevyjen käyttäjä 483 työntekijää JACQUET kansainvälisyys johtava, maailmanlaajuinen ruostumattomien kvarttolevyjen käyttäjä 43 työntekijää 3 yksikköä 20 eri maassa / 21 palvelukeskusta 7 500 asiakasta 60 eri maassa liikevaihto 23 M5 7

Lisätiedot

Rauno Toppila. Kirjallisuusselvitys. Ferriittiset ruostumattomat teräkset

Rauno Toppila. Kirjallisuusselvitys. Ferriittiset ruostumattomat teräkset Rauno Toppila Kirjallisuusselvitys Ferriittiset ruostumattomat teräkset Kemi-Tornion ammattikorkeakoulun julkaisuja Sarja E. Työpapereita 1/2010 Rauno Toppila Kirjallisuusselvitys Ferriittiset ruostumattomat

Lisätiedot

HYDRAULIIKKATUOTTEET

HYDRAULIIKKATUOTTEET HYDRAULIIKKATUOTTEET www.polarputki.fi 2 HYDRAULIIKKATUOTTEET 3 Polarputki on toimittanut teräksiä suomalaiseen sylinterinvalmistukseen vuodesta 1973. Vuosikyenien kokemuksella olee valinneet kumppaneiksee

Lisätiedot

Normaalisti valmistamme vastuksia oheisen taulukon mukaisista laadukkaista raaka-aineista. Erikoistilauksesta on saatavana myös muita raaka-aineita.

Normaalisti valmistamme vastuksia oheisen taulukon mukaisista laadukkaista raaka-aineista. Erikoistilauksesta on saatavana myös muita raaka-aineita. Putkivastuksien vaippaputken raaka-aineet Vastuksen käyttölämpötila ja ympäristön olosuhteet määräävät minkälaisesta materiaalista vastuksen vaippaputki on valmistettu. Tavallisesti käytettäviä aineita

Lisätiedot

Fe - Nb - C ja hienoraeteräkset

Fe - Nb - C ja hienoraeteräkset Fe - Nb - C ja hienoraeteräkset 0.10 %Nb 0.08 NbC:n liukoisuus austeniitissa γ + NbC 1200 C 0.06 0.04 1100 C 0.02 0 γ 0 0.05 0.1 0.15 0.2 %C Tyypillinen C - Nb -yhdistelmä NbC alkaa erkautua noin 1000

Lisätiedot

SUOJAKAASUN VAIKUTUS FERRIITTISEN RUOSTUMATTOMAN TERÄKSEN LASERHITSIN OMINAISUUKSIIN

SUOJAKAASUN VAIKUTUS FERRIITTISEN RUOSTUMATTOMAN TERÄKSEN LASERHITSIN OMINAISUUKSIIN 1 SUOJAKAASUN VAIKUTUS FERRIITTISEN RUOSTUMATTOMAN TERÄKSEN LASERHITSIN OMINAISUUKSIIN 2 FERRIITTINEN EN 1.4521 RUOSTUMATON TERÄS -Titaanistabiloitu -Haponkestävä 3 LASERHITSAUS -Pieni lämmöntuonti ei

Lisätiedot

Firan vesilaitos. Laitosanalyysit. Lkm keski- maksimi Lkm keski- maksimi

Firan vesilaitos. Laitosanalyysit. Lkm keski- maksimi Lkm keski- maksimi Laitosanalyysit Firan vesilaitos Lämpötila C 3 8,3 8,4 4 8,4 9 ph-luku 3 6,5 6,5 4 7,9 8,1 Alkaliteetti mmol/l 3 0,53 0,59 4 1 1,1 Happi 3 2,8 4 4 11,4 11,7 Hiilidioksidi 3 23,7 25 4 1 1,9 Rauta Fe 3

Lisätiedot

81 RYHMÄ MUUT EPÄJALOT METALLIT; KERMETIT; NIISTÄ VALMISTETUT TAVARAT

81 RYHMÄ MUUT EPÄJALOT METALLIT; KERMETIT; NIISTÄ VALMISTETUT TAVARAT RYHMÄ MUUT EPÄJALOT METALLIT; KERMETIT; NIISTÄ VALMISTETUT TAVARAT Alanimikehuomautus. Edellä 74 ryhmän huomautusta, jossa määritellään "tangot, profiilit, lanka, levyt, nauhat ja folio", noudatetaan soveltuvin

