Laskuharjoitus 3 palautus mennessä. Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa):

Koko: px
Aloita esitys sivulta:

Download "Laskuharjoitus 3 palautus 11. 11. 2003 mennessä. Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa):"

Transkriptio

1 Laskuharjoitus 3 palautus mennessä Tehtävä 1: Entsyymikinetiikkaa Entsyymillä on seuraavanlainen reaktiomekanismi (katso oheista kuvaa): 1. A:n sitoutuminen saa konformaatiossa aikaan muutoksen, joka mahdollistaa B:n sitoutumisen. 2. A:n sitouduttua B voi sitoutua ja sitoutuu. 3. A ja B muuttuvat entsyymin katalysoimassa reaktiossa P:ksi ja Q:ksi. 4. P ja Q irtoavat entsyymistä. Koska entsyymi katalysoi kahden substraatin reaktiota, ei se kaikissa oloissa noudata Michaelisin ja Mentenin kinetiikkaa. Kuitenkin pitämällä A:n konsentraatiota vakiona ja vaihtelemalla B:n konsentraatiota voimme approksimaationa käyttää Michaelisin ja Mentenin yhtälöä v 0 [ S] 0 [ S] 0 = vmax, K M + kun asetamme, että [S]=[B]. a) Edellä mainitussa mittausjärjestelyssä saimme seuraavat tulokset: [B] 0 /mm 1/[B] 0 /mm -1 v 0 /(mms -1 ) 1/v 0 /(mm -1 s) 1,0 1,0 4,9 0,204 1,5 0,67 6,5 0,154 2,0 0,50 8,5 0,118 3,0 0,33 11,9 0,084 5,0 0,20 16,5 0, ,10 23,7 0, ,05 30,8 0,032 Määritä K M ja v max. b) Kun inhibiittoria I oli läsnä vakiokonsentraatio [I], niin saatiin seuraavat tulokset: [B] 0 /mm 1/[B] 0 /mm -1 v 0 /(mms -1 ) 1/v 0 /(mm -1 s) 1,0 1,0 3,2 0,313 1,5 0,67 4,5 0,222 2,0 0,50 5,9 0,169 3,0 0,33 8,2 0,122 5,0 0,20 12,1 0, ,10 18,8 0, ,05 25,6 0,039

2 Onko inhibitio kilpailevaa, kilpailematonta (eli sekamuotoista) vai entsyymin ja substraatin kompleksiin kohdistuvaa? c) Olisiko inhibitiomekanismi sama, jos meillä olisi mittauksessamme vakiokonsentraatio B:tä ja vaihtelisimme A:n konsentraatiota (siis olisi [S]=[A]) ja jos käyttäisimme samaa inhibiittoria I? Mikä se olisi ellei se olisi sama ja miksi? d) Mikä inhibitiomekanismi tulisi c-kohdan tapauksessa kyseeseen, jos reaktion kulussa tai reaktiomekanismissa A:n ja B:n sitoutumisjärjestyksellä ei olisi väliä? Miksi? Tehtävä 2: Lipidikaksoiskalvon potentiaaliprofiilit Lipidikaksoiskalvossa on useita ryhmiä, joilla on varauksia tai osittaisvarauksia. Niinpä kalvon sähköistä potentiaalia kuvaava käyrä on melko monimutkainen. Oheisessa kuvassa on esitetty karkea malli kalvon eri potentiaalista. Tärkein potentiaaleista lienee transmembraanipotentiaali, johon usein viitataankin pelkällä membraani- tai kalvopotentiaalinimityksellä. Transmembraanipotentiaali aiheutuu ionien erilaisesta jakautumisesta solun sisä- ja ulkopuolen välillä ja on siis ulko- ja sisätilavuuksien potentiaalien välinen erotus. Lisäksi kalvon pinnalla voi olla varautuneita ryhmiä esim. negatiivisesti varautuneiden ryhmien vuoksi tähän viitataan pintapotentiaalinimityksellä. Nuo negatiiviset ryhmät myös rikastavat kationeja kalvon läheisyyteen, joten kauempana kalvon pinnasta ovat kationit näennäisesti neutraloineet varauksen. Koska rasvahappoketjut, esterisidokset, lipidien pääryhmät ja lipidin ja veden rajapinnan vesimolekyylit ovat kaksoiskalvoksi järjestäymisen vuoksi joutuneet eisatunnaiseen orientaatioon, on kalvolla myös ns. dipolipotentiaali, jonka muutos tapahtuu lähinnä juuri rajapinnassa. Keskimäärin kalvossa on yleensä enemmän dipolien positiivisia osittaisvarauksia suuntautuneena kalvon hydrofobiseen osaan päin ja enemmän dipolien negatiivisia osittaisvarauksia suuntautuneena vesifaasiin päin. Hahmottele karkea potentiaaliprofiili seuraavissa tapauksissa. 1) Alkutila pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama sisäpuoli on negatiivisesti varautunut eli transmembraanipotentiaali negatiivinen 2) Transmembraanipotentiaalin neutraloituminen pintapotentiaali ja dipolipotentiaali kalvon eri puolilla on sama transmembraanipotentiaali = 0 (vastaa karkeasti esim. aktiopotentiaalitilanteen yhtä vaihetta) 3) Ulkopuolelle lisätty dipoli: pian lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1)

