Laskuharjoitus 3 palautus mennessä. Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa):

Koko: px
Aloita esitys sivulta:

Download "Laskuharjoitus 3 palautus 11. 11. 2003 mennessä. Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa):"

Transkriptio

1 Laskuharjoitus 3 palautus mennessä Tehtävä 1: Entsyymikinetiikkaa Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): 1. A:n sitoutuminen saa konformaatiossa aikaan muutoksen, joka mahdollistaa B:n sitoutumisen. 2. A:n sitouduttua B voi sitoutua ja sitoutuu. 3. A ja B muuttuvat entsyymin katalysoimassa reaktiossa P:ksi ja Q:ksi. 4. P ja Q irtoavat entsyymistä. Koska entsyymi katalysoi kahden substraatin reaktiota, ei se kaikissa oloissa noudata Michaelisin ja Mentenin kinetiikkaa. Kuitenkin pitämällä A:n konsentraatiota vakiona ja vaihtelemalla B:n konsentraatiota voimme approksimaationa käyttää Michaelisin ja Mentenin yhtälöä v 0 [ S] 0 [ S] 0 = vmax, K M + kun asetamme, että [S]=[B]. a) Edellä mainitussa mittausjärjestelyssä saimme seuraavat tulokset: [B] 0 /mm 1/[B] 0 /mm -1 v 0 /(mms -1 ) 1/v 0 /(mm -1 s) 1,0 1,0 4,9 0,204 1,5 0,67 6,5 0,154 2,0 0,50 8,5 0,118 3,0 0,33 11,9 0,084 5,0 0,20 16,5 0, ,10 23,7 0, ,05 30,8 0,032 Määritä K M ja v max. b) Kun inhibiittoria I oli läsnä vakiokonsentraatio [I], niin saatiin seuraavat tulokset: [B] 0 /mm 1/[B] 0 /mm -1 v 0 /(mms -1 ) 1/v 0 /(mm -1 s) 1,0 1,0 3,2 0,313 1,5 0,67 4,5 0,222 2,0 0,50 5,9 0,169 3,0 0,33 8,2 0,122 5,0 0,20 12,1 0, ,10 18,8 0, ,05 25,6 0,039

2 Onko inhibitio kilpailevaa, kilpailematonta (eli sekamuotoista) vai entsyymin ja substraatin kompleksiin kohdistuvaa? c) Olisiko inhibitiomekanismi sama, jos meillä olisi mittauksessamme vakiokonsentraatio B:tä ja vaihtelisimme A:n konsentraatiota (siis olisi [S]=[A]) ja jos käyttäisimme samaa inhibiittoria I? Mikä se olisi ellei se olisi sama ja miksi? d) Mikä inhibitiomekanismi tulisi c-kohdan tapauksessa kyseeseen, jos reaktion kulussa tai reaktiomekanismissa A:n ja B:n sitoutumisjärjestyksellä ei olisi väliä? Miksi? Tehtävä 2: Lipidikaksoiskalvon potentiaaliprofiilit Lipidikaksoiskalvossa on useita ryhmiä, joilla on varauksia tai osittaisvarauksia. Niinpä kalvon sähköistä potentiaalia kuvaava käyrä on melko monimutkainen. Oheisessa kuvassa on esitetty karkea malli kalvon eri potentiaalista. Tärkein potentiaaleista lienee transmembraanipotentiaali, johon usein viitataankin pelkällä membraani- tai kalvopotentiaalinimityksellä. Transmembraanipotentiaali aiheutuu ionien erilaisesta jakautumisesta solun sisä- ja ulkopuolen välillä ja on siis ulko- ja sisätilavuuksien potentiaalien välinen erotus. Lisäksi kalvon pinnalla voi olla varautuneita ryhmiä esim. negatiivisesti varautuneiden ryhmien vuoksi tähän viitataan pintapotentiaalinimityksellä. Nuo negatiiviset ryhmät myös rikastavat kationeja kalvon läheisyyteen, joten kauempana kalvon pinnasta ovat kationit näennäisesti neutraloineet varauksen. Koska rasvahappoketjut, esterisidokset, lipidien pääryhmät ja lipidin ja veden rajapinnan vesimolekyylit ovat kaksoiskalvoksi järjestäymisen vuoksi joutuneet eisatunnaiseen orientaatioon, on kalvolla myös ns. dipolipotentiaali, jonka muutos tapahtuu lähinnä juuri rajapinnassa. Keskimäärin kalvossa on yleensä enemmän dipolien positiivisia osittaisvarauksia suuntautuneena kalvon hydrofobiseen osaan päin ja enemmän dipolien negatiivisia osittaisvarauksia suuntautuneena vesifaasiin päin. Hahmottele karkea potentiaaliprofiili seuraavissa tapauksissa. 1) Alkutila pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama sisäpuoli on negatiivisesti varautunut eli transmembraanipotentiaali negatiivinen 2) Transmembraanipotentiaalin neutraloituminen pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama transmembraanipotentiaali = 0 (vastaa karkeasti esim. aktiopotentiaalitilanteen yhtä vaihetta) 3) Ulkopuolelle lisätty dipoli: pian lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1)