Lisätiedot

Corthal, Thaloy ja Stellite

Corthal, Thaloy ja Stellite Corthal, Thaloy ja Stellite KOVAHITSAUSTÄYTELANGAT KORJAUS JA KUNNOSSAPIDON AMMATTILAISILLE SOMOTEC Oy Tototie 2 70420 KUOPIO puh. 0207 969 240 fax. 0207 969 249 email: somotec@somotec.fi internet: www.somotec.fi

Lisätiedot

Käsitteitä. Hapetusluku = kuvitteellinen varaus, jonka atomi saa elektronin siirtyessä

Käsitteitä. Hapetusluku = kuvitteellinen varaus, jonka atomi saa elektronin siirtyessä Sähkökemia Nopea kertaus! Mitä seuraavat käsitteet tarkoittivatkaan? a) Hapettuminen b) Pelkistyminen c) Hapetusluku d) Elektrolyytti e) Epäjalometalli f) Jalometalli Käsitteitä Hapettuminen = elektronin

Lisätiedot

Nostureita on monenlaisia, akseleista puhumattakaan. Uddeholmin teräkset akseleihin

Nostureita on monenlaisia, akseleista puhumattakaan. Uddeholmin teräkset akseleihin Nostureita on monenlaisia, akseleista puhumattakaan. Uddeholmin teräkset akseleihin Uddeholmin teräkset kestävät kaikenlaista kuormaa Akselit ovat tärkeitä koneenosia varsinkin nostureissa. Akseleiden

Lisätiedot

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa: Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään

Lisätiedot

Ennekuin aloitat juottamisen:

Ennekuin aloitat juottamisen: Metallijuotos Yleistä Juottaminen eli juotto, on metallikappaleiden liitämistä toisiinsa sulattamalla niiden väliin metallia tai metalliseosta. Sulatettavan juotosmetallin, eli juotteen sulamislämpötilan

Lisätiedot

Kokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu

Kokillivalu (Permanent mold casting) Jotain valimistusmenetelmiä. Painevalu (Diecasting) Painevalu Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Kuparimalmi Kuparia esiintyy sulfidi- ja oksidimalmeissa. Pitoisuudet ovat tyypillisesti alhaisia (usein alle 1%). Louhittu malmi murskataan ja jauhetaan lietteeksi. Sulfidimalmista

Lisätiedot

Esitiedot. Esitiedot. Kromiseostuksen vaikutukset teräksissä

Esitiedot. Esitiedot. Kromiseostuksen vaikutukset teräksissä Esitiedot Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet? Milloin austeniittiset laadut ovat välttämättömiä? Mitä eri laadut maksavat? Miten kupari

Lisätiedot

Kulutusta kestävät teräkset

Kulutusta kestävät teräkset Kulutusta kestävät teräkset durostat Muutokset mahdollisia ilman eri ilmoitusta. Alkuperäinen englanninkielinen versio osoitteessa www.voestalpine.com/grobblech Tekniset toimitusehdot durostat Kesäkuu

Lisätiedot

Jaksollinen järjestelmä ja sidokset

Jaksollinen järjestelmä ja sidokset Booriryhmä Hiiliryhmä Typpiryhmä Happiryhmä Halogeenit Jalokaasut Jaksollinen järjestelmä ja sidokset 13 Jaksollinen järjestelmä on tärkeä kemian työkalu. Sen avulla saadaan tietoa alkuaineiden rakenteista

Lisätiedot

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaatioiden ominaisuuksia Eivät ala/lopu tyhjästä, vaan: muodostavat ympyröitä alkavat/loppuvat raerajoille,

Lisätiedot

Keskinopea jäähtyminen: A => Bainiitti

Keskinopea jäähtyminen: A => Bainiitti Keskinopea jäähtyminen: A => Bainiitti Fe 3 C F = Bainiitti (B) C ehtii diffundoitua lyhyitä matkoja. A A A A Lämpötila laskee è Austeniitti Ferriitti Austeniitti => ferriitti muutos : atomit siirtyvät

Lisätiedot

Metallurgian perusteita

Metallurgian perusteita Metallurgian perusteita Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Korkean laadun saavuttaminen edellyttää sekä rauta että teräsvalujen tuotannossa tiukkaa prosessikuria

Lisätiedot

Normaalipotentiaalit

Normaalipotentiaalit Normaalipotentiaalit MATERIAALIT JA TEKNOLOGIA, KE4 Yksittäisen elektrodin aiheuttaman jännitteen mittaaminen ei onnistu. Jännitemittareilla voidaan havaita ja mitata vain kahden elektrodin välinen potentiaaliero

Lisätiedot

Esitiedot. Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet?