3 kalvon ulkopuolelle on lisätty ainetta, joka sitoutuu nopeasti kaksoiskalvon ulkopuoliseen lehdykkään, muttei vielä ole ehtinyt flip-flopin kautta tasapainottua kalvon eri lehdyköihin; tämä aine alentaa tehokkaasti dipolipotentiaalia sillä puolella kalvoa, jolla se on 4) Ulkopuolelle lisätty dipoli: kauan aikaa lisäyksen jälkeen pintapotentiaali on kalvon eri puolilla sama transmembraanipotentiaali sama kuin tilanteessa 1) tilanteen 3) dipolipotentiaalia alentavan aineen pitoisuus kaksoiskalvon lehdyköissä on ehtinyt tasapainottua Olisiko piirtämiesi kuvien perusteella mielestäsi mahdollista, että joidenkin jänniteherkkien kanavien jännitesensorit saattaisivat aktivoitua myös tilanteessa 3? Jos olisi, niin miksi? [Kuvapohjat piirtämisen helpottamiseksi.] 1) 2) 3) 4)

4 Tehtävä 3: Peptidiantibiootin kalvovuorovaikutukset Mene sivulle ja valitse Databases: Swiss-Prot and TrEMBL. Kirjoita hakusanaksi "magainin" kohtaan Search Swiss-Prot and TrEMBL for. Hakutulokseksi saat afrikkalaisen kynsisammakon tuottaman polypeptidin, josta sen ihon puolustukseen osallistuvia antibioottisia peptideitä pilkotaan. Vastaavia antibioottisia peptideitä on useimmilla ellei kaikilla eläimillä antibioottipeptideitä löytyy esimerkiksi ihmisen syljestä ja kyynelnesteestä. Valitse näytöltä "Magainin II copy A" ja saat antibioottipeptidi magainin II:lle kuuluvan sekvenssin väritettyä punaiseksi koko sekvenssin joukosta. Poimi sekvenssi talteen esimerkiksi Notepadiin. Toimi vastaavasti kolmikirjainlyhenteille merkityn sekvenssin osalta. Imuroi koneelle ohjelma WinPep osoitteesta ja asenna se. Asennettuasi valitse "File" "New" ja liitä Notepadista (yksikirjaiminen) aminohapposekvenssi avautuvaan sekvenssi-ikkunaan. Valitse "Analyze" ja "Physicochemical properties". Mikä on sekvenssin perusteella arvioitu isoelektrinen piste? Mitä se kertoo peptidin varauksesta ph:ssa 7,35? Hae osoitteesta haluamamme hydropaattisuusasteikko. Kyseessä on Raon ja Argosin v julkaisema asteikko, joka kuvaa sitä, miten usein kyseisiä aminohappoja suhteellisesti esiintyy integraalisten membraaniproteiinien membraaniin hautautuneissa osissa. Kokeile tehdä ProtScale-ohjelman ikkunassa ko. sekvenssistä transmembraaniheeliksin etsinnässä käytetty lasku, valitse esim. Window size = 5 sivun alalaidasta. Paina "Submit". Tryptofaanin 1.0 kuvaa suunnilleen arvoa, jolla aminohappo tyypillisesti esiintyy lipidin ja veden välisessä rajavyöhykkeessä. Membraaniympäristössä magainin II:n tiedetään muodostavan a-heeliksin. Kun otetaan huomioon, että kalvon paksuus on n. 20 aminohapon muodostaman a-heeliksin verran, niin miten todennäköiseksi # arvioisit tuloksen perusteella sen, että yksittäinen magainin II -peptidin muodostama a-heeliksi kulkee kalvon puolelta toiselle transmembraaniheeliksinä? Palaa nyt WinPepiin. Valitse "Options" "Preferences" "Helical Wheel Options". Valitse Raon ja Argosin asteikon arvojen perusteella aminohapoille värit: punainen (hydrofobinen) arvoilla >1, violetti arvoilla 0,5 1,0 ja sininen arvoilla <0,5. Valitse sitten "Analyze" "Helical Wheel". Lisäpisteitä voit saada tekemällä esimerkiksi Excelillä seuraavat laskut. Keskimäärin aminohappojen kulma a- heeliksissä (akselin suunnasta katsottuna) on n. 100 eli n. 3,6 aminohappoa/kierros. Tee taulukko esimerkiksi seuraavan sivun esimerkin tavalla käyttäen magainin II:n aminohapposekvenssiä ja Raon ja Argosin hydropaattisuusasteikkoa. Tee uusi sarake, jossa olet vähentänyt kokonaiset kierrokset eli kaikki kulmat palautettu välille astetta (nimeksi esim. "reduced angle"). Huomaa, että 0 =360. [Taulukon bulk angle -arvot kannattaa kirjoittaa käsin tai sitten laskea kaavalla, mutta valita sen jälkeen "copy", "paste special" ja "values" ja kopioida ne pelkkinä arvoina.] Valitse nyt otsikkoineen kokoalue taulukossa, jossa tietosi ovat. Valitse "Data", "Sort", "Sort by:" reduced angle, ascending. Näin saat aminohapot järjestykseen. Laske keskiarvo ±20 kulmista joka kulmalle, jolla on jokin aminohappo. Tee sitten kuvaaja, jossa kuvaat hydropaattisuusarvon kulman funktiona ("Insert", "Chart", "XY Scatter"). Jälleen arvo 1,0 kuvaa n. suunnilleen veden ja lipidin rajapinnalle tyypillistä arvoa, suuremmat hydrofobisia ja pienemmät hydrofiilisiä. Mitä arvioisit ns. helical wheel -kuvaajan ja mahdollisesti tekemäsi Excel-kuvaajan perusteella peptidin muodostaman a-heeliksin orientaatiosta ja sijainnista lipidikaksoiskalvossa? # Tarkkuudeksi riittää ihan hyvin mikä tahansa Stetson Harrison -menetelmän* antama tulos. *Sama kuin Stetson-menetelmä eli hatusta vetäminen, mutta Harrisonin nimi antaa lisää uskottavuutta.