3 kalvon ulkopuolelle on lisätty ainetta, joka sitoutuu nopeasti kaksoiskalvon ulkopuoliseen lehdykkään, muttei vielä ole ehtinyt flip-flopin kautta tasapainottua kalvon eri lehdyköihin; tämä aine alentaa tehokkaasti dipolipotentiaalia sillä puolella kalvoa, jolla se on 4) Ulkopuolelle lisätty dipoli: kauan aikaa lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1) tilanteen 3) dipolipotentiaalia alentavan aineen pitoisuus kaksoiskalvon lehdyköissä on ehtinyt tasapainottua Olisiko piirtämiesi kuvien perusteella mielestäsi mahdollista, että joidenkin jänniteherkkien kanavien jännitesensorit saattaisivat aktivoitua myös tilanteessa 3? Jos olisi, niin miksi? [Kuvapohjat piirtämisen helpottamiseksi.] 1) 2) 3) 4)

4 Tehtävä 3: Peptidiantibiootin kalvovuorovaikutukset Mene sivulle ja valitse Databases: Swiss-Prot and TrEMBL. Kirjoita hakusanaksi "magainin" kohtaan Search Swiss-Prot and TrEMBL for. Hakutulokseksi saat afrikkalaisen kynsisammakon tuottaman polypeptidin, josta sen ihon puolustukseen osallistuvia antibioottisia peptideitä pilkotaan. Vastaavia antibioottisia peptideitä on useimmilla ellei kaikilla eläimillä antibioottipeptideitä löytyy esimerkiksi ihmisen syljestä ja kyynelnesteestä. Valitse näytöltä "Magainin II copy A" ja saat antibioottipeptidi magainin II:lle kuuluvan sekvenssin väritettyä punaiseksi koko sekvenssin joukosta. Poimi sekvenssi talteen esimerkiksi Notepadiin. Toimi vastaavasti kolmikirjainlyhenteille merkityn sekvenssin osalta. Imuroi koneelle ohjelma WinPep osoitteesta ja asenna se. Asennettuasi valitse "File" "New" ja liitä Notepadista (yksikirjaiminen) aminohapposekvenssi avautuvaan sekvenssi-ikkunaan. Valitse "Analyze" ja "Physicochemical properties". Mikä on sekvenssin perusteella arvioitu isoelektrinen piste? Mitä se kertoo peptidin varauksesta ph:ssa 7,35? Hae osoitteesta haluamamme hydropaattisuusasteikko. Kyseessä on Raon ja Argosin v julkaisema asteikko, joka kuvaa sitä, miten usein kyseisiä aminohappoja suhteellisesti esiintyy integraalisten membraaniproteiinien membraaniin hautautuneissa osissa. Kokeile tehdä ProtScale-ohjelman ikkunassa ko. sekvenssistä transmembraaniheeliksin etsinnässä käytetty lasku, valitse esim. Window size = 5 sivun alalaidasta. Paina "Submit". Tryptofaanin 1.0 kuvaa