Esitiedot. Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet? Esitiedot Mitkä ovat austeniittisten, ferriittisten ja martensiittisten ruostumattomien terästen käyttökohteet? Milloin austeniittiset laadut ovat välttämättömiä? Mitä eri laadut maksavat? Miten kupari

Lisätiedot

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA.

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. 1 SAVONIA-AMK TEKNIIKKA/ KUOPIO HitSavonia- projekti Seppo Vartiainen Esitelmä paineastiat / hitsausseminaarissa 1.11.05 TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. Kylmät olosuhteet. Teräksen transitiokäyttäytyminen.

Lisätiedot

Puhtaat aineet ja seokset

Puhtaat aineet ja seokset Puhtaat aineet ja seokset KEMIAA KAIKKIALLA, KE1 Määritelmä: Puhdas aine sisältää vain yhtä alkuainetta tai yhdistettä. Esimerkiksi rautatanko sisältää vain Fe-atomeita ja ruokasuola vain NaCl-ioniyhdistettä

Lisätiedot

Jotain valimistusmenetelmiä

Jotain valimistusmenetelmiä Jotain valimistusmenetelmiä Kokillivalu (Permanent mold casting) Muottina käytetään usein valurautaa, jonka pinta on päällystetty lämpökestävällä materiaalilla (savi, natriumsilikaatti). Muotit esilämmitetään

Lisätiedot

Metallit jaksollisessa järjestelmässä

Metallit jaksollisessa järjestelmässä Metallit Metallit käytössä Metallit jaksollisessa järjestelmässä 4 Metallien rakenne Ominaisuudet Hyvin muokattavissa, muovattavissa ja työstettävissä haluttuun muotoon Lujia Verraten korkea lämpötilan

Lisätiedot

CD-hitsauspultit. Tuoteluettelo Tekniset tiedot

CD-hitsauspultit. Tuoteluettelo Tekniset tiedot CD-hitsauspultit Tuoteluettelo Tekniset tiedot 1 CD-hitsauspultit - toiminnan kuvaus Menetelmä DVS-tietolomakkeen 0903 (2000) mukaan kaaritapitushitsaus kondensaattoripurkausmenetelmällä on keino hitsata

Lisätiedot

17. Tulenkestävät aineet

17. Tulenkestävät aineet 17. Tulenkestävät aineet Raimo Keskinen Peka Niemi - Tampereen ammattiopisto Alkuaineiden oksidit voidaan jakaa kemiallisen käyttäytymisensä perusteella luonteeltaan happamiin, emäksisiin ja neutraaleihin

Lisätiedot

Lastuavat työkalut A V A 2007/2008

Lastuavat työkalut A V A 2007/2008 Lastuavat työkalut 2007/2008 Jyrsimiä Poranteriä Kierretappeja Maailmanlaajuisesti lastuavia työkaluja Pyöriviä viiloja YG-1 CO., LTD. SISÄLLYSLUETTELO Poranterät pikateräksestä ja kovametallista 2-38

Lisätiedot

Fysikaaliset ominaisuudet

Fysikaaliset ominaisuudet Fysikaaliset ominaisuudet Ominaisuuksien alkuperä Mistä materiaalien ominaisuudet syntyvät? Minkälainen on materiaalin rakenne? Onko rakenteellisesti samankaltaisilla materiaaleilla samankaltaiset ominaisuudet?