5 Olisiko muunlainen orientaatio/järjestäytyminen kenties mahdollinen, jos kalvossa on paljon peptideitä? Miten tällainen järjestäytyminen saattaisi selittää peptidin soluja tappavan vaikutuksen? amino acid number amino acid amino acid hydropathicity bulk angle 1 G Gly I Ile G Gly K Lys F Phe L Leu H His S Ser A Ala jne. jne. jne. jne. jne. Tehtävä 4: Aineiden kuljetus solukalvon puolelta toiselle Yksi solukalvon keskeisistä rooleista on diffuusion esteenä toimiminen eli solun rajaaminen. Joitakin aineita halutaan kuitenkin päästää solun kalvon läpi. Niinpä solukalvossa on mm. passiivisia kanavaproteiineja, jotka päästävät valikoivasti aineita soluun, ja aktiivisia pumppuja, jotka kemiallista sidosenergiaa hyödyntäen synnyttävät pitoisuusgradientteja. (Lue esim. Lehningerin luvut 12 ja 14.) Pumppuja voi periaatteessa tarkastella entsyymeinä, jotka kytkevät energeettisesti hyvin epäedullisen reaktion (eli nettosiirtymisen pitoisuusgradienttia vastaan) energeettisesti hyvin edulliseen reaktioon (esim. ATP:n hydrolyysi ADP:ksi ja PO ioniksi) ja tehden kokonaisreaktiosta näin energeettisesti edullisen. Ajatellaan seuraavaksi pelkästään aineen siirtymistä kalvon puolelta toiselle. Lehningerissä annetaan reaktioiden yleiseksi vapaaenergian muutokseksi G= G' +RTln([P]/[S]), missä G' on standardiolojen vapaaenergian ero tuotteelle ja lähtöaineelle, R on yleinen kaasuvakio, T on lämpötila absoluuttisella asteikolla ja [P] ja [S] ovat tuotteen ja lähtöaineen pitoisuudet tässä järjestyksessä. Koska kalvon puolelta toiselle pumppaamisessa ei itse molekyyli muutu (eivätkä tietenkään määritellyt standardiolosuhteet muutu) ja ennen kaikkea koska siis K=1, on G' =0. Toisaalta reaktion tuote on esimerkiksi aineita soluun sisään kuljetettaessa sisällä oleva molekyyli ja lähtöaine ulkona oleva molekyyli. Näin ollen päästään varauksettomien molekyylien tapauksessa Lehningerissä (ja muissa biokemian kirjoissa) mainittuun muotoon G=RTln(c s /c u ). a) Miten suuri konsentraatiosuhde olisi mahdollista saavuttaa 100 %:n hyötysuhteella pumpulle, joka pumppaa yhden varauksettoman molekyylin solun sisään yhden ATP:n fosfodiesterisidoksen hydrolyysienergiaa hyödyntäen? ATP:n hydrolyysille tyypillisissä solunsisäisissä olosuhteissa G = -51,8 kj/mol, kuten Lehningerissä kerrotaan. Entä mikä olisi tulos 20 %:n hyötysuhteella? Jos kyseessä on varauksellinen yhdiste, niin asia on monimutkaisempi. Lukiossa fysiikkaa ja/tai kemiaa lukeneille lienee tuttua, että varauksellisen yhdisteen siirtyessä potentiaalista toiseen siirtymiseen liittyy energian muutos. Toisaalta varaukset luovat ympärilleen potentiaalienergiakentän. Potentiaali V=E p /Q eli potentiaalienergia jaettuna varauksella. Jotta saataisiin ionien potentiaalista toiseen liittyvä energia, täytyy siis potentiaaliero kertoa siirtyvällä varauksella, joka yleensä lasketaan moolia kohti, ts.