suunnilleen arvoa, jolla aminohappo tyypillisesti esiintyy lipidin ja veden välisessä rajavyöhykkeessä. Membraaniympäristössä magainin II:n tiedetään muodostavan a-heeliksin. Kun otetaan huomioon, että kalvon paksuus on n. 20 aminohapon muodostaman a-heeliksin verran, niin miten todennäköiseksi # arvioisit tuloksen perusteella sen, että yksittäinen magainin II -peptidin muodostama a-heeliksi kulkee kalvon puolelta toiselle transmembraaniheeliksinä? Palaa nyt WinPepiin. Valitse "Options" "Preferences" "Helical Wheel Options". Valitse Raon ja Argosin asteikon arvojen perusteella aminohapoille värit: punainen (hydrofobinen) arvoilla >1, violetti arvoilla 0,5 1,0 ja sininen arvoilla <0,5. Valitse sitten "Analyze" "Helical Wheel". Lisäpisteitä voit saada tekemällä esimerkiksi Excelillä seuraavat laskut. Keskimäärin aminohappojen kulma a- heeliksissä (akselin suunnasta katsottuna) on n. 100 eli n. 3,6 aminohappoa/kierros. Tee taulukko esimerkiksi seuraavan sivun esimerkin tavalla käyttäen magainin II:n aminohapposekvenssiä ja Raon ja Argosin hydropaattisuusasteikkoa. Tee uusi sarake, jossa olet vähentänyt kokonaiset kierrokset eli kaikki kulmat palautettu välille astetta (nimeksi esim. "reduced angle"). Huomaa, että 0 =360. [Taulukon bulk angle -arvot kannattaa kirjoittaa käsin tai sitten laskea kaavalla, mutta valita sen jälkeen "copy", "paste special" ja "values" ja kopioida ne pelkkinä arvoina.] Valitse nyt otsikkoineen kokoalue taulukossa, jossa tietosi ovat. Valitse "Data", "Sort", "Sort by:" reduced angle, ascending. Näin saat aminohapot järjestykseen. Laske keskiarvo ±20 kulmista joka kulmalle, jolla on jokin aminohappo. Tee sitten kuvaaja, jossa kuvaat hydropaattisuusarvon kulman funktiona ("Insert", "Chart", "XY Scatter"). Jälleen arvo 1,0 kuvaa n. suunnilleen veden ja lipidin rajapinnalle tyypillistä arvoa, suuremmat hydrofobisia ja pienemmät hydrofiilisiä. Mitä arvioisit ns. helical wheel -kuvaajan ja mahdollisesti tekemäsi Excel-kuvaajan perusteella peptidin muodostaman a-heeliksin orientaatiosta ja sijainnista lipidikaksoiskalvossa? # Tarkkuudeksi riittää ihan hyvin mikä tahansa Stetson Harrison -menetelmän* antama tulos. *Sama kuin Stetson-menetelmä eli hatusta vetäminen, mutta Harrisonin nimi antaa lisää uskottavuutta.