Lisätiedot

LUENTO 4 Muut metalliset materiaalit kuin teräs 2012

LUENTO 4 Muut metalliset materiaalit kuin teräs 2012 BK20A2100 Konstruktiomateriaalit Luennot / syksy 2012 TkT Harri Eskelinen LUENTO 4 Muut metalliset materiaalit kuin teräs 2012 Tämän luentokerran tavoitteet: Oppia perustiedot seuraavista materiaaliryhmistä:

Lisätiedot

Kupari ja kuparimetallit. juha.nykanen@tut.fi

Kupari ja kuparimetallit. juha.nykanen@tut.fi Kupari ja kuparimetallit juha.nykanen@tut.fi Esitiedot Miten sähköjohteisiin käytetyt kuparilaadut poikkevat muista kupariseoksista? Miksi puhdas kupari johtaa hyvin sähköä? Mitä tarkoittaa puhdas kupari?

Lisätiedot

Terästen lämpökäsittelyn perusteita

Terästen lämpökäsittelyn perusteita Terästen lämpökäsittelyn perusteita Austeniitin nopea jäähtyminen Tasapainopiirroksen mukaiset faasimuutokset edellyttävät hiilen diffuusiota Austeniitin hajaantuminen nopeasti = ei tasapainon mukaisesti

Lisätiedot

2.1 Sähköä kemiallisesta energiasta

2.1 Sähköä kemiallisesta energiasta 2.1 Sähköä kemiallisesta energiasta Monet hapettumis ja pelkistymisreaktioista on spontaaneja, jolloin elektronien siirtyminen tapahtuu itsestään. Koska reaktio on spontaani, vapautuu siinä energiaa, yleensä

Lisätiedot

TERÄKSISTÄ Terästen luokittelusta

TERÄKSISTÄ Terästen luokittelusta TERÄKSISTÄ Terästen luokittelusta Seostamattomat teräkset (niukkaseosteiset teräkset) Ruostumattomat teräkset Mangaaniteräkset Pikateräkset Työkaluteräkset Kuumalujat teräkset Tulenkestävät teräkset 1

Lisätiedot

HYDRAULIIKKATUOTTEET

HYDRAULIIKKATUOTTEET HYDRAULIIKKATUOTTEET www.polarputki.fi 2 Uranien kuukausittainen tuotantokapasiteetti on 3500 tonnia kromattuja tankoja. 23000 m 2 :n tuotanto- ja varastotilat sijaitsevat Pariisin läheisyydessä Le Meux:ssa.

Lisätiedot

METALLIEN JALOSTUKSEN YLEISKUVA

METALLIEN JALOSTUKSEN YLEISKUVA METALLIEN JALOSTUKSEN YLEISKUVA Raaka-aine Valu Valssaus/pursotus/ Tuotteet syväveto KAIVOS malmin rikastus MALMI- ja/tai KIERRÄTYSMATERIAALI- POHJAINEN METALLIN VALMISTUS LEVYAIHIO TANKOAIHIO Tele- ja

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Kertaus Luento 2 Raudan valmistus Teräksen valmistus Standardit Teräksen mikrorakenteet (ferriitti, perliitti, bainiitti, martensiitti) 2 Karkaisu ja päästö Muutama vuosi

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 2

KJR-C2004 materiaalitekniikka. Harjoituskierros 2 KJR-C2004 materiaalitekniikka Harjoituskierros 2 Pienryhmäharjoitusten aiheet 1. Materiaaliominaisuudet ja tutkimusmenetelmät 2. Metallien deformaatio ja lujittamismekanismit 3. Faasimuutokset 4. Luonnos:

Lisätiedot

UDDEHOLM VANADIS 10. Työvälineteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työvälineen suorituskyvyn kannalta

UDDEHOLM VANADIS 10. Työvälineteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työvälineen suorituskyvyn kannalta 1 (6) Työvälineteräksen kriittiset ominaisuudet Työvälineen suorituskyvyn kannalta käyttökohteeseen soveltuva kovuus hyvä kulumiskestävyys hyvä sitkeys estämään työvälineen ennenaikainen rikkoutuminen

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

Mak Materiaalitieteen perusteet

Mak Materiaalitieteen perusteet Mak-45.310 tentit Mak-45.310 Materiaalitieteen perusteet 1. välikoe 24.10.2000 1. Vertaile ionisidokseen ja metalliseen sidokseen perustuvien materiaalien a) sähkönjohtavuutta b) lämmönjohtavuutta c) diffuusiota

Lisätiedot