6 E p =VQ=zFV, missä z=ionin valenssi ja F on Faradayn vakio 96485,31 C/mol (eli N A alkeisvarausta). Näin ollen saadaan ionin siirtymiselle kalvon puolelta toiselle G=RTln(c s /c u )+zfv, missä V on potentiaaliero sisä- ja ulkopuolen välillä. Mainittakoon, että tasapainossa tietenkin G=0 ja niinpä tasapainossa zfv=-rt ln(c s /c u )=RT ln(c u /c s ) eli V = RT zf c ln c u s Tämä on Nernstin yhtälö, jota käytetään huomattavan paljon membraanipotentiaalin yhteydessä, koska tietenkin membraanipotentiaali=v. Tästä enemmän fysiologian tai sähkökemian kursseilla. Karkeana solukalvon mallina voidaan toisaalta pitää levykapasitaattoria, jossa kapasitaattorin pinta-ala on solun pinta-ala ja kalvon hiilivedylle ε r =2. Levykondensaattorin kapasitanssi C on C=ε 0 ε r A/d, missä A siis on solun pinta-ala ja d on solukalvon paksuus. Laskua varten ajattele solu palloksi, jonka säde r=5 µm. Solukalvon paksuudeksi d voidaan ottaa esim. 3 nm. Ulkopuolen tilavuuden voi olettaa niin suureksi, ettei sen ionikonsentraatio muutu. Siis c u =vakio. Olkoot ionit monovalentteja eli z=1. Kondensaattorille C=Q/V, missä V on jälleen potentiaaliero, Q on varaus ja C=kapasitanssi. Varaus Q=(c s -c u )zft, missä T=solun tilavuus. b) Johda näitä yksinkertaistavia likiarvoistuksia käyttäen lauseke vapaaenergian muutokselle sisällä olevan ionipitoisuuden funktiona. Kannattaa laskea välivaiheet numeerisesti (esim. kapasitanssilla arvo). Yhtälö on edelleen melko hankalaa muotoa suoraan ratkaistavaksi, joten voit tehdä esim. Excelillä kuvaajan, jossa kuvaat G:n c s /c u :n funktiona sopivin välein. Ellet osaa kopioida lausekkeita Excelissä ja luoda c s :lle arvoja Excelin kaavojen avulla (esim. arvo sarakkeessa A2=A1+1), niin pyydä apua esim. osoitteesta Määritä piirtämältäsi kuvaajalta, millä arvolla nyt saavutetaan a-kohdan 20 ja 100 %:n hyötysuhdetta vastaava arvo. Kannattaa tehdä kaavat, joihin voit helposti muuttaa c u :n arvoa. 1º Olkoon c u =10-2 M. 2º Olkoon c u =10-7 M. Ensimmäinen vastaa lähinnä solunulkoisen K + :n ja jälkimmäinen [H + ]:n (tai [H 3 O + ]:n) pitoisuutta. Miten arvioisit eri pumppujen kykyä synnyttää gradientteja tällaisissa oloissa? Entä mikä on c s -c u näille tilanteille? Miten selität eron? c) Mitä tapahtuu, jos ioneja pumppaava pumppu joutuu (kaikkien pumpun kannalta olennaisten reaktanttien ollessa läsnä) ionigradienttiin, joka vastaa suurempaa energiaa kuin ATP? ADP+P i reaktion vapaaenergia?