5 Olisiko muunlainen orientaatio/järjestäytyminen kenties mahdollinen, jos kalvossa on paljon peptideitä? Miten tällainen järjestäytyminen saattaisi selittää peptidin soluja tappavan vaikutuksen? amino acid number amino acid amino acid hydropathicity bulk angle 1 G Gly I Ile G Gly K Lys F Phe L Leu H His S Ser A Ala jne. jne. jne. jne. jne. Tehtävä 4: Aineiden kuljetus solukalvon puolelta toiselle Yksi solukalvon keskeisistä rooleista on diffuusion esteenä toimiminen eli solun rajaaminen. Joitakin aineita halutaan kuitenkin päästää solun kalvon läpi. Niinpä solukalvossa on mm. passiivisia kanavaproteiineja, jotka päästävät valikoivasti aineita soluun, ja aktiivisia pumppuja, jotka kemiallista sidosenergiaa hyödyntäen synnyttävät pitoisuusgradientteja. (Lue esim. Lehningerin luvut 12 ja 14.) Pumppuja voi periaatteessa tarkastella entsyymeinä, jotka kytkevät energeettisesti hyvin epäedullisen reaktion (eli nettosiirtymisen pitoisuusgradienttia vastaan) energeettisesti hyvin edulliseen reaktioon (esim. ATP:n hydrolyysi ADP:ksi ja PO ioniksi) ja tehden kokonaisreaktiosta näin energeettisesti edullisen. Ajatellaan seuraavaksi pelkästään aineen siirtymistä kalvon puolelta toiselle. Lehningerissä annetaan reaktioiden yleiseksi vapaaenergian muutokseksi G= G' +RTln([P]/[S]), missä G' on standardiolojen vapaaenergian ero tuotteelle ja lähtöaineelle, R on yleinen kaasuvakio, T on lämpötila absoluuttisella asteikolla ja [P] ja [S] ovat tuotteen ja lähtöaineen pitoisuudet tässä järjestyksessä. Koska kalvon puolelta toiselle pumppaamisessa ei itse molekyyli muutu (eivätkä tietenkään määritellyt standardiolosuhteet muutu) ja ennen kaikkea koska siis K=1, on G' =0. Toisaalta reaktion tuote on esimerkiksi aineita soluun sisään kuljetettaessa sisällä oleva molekyyli ja lähtöaine ulkona oleva molekyyli. Näin ollen päästään varauksettomien molekyylien tapauksessa Lehningerissä (ja muissa biokemian kirjoissa) mainittuun muotoon G=RTln(c s /c u ). a) Miten suuri konsentraatiosuhde olisi mahdollista saavuttaa 100 %:n hyötysuhteella pumpulle, joka pumppaa yhden varauksettoman molekyylin solun sisään yhden ATP:n fosfodiesterisidoksen hydrolyysienergiaa hyödyntäen? ATP:n hydrolyysille tyypillisissä solunsisäisissä olosuhteissa G = -51,8 kj/mol, kuten Lehningerissä kerrotaan. Entä mikä olisi tulos 20 %:n hyötysuhteella? Jos kyseessä on varauksellinen yhdiste, niin asia on monimutkaisempi. Lukiossa fysiikkaa ja/tai kemiaa lukeneille lienee tuttua, että varauksellisen yhdisteen siirtyessä potentiaalista toiseen siirtymiseen liittyy energian muutos. Toisaalta varaukset luovat ympärilleen potentiaalienergiakentän. Potentiaali V=E p /Q eli potentiaalienergia jaettuna varauksella. Jotta saataisiin ionien potentiaalista toiseen liittyvä energia, täytyy siis potentiaaliero kertoa siirtyvällä varauksella, joka yleensä lasketaan moolia kohti, ts.

6 E p =VQ=zFV, missä z=ionin valenssi ja F on Faradayn vakio 96485,31 C/mol (eli N A alkeisvarausta). Näin ollen saadaan ionin siirtymiselle kalvon puolelta toiselle G=RTln(c s /c u )+zfv, missä V on potentiaaliero sisä- ja ulkopuolen välillä. Mainittakoon, että tasapainossa tietenkin G=0 ja niinpä tasapainossa zfv=-rt ln(c s /c u )=RT ln(c u /c s ) eli V = RT zf c ln c u s Tämä on Nernstin yhtälö, jota käytetään huomattavan paljon membraanipotentiaalin yhteydessä, koska tietenkin membraanipotentiaali=v. Tästä enemmän fysiologian tai sähkökemian kursseilla. Karkeana solukalvon mallina voidaan toisaalta pitää levykapasitaattoria, jossa kapasitaattorin pinta-ala on solun pinta-ala ja kalvon hiilivedylle ε r =2. Levykondensaattorin kapasitanssi C on C=ε 0 ε r A/d, missä A siis on solun pinta-ala ja d on solukalvon paksuus. Laskua varten ajattele solu palloksi, jonka säde r=5 µm. Solukalvon paksuudeksi d voidaan ottaa esim. 3 nm. Ulkopuolen tilavuuden voi olettaa niin suureksi, ettei sen ionikonsentraatio muutu. Siis c u =vakio. Olkoot ionit monovalentteja eli z=1. Kondensaattorille C=Q/V, missä V on jälleen potentiaaliero, Q on varaus ja C=kapasitanssi. Varaus Q=(c s -c u )zft, missä T=solun tilavuus. b) Johda näitä yksinkertaistavia likiarvoistuksia käyttäen lauseke vapaaenergian muutokselle sisällä olevan ionipitoisuuden funktiona. Kannattaa laskea välivaiheet numeerisesti (esim. kapasitanssilla arvo). Yhtälö on edelleen melko hankalaa muotoa suoraan ratkaistavaksi, joten voit tehdä esim. Excelillä kuvaajan, jossa kuvaat G:n c s /c u :n funktiona sopivin välein. Ellet osaa kopioida lausekkeita Excelissä ja luoda c s :lle arvoja Excelin kaavojen avulla (esim. arvo sarakkeessa A2=A1+1), niin pyydä apua esim. osoitteesta Määritä piirtämältäsi kuvaajalta, millä arvolla nyt saavutetaan a-kohdan 20 ja 100 %:n hyötysuhdetta vastaava arvo. Kannattaa tehdä kaavat, joihin voit helposti muuttaa c u :n arvoa. 1º Olkoon c u =10-2 M. 2º Olkoon c u =10-7 M. Ensimmäinen vastaa lähinnä solunulkoisen K + :n ja jälkimmäinen [H + ]:n (tai [H 3 O + ]:n) pitoisuutta. Miten arvioisit eri pumppujen kykyä synnyttää gradientteja tällaisissa oloissa? Entä mikä on c s -c u näille tilanteille? Miten selität eron? c) Mitä tapahtuu, jos ioneja pumppaava pumppu joutuu (kaikkien pumpun kannalta olennaisten reaktanttien ollessa läsnä) ionigradienttiin, joka vastaa suurempaa energiaa kuin ATP? ADP+P i reaktion vapaaenergia?

Laskuharjoitus 3 palautus 11. 11. 2003 mennessä

Laskuharjoitus 3 palautus 11. 11. 2003 mennessä Laskuharjoitus 3 palautus 11. 11. 23 mennessä Tehtävä 1: Entsyymikinetiikkaa Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): 1. A:n sitoutuminen saa konformaatiossa aikaan muutoksen,

Lisätiedot

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia)

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) Elämän edellytykset: Solun täytyy pystyä (a) replikoitumaan (B) katalysoimaan tarvitsemiaan reaktioita tehokkaasti ja selektiivisesti eli sillä on oltava

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

Vastaa lyhyesti selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Vastaa lyhyesti selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1 1) Tunnista molekyylit (1 piste) ja täytä seuraava taulukko (2 pistettä) a) b) c) d) a) Syklinen AMP (camp) (0.25) b) Beta-karoteeni (0.25 p) c) Sakkaroosi (0.25 p) d) -D-Glukopyranoosi (0.25 p) 2 Taulukko.

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

Peptidi ---- F ----- K ----- V ----- R ----- H ----- A ---- A. Siirtäjä-RNA:n (trna:n) (3 ) AAG UUC CAC GCA GUG CGU (5 ) antikodonit

Peptidi ---- F ----- K ----- V ----- R ----- H ----- A ---- A. Siirtäjä-RNA:n (trna:n) (3 ) AAG UUC CAC GCA GUG CGU (5 ) antikodonit Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24.5.2006 Etunimet Tehtävä 3 Pisteet / 20 Osa 1: Haluat selvittää -- F -- K -- V -- R -- H -- A peptidiä

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Laskuharjoitus 1 palautus 21. 10. 2003 mennessä Juha-Matti Alakoskela, jmalakos@cc.helsinki.fi

Laskuharjoitus 1 palautus 21. 10. 2003 mennessä Juha-Matti Alakoskela, jmalakos@cc.helsinki.fi Laskuharjoitus 1 palautus 21. 10. 2003 mennessä Juha-Matti Alakoskela, jmalakos@cc.helsinki.fi Yleistä Kurssin maksimipistemäärä on 44. Kaikista mahdollisista pisteistä 36 on jaossa kurssin tentissä, 4

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. a) Mitä tarkoitetaan biopolymeerilla? Mihin kolmeen ryhmään biopolymeerit voidaan jakaa? (1,5 p) Biopolymeerit ovat luonnossa esiintyviä / elävien solujen muodostamia polymeerejä / makromolekyylejä.

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Valitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto

Valitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto Versio k15 Näin laadit ilmastodiagrammin Libre Officen taulukkolaskentaohjelmalla. Ohje on laadittu käyttäen Libre Officen versiota 4.2.2.1. Voit ladata ohjelmiston omalle koneellesi osoitteesta fi.libreoffice.org.

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

1 Funktiot, suurin (max), pienin (min) ja keskiarvo

1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1. Avaa uusi työkirja 2. Tallenna työkirja nimellä perusfunktiot. 3. Kirjoita seuraava taulukko 4. Muista taulukon kirjoitusjärjestys - Ensin kirjoitetaan

Lisätiedot

H6: Tehtävänanto. Taulukkolaskennan perusharjoitus. Harjoituksen tavoitteet

H6: Tehtävänanto. Taulukkolaskennan perusharjoitus. Harjoituksen tavoitteet H6: Tehtävänanto Taulukkolaskennan perusharjoitus Ennen kuin aloitat harjoituksen teon, lue siihen liittyvä taustamateriaali. Se kannattaa käydä läpi kokeilemalla samalla siinä annetut esimerkit käyttämässäsi

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

EPIONEN Kemia 2015. EPIONEN Kemia 2015

EPIONEN Kemia 2015. EPIONEN Kemia 2015 EPIONEN Kemia 2015 1 Epione Valmennus 2014. Ensimmäinen painos www.epione.fi ISBN 978-952-5723-40-3 Painopaikka: Kopijyvä Oy, Kuopio Tämän teoksen painamiseen käytetty paperi on saanut Pohjoismaisen ympäristömerkin.

Lisätiedot

Juha Haataja 4.10.2011

Juha Haataja 4.10.2011 METROPOLIA Taulukkolaskenta Perusteita Juha Haataja 4.10.2011 Lisätty SUMMA.JOS funktion käyttö (lopussa). Tavoite ja sisältö Tavoite Taulukkolaskennan peruskäytön hallinta Sisältö Työtila Omat kaavat,

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

PUOLIJOHTEISTA. Yleistä

PUOLIJOHTEISTA. Yleistä 39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa

Lisätiedot

KAAVAT. Sisällysluettelo

KAAVAT. Sisällysluettelo Excel 2013 Kaavat Sisällysluettelo KAAVAT KAAVAT... 1 Kaavan tekeminen... 2 Kaavan tekeminen osoittamalla... 2 Kaavan kopioiminen... 3 Kaavan kirjoittaminen... 3 Summa-funktion lisääminen... 4 Suorat eli

Lisätiedot

Kovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia

Kovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia Kovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia 16. helmikuuta 2014/S.. Mikä on kovalenttinen sidos? Kun atomit jakavat ulkoelektronejaan, syntyy kovalenttinen sidos. Kovalenttinen sidos on siis

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

Elektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy

Lisätiedot

5.3 Ensimmäisen asteen polynomifunktio

5.3 Ensimmäisen asteen polynomifunktio Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;

Lisätiedot

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla 4 Aineiston kuvaaminen numeerisesti 1 4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla Tarkastellaan lasten syntymäpainon frekvenssijakauman (kuva 1, oikea sarake) muodostamista Excel- ja SPSS-ohjelmalla.

Lisätiedot

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006 TKK, TTY, LTY, Y, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 1.5.006 1. Uraanimetallin valmistus puhdistetusta uraanidioksidimalmista koostuu seuraavista reaktiovaiheista: (1) U (s)

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Asenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection.

Asenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection. Asentaminen Ohjelman voi ladata vapaasti webistä (http://rsbweb.nih.gov/ij/) ja siitä on olemassa versiot eri käyttöjärjestelmille. Suurimmalle osalle käyttäjistä sopii parhaiten valmiiksi käännetty asennuspaketti

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

KEMIA HYVÄN VASTAUKSEN PIIRTEET

KEMIA HYVÄN VASTAUKSEN PIIRTEET BILÄÄKETIETEEN enkilötunnus: - KULUTUSJELMA Sukunimi: 20.5.2015 Etunimet: Nimikirjoitus: KEMIA Kuulustelu klo 9.00-13.00 YVÄN VASTAUKSEN PIIRTEET Tehtävämonisteen tehtäviin vastataan erilliselle vastausmonisteelle.

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

2. Lisää Java-ohjelmoinnin alkeita. Muuttuja ja viittausmuuttuja (1/4) Muuttuja ja viittausmuuttuja (2/4)

2. Lisää Java-ohjelmoinnin alkeita. Muuttuja ja viittausmuuttuja (1/4) Muuttuja ja viittausmuuttuja (2/4) 2. Lisää Java-ohjelmoinnin alkeita Muuttuja ja viittausmuuttuja Vakio ja literaalivakio Sijoituslause Syötteen lukeminen ja Scanner-luokka 1 Muuttuja ja viittausmuuttuja (1/4) Edellä mainittiin, että String-tietotyyppi

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Excel-harjoitus 1. Tietojen syöttö työkirjaan. Taulukon muotoilu

Excel-harjoitus 1. Tietojen syöttö työkirjaan. Taulukon muotoilu Excel-harjoitus 1 Tietojen syöttö työkirjaan Kuvitteellinen yritys käyttää Excel-ohjelmaa kirjanpidon laskentaan. He merkitsevät taulukkoon päivittäiset ostot, kunnostuskulut, tilapäistilojen vuokramenot,

Lisätiedot

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä www.e-oppi.fi. Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä www.e-oppi.fi. Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava Reaktioyhtälö Sähköisen oppimisen edelläkävijä www.e-oppi.fi Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava Empiirinen kaava (suhdekaava) ilmoittaa, missä suhteessa yhdiste sisältää eri alkuaineiden

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

PROTEIINIEN MUOKKAUS JA KULJETUS

PROTEIINIEN MUOKKAUS JA KULJETUS PROTEIINIEN MUOKKAUS JA KULJETUS 1.1 Endoplasmakalvosto Endoplasmakalvosto on organelli joka sijaitsee tumakalvossa kiinni. Se on topologisesti siis yhtä tumakotelon kanssa. Se koostuu kahdesta osasta:

Lisätiedot

Vinkkejä opettajille ja odotetut tulokset SIVU 1

Vinkkejä opettajille ja odotetut tulokset SIVU 1 Vinkkejä opettajille ja odotetut tulokset SIVU 1 Konteksti palautetaan oppilaiden mieliin käymällä Osan 1 johdanto uudelleen läpi. Kysymysten 1 ja 2 tarkoituksena on arvioida ovatko oppilaat ymmärtäneet

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma:

Kerta 2. Kerta 2 Kerta 3 Kerta 4 Kerta 5. 1. Toteuta Pythonilla seuraava ohjelma: Kerta 2 Kerta 3 Kerta 4 Kerta 5 Kerta 2 1. Toteuta Pythonilla seuraava ohjelma: 2. Tulosta Pythonilla seuraavat luvut allekkain a. 0 10 (eli, näyttää tältä: 0 1 2 3 4 5 6 7 8 9 10 b. 0 100 c. 50 100 3.

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten?

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten? Miten opit parhaiten? Valmistaudu täydellisesti lääkiksen pääsykokeeseen! n Voit harjoitella kotoa käsin huippusuositulla Mafynetti-ohjelmalla. Mukaan kuuluu 4 täysimittaista harjoituskoetta!! n Harjoittelu

Lisätiedot

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi Sähköstatiikka ja magnetismi Konensaattorit ja kapasitanssi ntti Haarto 1.5.13 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén

Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Projektisuunnitelma ja johdanto AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Paula Sirén Sonifikaatio Menetelmä Sovelluksia Mahdollisuuksia Ongelmia Sonifikaatiosovellus: NIR-spektroskopia kariesmittauksissa

Lisätiedot

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015 Lukion kemia 3, Reaktiot ja energia Leena Piiroinen Luento 2 2015 Reaktioyhtälöön liittyviä laskuja 1. Reaktioyhtälön kertoimet ja tuotteiden määrä 2. Lähtöaineiden riittävyys 3. Reaktiosarjat 4. Seoslaskut

Lisätiedot

ALKOHOLIPITOISUUDEN MÄÄRITYS OLUESTA KAASUKROMATOGRAFIL- LA

ALKOHOLIPITOISUUDEN MÄÄRITYS OLUESTA KAASUKROMATOGRAFIL- LA (1) ALKOHOLIPITOISUUDEN MÄÄRITYS OLUESTA KAASUKROMATOGRAFIL- LA 1. Standardiliuosten teko etanolista Arvioi, mikä on näytteen alkoholipitoisuus Valitse sen mukaan 3-4 standardiliuosta, jotka ovat näytteen

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Solun kemiallinen peruskoostumus eläinsolu. Solun kemia. Solun kemiallinen peruskoostumus bakteerisolu. Vesi 1

Solun kemiallinen peruskoostumus eläinsolu. Solun kemia. Solun kemiallinen peruskoostumus bakteerisolu. Vesi 1 Solun kemiallinen peruskoostumus eläinsolu Solun kemia paino-% Vesi 75-90 proteiinit 10-20 Lipidit 2 Hiilihydraatit 1 RNA/DNA 0,7/0,4 Epäorg. 1,5 Solun kemiallinen peruskoostumus bakteerisolu Vesi 1 paino-%

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

GeoGebra-harjoituksia malu-opettajille

GeoGebra-harjoituksia malu-opettajille GeoGebra-harjoituksia malu-opettajille 1. Ohjelman kielen vaihtaminen Mikäli ohjelma ei syystä tai toisesta avaudu toivomallasi kielellä, voit vaihtaa ohjelman käyttöliittymän kielen seuraavasti: 2. Fonttikoon

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Anne-Mari Näsi 15.2.2010 EXCELIN PIKAKÄYTTÖOHJE (EXCEL 2007)

Anne-Mari Näsi 15.2.2010 EXCELIN PIKAKÄYTTÖOHJE (EXCEL 2007) Anne-Mari Näsi 15.2.2010 EXCELIN PIKAKÄYTTÖOHJE (EXCEL 2007) TAULUKON NIMEÄMINEN 1. Klikkaa hiiren kakkospainikkeella Taul1 eli taulukon nimen kohdalla. Valitse kohta Nimeä uudelleen. 2. Kirjoita taulukolle

Lisätiedot

TIETOKONE JA TIETOVERKOT TYÖVÄLINEENÄ

TIETOKONE JA TIETOVERKOT TYÖVÄLINEENÄ 1 Kuva 1 Sakari Järvenpää sakari.o.a.jarvenpaa@student.jyu.fi TIETOKONE JA TIETOVERKOT TYÖVÄLINEENÄ 28.3.16 2 Sisällys 1 Kaaviot... 3 1.1 Kaavion osat... 3 1.2 Kaavion tekeminen... 4 1.3 Kaavion muokkaaminen...

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Nykyarvo ja investoinnit, L7

Nykyarvo ja investoinnit, L7 Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto

Lisätiedot