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia)

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia) Elämän edellytykset: Solun täytyy pystyä (a) replikoitumaan (B) katalysoimaan tarvitsemiaan reaktioita tehokkaasti ja selektiivisesti eli sillä on oltava

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Henkilötunnus - Biokemian/bioteknologian valintakoe. Sukunimi Etunimet Tehtävä 1 Pisteet / 20

Henkilötunnus - Biokemian/bioteknologian valintakoe. Sukunimi Etunimet Tehtävä 1 Pisteet / 20 elsingin yliopisto/tampereen yliopisto enkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24. 5. 2004 Etunimet Tehtävä 1 Pisteet / 20 Solujen kalvorakenteet rajaavat solut niiden ulkoisesta ympäristöstä

Lisätiedot

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20 Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Sukunimi 24.5.2006 Etunimet Tehtävä 5 Pisteet / 20 Glukoosidehydrogenaasientsyymi katalysoi glukoosin oksidaatiota

Lisätiedot

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on:

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on: Esimerkki Pourbaix-piirroksen laatimisesta Laadi Pourbaix-piirros, jossa on esitetty metallisen ja ionisen raudan sekä raudan oksidien stabiilisuusalueet vesiliuoksessa 5 C:een lämpötilassa. Ratkaisu Tarkastellaan

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. a) Mitä tarkoitetaan biopolymeerilla? Mihin kolmeen ryhmään biopolymeerit voidaan jakaa? (1,5 p) Biopolymeerit ovat luonnossa esiintyviä / elävien solujen muodostamia polymeerejä / makromolekyylejä.

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla

Lisätiedot

Moottorin kierrosnopeus Tämän harjoituksen jälkeen:

Moottorin kierrosnopeus Tämän harjoituksen jälkeen: Moottorin kierrosnopeus Tämän harjoituksen jälkeen: osaat määrittää moottorin kierrosnopeuden pulssianturin ja Counter-sisääntulon avulla, osaat siirtää manuaalisesti mittaustiedoston LabVIEW:sta MATLABiin,

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Bioteknologian tutkinto-ohjelma Valintakoe Tehtävä 3 Pisteet / 30

Bioteknologian tutkinto-ohjelma Valintakoe Tehtävä 3 Pisteet / 30 Tampereen yliopisto Bioteknologian tutkinto-ohjelma Valintakoe 21.5.2015 Henkilötunnus - Sukunimi Etunimet Tehtävä 3 Pisteet / 30 3. a) Alla on lyhyt jakso dsdna:ta, joka koodaa muutaman aminohappotähteen

Lisätiedot

Luento 7 Taulukkolaskennan edistyneempiä piirteitä Aulikki Hyrskykari

Luento 7 Taulukkolaskennan edistyneempiä piirteitä Aulikki Hyrskykari Luento 7 Taulukkolaskennan edistyneempiä piirteitä 25.10.2016 Aulikki Hyrskykari Luento 7 o Kertausta: suhteellinen ja absoluuttinen viittaus o Tekstitiedoston tuonti Exceliin o Tietojen lajittelu, suodatus

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

MUUTOKSET ELEKTRONI- RAKENTEESSA

MUUTOKSET ELEKTRONI- RAKENTEESSA MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.

Lisätiedot

Reaalikoe Fysiikan ja kemian yo-ohjeita

Reaalikoe Fysiikan ja kemian yo-ohjeita Reaalikoe Fysiikan ja kemian yo-ohjeita Yleisohjeita Laskimet ja taulukot on tuotava tarkastettaviksi vähintään vuorokautta (24h) ennen kirjoituspäivää kansliaan. Laskimien muisti on tyhjennettävä. Jos

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin.

Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3. Yhtälöt Fx-CP400 -laskimella voit ratkaista yhtälöitä ja yhtälöryhmiä eri tavoin. 3.1 Ensimmäisen asteen yhtälöt Ratkaise yhtälö. 3 x ( x 3) 4x 5 Kirjoita tehtävä sellaisenaan, maalaa se ja käytä Interactive

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

Projektityö M12. Johdanto

Projektityö M12. Johdanto Projektityö M12 Johdanto Projektityö sisältää kuutta tehtävää, kuitenkin ne kaikki koskevat saman yhtälön ratkaisua. Yhtälö on sin x 2 =e 2x (1.1) Sen ratkaisu voidaan käsitellä tutkimalla funktio y=e

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

HERMOSTON FYSIOLOGIA I

HERMOSTON FYSIOLOGIA I Hermoston fysiologia I 1 HERMOSTON FYSIOLOGIA I Biosähköiset ilmiöt Kalvopotentiaali Hermosolun lepopotentiaali Hermosolun aktiopotentiaali Ionikanavat Intrasellulaarinen/ekstrasellulaarinen mittaus Neuronin

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

Kondensaatio ja hydrolyysi

Kondensaatio ja hydrolyysi Kondensaatio ja hydrolyysi REAKTIOT JA ENERGIA, KE3 Määritelmä, kondensaatioreaktio: Kondensaatioreaktiossa molekyylit liittyvät yhteen muodostaen uuden funktionaalisen ryhmän ja samalla molekyylien väliltä

Lisätiedot

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Asenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection.

Asenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection. Asentaminen Ohjelman voi ladata vapaasti webistä (http://rsbweb.nih.gov/ij/) ja siitä on olemassa versiot eri käyttöjärjestelmille. Suurimmalle osalle käyttäjistä sopii parhaiten valmiiksi käännetty asennuspaketti

Lisätiedot

Biokemian menetelmät I kurssi, työselostukset, kevät 2016.

Biokemian menetelmät I kurssi, työselostukset, kevät 2016. Biokemian menetelmät I kurssi, työselostukset, kevät 2016. DEADLINET: työselostus tulostettuna paperille Työ 3: To 24.3.2016 klo 15:00 KE1132:n palautuspiste tai BMTK:n Työ 2: Pe 1.4.2016 klo 16:00 KE1132:n

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI sivu 1/5 MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI Kohderyhmä: Kesto: Tavoitteet: Toteutus: Peruskoulu / lukio 15 min. Työn tavoitteena on havainnollistaa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.3.06 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

ROMUMETALLIA OSTAMASSA (OSA 1)

ROMUMETALLIA OSTAMASSA (OSA 1) ROMUMETALLIA OSTAMASSA (OSA 1) Johdanto Kupari on metalli, jota käytetään esimerkiksi sähköjohtojen, tietokoneiden ja putkiston valmistamisessa. Korkean kysynnän vuoksi kupari on melko kallista. Kuparipitoisen

Lisätiedot

(l) B. A(l) + B(l) (s) B. B(s)

(l) B. A(l) + B(l) (s) B. B(s) FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 LIUKOISUUDEN IIPPUVUUS LÄMPÖTILASTA 6. 11. 1998 (HJ) A(l) + B(l) µ (l) B == B(s) µ (s) B FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 1. TEOIAA Kyllästetty liuos LIUKOISUUDEN

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Tehtävät 1/10. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)

Tehtävät 1/10. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Tehtävien

Lisätiedot

9500 FOTOMETRIN mittausohjeet

9500 FOTOMETRIN mittausohjeet 9500 FOTOMETRIN mittausohjeet Fotometrin ohjelmointinumero: Phot 7. KLOORI (DPD) Vapaan, sitoutuneen ja kokonaiskloorin analysointi vedestä. Fotometrinen menetelmä Automaattinen aallonmittaus Mittavälillä

Lisätiedot

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje CHEM-C2230 Pintakemia Tö 2: Etikkahapon orptio aktiivihiileen Töohje 1 Johdanto Kaasun ja kiinteän aineen rajapinnalla tapahtuu leensä kaasun orptiota. Mös liuoksissa tapahtuu usein liuenneen aineen orptiota

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot