T Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi

Koko: px
Aloita esitys sivulta:

Download "T-75.4100 Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi"

Transkriptio

1 T Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi Palautus:

2 1 Tavoite Työssä tutkitaan kolmea kameran kuvanprosessointiketjun vaihetta: tarkennusta, mosaiikkikuvan muuntamista RGB-muotoon (demosaicing) ja valkotasapainon säätöä. Harjoitustyö liittyy luennoilla Kameran automatiikka ( ) ja Kameran kuvanprosessointi ( ) käsiteltyihin asioihin. Lisätietoa löytyy kurssikirjasta [1] sekä Ramanath et al. n artikkelista Color image processing pipeline [3]. 2 Aineisto Harjoitustyöhön liittyvä tiedostopaketti (T-75_4100_H1_tiedostot.zip) löytyy kurssin Harjoitustyötsivulta. Paketin sisältö on listattu taulukkoon 1. Tiedosto focus_01.jpg... focus_09.jpg open_raw_image.m process_linear_rgb_image_to_srgb.m sampleimage.dng separate_bayer_color_channels.m Sisältö Tehtävässä 1 käytettävät harmaasävykuvat (9 kpl) Matlab-skripti, joka lukee raw-kuvan muuttujaksi ja linearisoi sen; kuvan ohjella syntyy metadatamuuttuja meta_info Matlab-skripti, joka muuntaa linearisoidun RGB-kuvan srgb-väriavaruuteen katselua varten Digital Negative (DNG) -muotoinen raw-kuva, jota käytetään tehtävissä 2 ja 3 Matlab-skripti, joka erottelee mosaiikkikuvan värikanavat Taulukko 1: Harjoitustyöpaketin sisältö. Harjoitustyössä käytetään Matlab-ohjelmaa, joka löytyy lähes kaikista koulun tietokoneista ja jonka voi ladata kotikoneelle osoitteesta https://download.aalto.fi/. Kurssin Muu materiaali -sivulta (https: //noppa.aalto.fi/noppa/kurssi/t /materiaali) löytyy lyhyt Matlab-ohje, joka on tehty Kuvatekniikan perusteet -kurssin tarpeisiin, mutta josta voi olla hyötyä tälläkin kurssilla. Matlabin oma Help-toiminto on myös hyödyllinen työkalu. 3 Harjoitustyön pisteytys Työstä saa enintään 25 pistettä; hyväksytyn työn minimipistemäärä on 13 pistettä. Työssä on kolme tehtävää, joista jokainen sisältää useamman toteutettavan menetelmän. Menetelmät on pisteytetty vaikeusasteen ja/tai työmäärän mukaan. Tehtävässä 6.2 voi saada lisäpisteitä toteuttamalla kaikki menetelmät. Kokonaisuudessaan raportista voi kuitenkin saada enintään 25 pistettä. Lisäksi jokaisesta tehtävästä on saatava yli 0 pistettä. Yhden harjoitustyön osuus kurssin kokonaisarvosanasta on 25 %, jolloin kurssin kaksi harjoitustyötä muodostavat yhdessä puolet kurssin arvosanasta. 4 Raportin palautus Harjoitustyöstä palautetaan raportti PDF-muodossa Moodleen kurssin työtilaan (https://moodle.aalto. fi/course/view.php?id=2660) viimeistään sunnuntaina 1.3. kello 23:59. Myöhäisiä palautuksia otetaan vastaan keskiviikkoon 4.3. kello 12:00 asti, mutta myöhässä palautetusta raportista voi saada korkeintaan 50 % maksimipisteistä eikä korjausmahdollisuutta ole. Sivu 1 / 7

3 Pisteet julkistetaan maanantaina 9.3. Jos työssä on korjattavaa, korjattu raportti tulee palauttaa Moodleen viimeistään torstaina klo 23:59. Hyväksytysti korjatusta työstä saa 50 % maksimipisteistä. 5 Raportin rakenne ja tyyli Raportissa kerrotaan mitä on tehty, mitä on saatu tulokseksi ja selitetään tarvittaessa taustalla olevaa teoriaa (erityisesti pyritään vastaamaan alempana tehtävänannossa esitettyihin kysymyksiin). Raportin tulee olla johdonmukainen, ymmärrettävä kokonaisuus. Selostuksiin liitetään kuvat ja kuvaajat (kaikista, jotka pyydetään piirtämään tai esittämään), mieluiten kohtaan, jossa ne on saatu aikaan. Kuvaajat numeroidaan ja niihin viitataan tekstissä. Joissain tapauksissa voi olla havainnollisempaa esittää kuvasta valittu yksityiskohta kuin koko kuva. Tuotettu Matlab-koodi kirjoitetaan selkeästi kommentoituna siihen kohtaan, jossa koodia on käytetty. Useaan kertaan toistuvia komentoja ei tarvitse esittää moneen kertaan, mutta joka kohdassa tulee kuitenkin mainita, mitä on tehty. Pyri noudattamaan harjoitustyöpohjan ulkoasua ja harjoitustöiden yleisohjetta. Molemmat löytyvät kurssin Muu materiaali -sivulta. Voit kirjoittaa raportin suomeksi, ruotsiksi tai englanniksi. Kurssisivujen Muu materiaali -sivulta löytyy muotopohja raportille sekä L A TEX- että Word-formaatissa. Kiinnitä huomiota siihen, että palauttamasi PDF-tiedosto on kohtuullisen kokoinen (< 10 MB). Pakkaa kuvat tarvittaessa. 6 Tehtävät Harjoitustyön ensimmäisessä tehtävässä (kohta 6.1) käsitellään kameran tarkennusta, toisessa (kohta 6.2) mosaiikkikuvan muuntamista RGB-muotoon ja kolmannessa (kohta 6.3) valkotasapainon säätöä. Tehtävät on esitetty osana kameran kuvanprosessointiketjua kuvassa 1. Ensimmäisessä tehtävässä käytetään materiaalina kuvia focus_01.jpg... focus_09.jpg, ja toisessa ja kolmannessa DNG-kuvaa sampleimage.dng. 6.1 Tehtävä 1: Tarkennus (8 p) Työn ensimmäisessä tehtävässä simuloidaan kameran tarkennusprosessia. Tehtävänä on toteuttaa Matlabskripti, joka löytää yhdeksän kuvan setistä (focus_01.jpg... focus_09.jpg) sen kuvan, joka on tarkin annetun tarkennuspisteen suhteen. Tarkennuspisteitä on neljä; ne on listattu alla taulukossa 2. Pisteiden koordinaatit on annettu Matlabmuodossa, jossa rivien (y) indeksit kasvavat ylhäältä alas ja sarakkeiden (x) vasemmalta oikealle. Tehtävässä toteutetaan kolme menetelmää, jotka on listattu pisteineen alla taulukossa 3. Taulukossa on mainittu myös kurssikirjan [1] menetelmää käsittelevät sivunumerot. Kaikkien näiden tarkennusmenetelmien lähtökohtana on, että tarkimmassa kuvassa on eniten korkeataajuuksisia muutoksia. Tämä näkyy kuvassa nopeana harmaasävyarvojen vaihteluna, eli terävinä reunoina. Sivu 2 / 7

4 Kuva 1: Harjoitustyön tehtävät 1 3 osana kameran kuvanprosessointiketjua [1]. # Kuvaus x y 1 Etualalla olevan henkilön paita Lehden Suomen Kuvalehti -teksti Taka-alalla olevan henkilön parta Takaseinän kaakelit Taulukko 2: Tarkennuspisteet. Menetelmä Pisteet Sivunumerot [1] Varianssi Kuvagradientin energia Laplace-operaattorin energia Taulukko 3: Toteutettavat tarkennusmenetelmät. Kaikki kolme menetelmää voidaan siis toteuttaa ns. spatiaalitasossa ilman kuvan muuntamista taajuustasoon esimerkiksi Fourier-muunnoksen avulla. Varianssimenetelmä perustuu oletukseen, että kuvajoukossa, jonka kuvat eroavat toisistaan vain tarkennuksen osalta, terävimmässä kuvissa on suurin varianssi. Matlabissa vektorin varianssi lasketaan komennolla var. Huomioi, että jos käytät tätä komentoa, joudut ensin muuttamaan kuvan matriisimuodosta vektorimuotoon ja lisäksi double precision -muotoon (komennolla im2double). Voit myös halutessasi kokeilla Matlabin edge-reunantunnistusfunktiota ja verrata tuloksia. Kuvagradientin energiaan perustuvassa menetelmässä kuvan terävyyttä arvioidaan sen ensimmäisen asteen derivaatan avulla. Kuvan osittaisderivaattoja voi approksimoida konvoluutiolla (Matlabissa funktio conv2), jossa 3x3-konvoluutiomatriisi liu utetaan kuvan yli. Osittaisderivaattojen G x ja G y konvoluutiomatriisit F x ja F y ovat: Sivu 3 / 7

5 1 2 1 F x = (1) F y = (2) Osittaisderivaattojen laskemisen jälkeen gradientin energiaa voidaan approksimoida laskemalla yhteen osittaisderivaattojen alkioittaiset neliöt. Laplace-operaattorin energiaan perustuva menetelmä muistuttaa kuvagradientin energiaan perustuvaa menetelmää, mutta siinä käytetään ensimmäisen asteen derivaatan sijaan Laplace-operaattoria 2, eli toisen asteen derivaattaa. Kuten edellä, sitäkin voi approksimoida konvoluutiolla käyttämällä seuraavaa konvoluutiomatriisia: F 2 = (3) Laplace-operaattorin 2 energiaa approksimoidaan vastaavasti sen alkioittaisella neliöllä. Jokaisen toteuttamasi menetelmän kohdalla raportoi jokaiselle tarkennuspisteelle kuva, jonka kirjoittamasi skripti valitsi tarkimmaksi. Arvioi silmämääräisesti, valitsiko skripti oikean kuvan. Arvioinnissa voi olla hyödyllistä piirtää kuvaaja, jossa vaaka-akselilla ovat kuvat 1 9 ja pystyakselilla valitsemasi tarkkuusmitan arvot kuullekin kuvalle. Määritä itse sopivan kokoinen tarkennusalue tarkennuspisteen ympärille. Kerro raportissa, miten alueen koon muuttaminen vaikutti menetelmän toimivuuteen. 6.2 Tehtävä 2: Demosaicing (9 p + mahdolliset lisäpisteet) Toisessa tehtävässä muunnetaan DNG-muotoinen raw-kuva (sampleimage.dng) lineaarisesta mosaiikkimuodosta RGB-muotoon, jossa jokaisen pikselin puuttuvat väriarvot on interpoloitu viereisten pikselien arvoista. Vaihtoehtoisia toteutettavia menetelmiä on kolme; ne on listattu alla pisteineen taulukossa 4. Menetelmistä kaksi ensimmäistä, bilineaarinen menetelmä ja väritasomenetelmä, ovat niin sanottuja spatiaalitason menetelmiä, joissa hyödynnetään vierekkäisten pikselien tilastollista samankaltaisuutta. Kolmas menetelmä, joka perustuu Fourier-muunnokseen, on puolestaan taajuustason menetelmä. Tällaiset menetelmät hyödyntävät oletuksia luonnollisten kuvien taajuusjakaumasta sekä ihmisen näköjärjestelmän herkkyydestä korkeille taajuuksille. Tehtävästä voi saada täydet pisteet (9 p) toteuttamalla pelkästään kaksi ensimmäistä menetelmää. Kolmas menetelmä on haastavampi, ja tehtävän voi suorittaa myös tekemällä pelkästään sen. Voit myös halutessasi kerätä lisäpisteitä (yhteensä 25 pisteeseen asti) toteuttamalla kaikki kolme menetelmää. Menetelmä Pisteet Sivunumerot [1] Bilineaarinen menetelmä Väritasomenetelmä Fourier-muunnokseen perustuva menetelmä ; lisäksi [2] Taulukko 4: Toteutettavat / vaihtoehtoiset demosaicing-menetelmät. Sivu 4 / 7

6 Kuva luetaan ensin Matlab-muuttujaksi tehtäväpaketista löytyvällä skriptillä open_raw_image.m. Tämän jälkeen muuttujassa on lineaarinen mosaiikkikuva, jossa vierekkäiset pikselit sisältävät eri värikanavien (R, G tai B) informaatiota. Kuvan Bayer-kuvio on RGGB-tyyppinen, jossa parittomilla riveillä vuorottelevat vasemmalta lukien pikselit R ja G, ja parillisilla riveillä pikselit G ja B. RGGB-kuvio on esitetty alla kuvassa 2. Kuva 2: RGGB-tyyppinen Bayer-kuvio. Molemmissa spatiaalisissa interpolaatiomenetelmissä voidaan hyödyntää konvoluutiota (ks. tehtävä 1). Konvoluutiomatriisi liu utetaan mosaiikkikuvan yli ja saadaan siten interpoloitua pikseleille niiden puuttuvat väriarvot. Koska mosaiikkikuvassa on kaksi kertaa niin paljon vihreitä pikseleitä kuin punaisia tai sinisiä pikseleitä, käytetään puuttuvien vihreiden väriarvojen interpolointiin eri konvoluutiomatriisia kuin punaisille ja sinisille pikseleille. Vihreän kanavan konvoluutiomatriisi F g ja punaisen sekä sinisen kanavan konvoluutiomatriisi F rb on esitetty alla yhtälöissä 4 ja 5. F g = (4) F rb = (5) Jokainen väri käsitellään erikseen siten, että konvoluutiomatriisi liu utetaan yli matriisin, jossa on pelkästään interpoloitavan värin arvoja ja muut arvot ovat nollia. Mosaiikkikuvasta saa tuotettua kuvan, jossa Bayer-matriisin alkuperäiset väriarvot on eroteltu omille dimensioilleen, tehtäväpaketista löytyvällä skriptillä separate_bayer_color_channels.m. Jos mosaiikkikuvan koko on m n, skriptin tuottaman kuvan koko on m n 3, jossa punaiset väriarvot ovat dimensiolla 1, vihreät dimensiolla 2 ja siniset dimensiolla 3. Puuttuvien väriarvojen kohdalla on nollaa. Erotellun matriisin dimensiot voidaan konvoloida erikseen sopivilla konvoluutiomatriiseilla. Konvoluutio tuottaa oletusasetuksilla matriisin, jossa on ylimääräisiä lukuarvoja reunoilla. Tuotetusta matriisista tuleekin poistaa ensimmäinen ja viimeinen rivi ja ensimmäinen ja viimeinen sarake, jotta matriisissa on sama määrä pikseleitä kuin alkuperäisessä kuvassa. Bilineaarisessa interpoloinnissa värikanavat konvoloidaan matriiseilla F g ja F rb. Reunantunnistukseen perustuvassa menetelmässä puuttuvat punaiset ja siniset väriarvot saadaan vastaavasti konvoluutiolla, mutta vihreän kanavan arvot interpoloidaan joko vaaka- tai pystysuunnassa sen mukaan, kummassa suunnassa viereisten pikselien ero on pienempi. Jos tarkoituksena on interpoloida vihreät väriarvot Sivu 5 / 7

7 kuvan 3 mukaisesti pikseliin A5, joka on joko punainen tai sininen, interpolaatio tapahtuu vaakasuunnassa, jos H 5 < V 5, ja pystysuunnassa, jos V 5 < H 5, missä H 5 = A3 + 2 A5 A7 + G4 G6 (6) V 5 = A1 + 2 A5 A9 + G2 G8. (7) Väritasomenetelmä eteen seuraavasti: Kuva 3: Pikselin A5 naapurusto [1]. 1. Interpoloidaan vihreät väriarvot punaisiin ja sinisiin pikseleihin em. tavalla. 2. Interpoloidaan punaiset ja siniset väriarvot vihreisiin pikseleihin kahdesta lähimmästä väriarvosta joko vaaka- tai pystysuunnassa, riippuen siitä, missä suunnassa lähimmät arvot ovat. 3. Interpoloidaan punaiset väriarvot sinisiin pikseleihin ja toisinpäin käyttäen neljää lähintä naapuria kuten bilineaarisessa interpoloinnissa. Matriisin reunoilla interpolointiin voi käyttää lähimmän kolmen (kulmissa kahden) pikselin keskiarvoa. Fourier-muunnokseen perustuvat menetelmät on selostettu yleisesti kurssikirjan [1] sivuilla Tehtävässä toteutettava menetelmä on selostettu tarkemmin artikkelissa [2]. Säädä lopuksi jokaisella menetelmällä tuottamasi RGB-kuvan valkotasapaino (tehtävä 3) ja prosessoi sen jälkeen kuvat srgb-muotoon ( Color Matrixing -vaihe kuvassa 1). srgb-muunnos tapahtuu skriptillä process_linear_rgb_image_to_srgb.m. Vertaile demosaicing-menetelmiä silmämääräisesti. Riittää, että käytät vertailussa vain yhtä valkotasapainomenetelmää. HUOM! srgb-muunnoksessa käytetään kahta muunnosmatriisia: CAM XYZ ja XYZ RGB. Näistä ensimmäinen muuttaa kameran väriarvot XYZ-yhdysavaruuteen ja jälkimmäinen XYZ-arvot edelleen RGBavaruuteen. CAM XYZ-matriisin arvot (9 kpl) löytyvät vektorimuodossa metadatamuuttujan meta_info kentästä ColorMatrix2. Skripti process_linear_rgb_image_to_srgb.m olettaa, että kyseessä on pystyvektori, joka skriptin rivillä 9 muutetaan 3x3-matriisimuotoon transponoimalla. On kuitenkin havaittu, että jotkut Matlabin versiot tallentavat vektorin vaakasuunnassa, jolloin skripti ei toimi oikein. Jos skripti tuottaa virheilmoituksen, poista transponoinnit riviltä Tehtävä 3: Valkotasapaino (8 p) Kolmannessa tehtävässä säädetään toisessa tehtävässä tuotetun kuvan valkotasapaino. Toteutettavia menetelmiä on kolme, joista ensimmäinen perustuu raw-kuvan metadataan (Matlab-muuttuja meta_info), Sivu 6 / 7

8 toinen on ns. Gray world -menetelmä ja kolmas Maximum RGB -menetelmä. Menetelmät on listattu pisteineen alla taulukossa 5. Menetelmä Pisteet Sivunumerot [1] Metadata 2 - Gray world Maximum RGB 3 96 Taulukko 5: Toteutettavat valkotasapainomenetelmät. Metadataan perustuvassa menetelmässä luetaan kameran määrittelemä R-, G- ja B-värikanavien valkopiste muuttujan meta_info kentästä AsShotNeutral. Tämän jälkeen lasketaan valkopisteen arvojen käänteisluvut, jotta niitä voidaan käyttää kertoimina kuvan väriarvoille. Lisäksi kertoimet skaalataan siten, että vihreän kanavan kerroin on 1. Kun tämä on tehty, tehtävässä 2 tuotetun kuvan jokaisen värikanavan arvot kerrotaan vastaavan värikanavan kertoimella. Gray world- ja Maximum RGB -menetelmät on esitelty kirjassa sekä luennon kalvoissa Prosessoi lopuksi kaikilla kolmella menetelmällä tuotetut kuvat srgb-muotoon yllä mainitulla tavalla ja vertaile valkotasapainomenetelmiä silmämääräisesti. Riittää, että käytät vertailussa yhtä valitsemaasi demosaicing-menetelmää (kohta 6.2). Viitteet [1] Sebastiano Battiato, Arcangelo Ranieri Bruna, Giuseppe Messina, and Giovanni Puglisi. Image Processing for Embedded Devices. Bentham Science Publishers, [2] J. W. Glotzbach, R. W. Schafer, and K. lllgner. A method of color filter array interpolation with alias cancellation properties. In IEEE International Conference on Image Processing (ICIP-2001), pages , [3] R. Ramanath, W.E. Snyder, Y. Yoo, and M.S. Drew. Color image processing pipeline. Signal Processing Magazine, IEEE, 22(1):34 43, Sivu 7 / 7

Tieteellinen laskenta 2 Törmäykset

Tieteellinen laskenta 2 Törmäykset Tieteellinen laskenta 2 Törmäykset Aki Kutvonen Op.nmr 013185860 Sisällysluettelo Ohjelman tekninen dokumentti...3 Yleiskuvaus...3 Kääntöohje...3 Ohjelman yleinen rakenne...4 Esimerkkiajo ja käyttöohje...5

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

Tehtävän lisääminen ja tärkeimmät asetukset

Tehtävän lisääminen ja tärkeimmät asetukset Tehtävä Moodlen Tehtävä-aktiviteetti on tarkoitettu erilaisten tehtävien antamiseen verkossa. Tehtävä-aktiviteettia ei ole tarkoitettu ainoastaan tehtävien palautukseen, kuten moni sen sellaiseksi mieltää,

Lisätiedot

Ohjeita. Datan lukeminen

Ohjeita. Datan lukeminen ATK Tähtitieteessä Harjoitustyö Tehtävä Harjoitystyössä tehdään tähtikartta jostain taivaanpallon alueesta annettujen rektaskensio- ja deklinaatiovälien avulla. Karttaan merkitään tähdet aina kuudenteen

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Puzzle SM 2005 15. 25.7.2005. Pistelasku

Puzzle SM 2005 15. 25.7.2005. Pistelasku Puzzle SM 005 5. 5.7.005 Pistelasku Jokaisesta oikein ratkotusta tehtävästä saa yhden () pisteen, minkä lisäksi saa yhden () bonuspisteen jokaisesta muusta ratkojasta, joka ei ole osannut ratkoa tehtävää.

Lisätiedot

Luento 6: 3-D koordinaatit

Luento 6: 3-D koordinaatit Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

TEHTÄVIEN PALAUTTAMINEN MOODLEEN

TEHTÄVIEN PALAUTTAMINEN MOODLEEN TEHTÄVIEN PALAUTTAMINEN MOODLEEN Moodlessa opettaja voi valita tehtävälleen jonkun neljästä erilaisesta tehtävämuodosta: Lähetä yksi tiedosto opiskelija palauttaa yhden tiedoston. Tiedostojen lähetys opiskelija

Lisätiedot

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA Juha Lehtonen 20.3.2002 Joensuun yliopisto Tietojenkäsittelytiede Kandidaatintutkielma ESIPUHE Olen kirjoittanut tämän kandidaatintutkielman Joensuun yliopistossa

Lisätiedot

Esitysgrafiikka (20 pistettä)

Esitysgrafiikka (20 pistettä) Esitysgrafiikka (20 pistettä) Yleistä Tehtävänäsi on rakentaa PowerPoint esitys osavuosikatsauksesta mielikuvituksellista automyyntiä tekevälle yritykselle Skills Car Turku. Käytettävät tiedostot Tiedostot

Lisätiedot

Pauliina Munter / Suvi Junes Tampereen yliopisto/tietohallinto 2013

Pauliina Munter / Suvi Junes Tampereen yliopisto/tietohallinto 2013 Tehtävä 2.2. Tehtävä-työkalun avulla opiskelijat voivat palauttaa tehtäviä Moodleen opettajan arvioitaviksi. Palautettu tehtävä näkyy ainoastaan opettajalle, ei toisille opiskelijoille. Tehtävä-työkalun

Lisätiedot

Kun olet valmis tekemään tilauksen, rekisteröidy sovellukseen seuraavasti:

Kun olet valmis tekemään tilauksen, rekisteröidy sovellukseen seuraavasti: HENKILÖKORTTIEN SUUNNITTELUSOVELLUS SOVELLUKSEN KÄYTTÖOHJE Voit kokeilla korttien suunnittelemista valmiiden korttipohjien avulla ilman rekisteröitymistä. Rekisteröityminen vaaditaan vasta, kun olet valmis

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

2 Konekieli, aliohjelmat, keskeytykset

2 Konekieli, aliohjelmat, keskeytykset ITK145 Käyttöjärjestelmät, kesä 2005 Tenttitärppejä Tässä on lueteltu suurin piirtein kaikki vuosina 2003-2005 kurssin tenteissä kysytyt kysymykset, ja mukana on myös muutama uusi. Jokaisessa kysymyksessä

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D104: Kuvien suodatus 0.9 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio Sisältö 1 Johdanto 1

Lisätiedot

GeoGebra-harjoituksia malu-opettajille

GeoGebra-harjoituksia malu-opettajille GeoGebra-harjoituksia malu-opettajille 1. Ohjelman kielen vaihtaminen Mikäli ohjelma ei syystä tai toisesta avaudu toivomallasi kielellä, voit vaihtaa ohjelman käyttöliittymän kielen seuraavasti: 2. Fonttikoon

Lisätiedot

Datatähti 2009 -alkukilpailu

Datatähti 2009 -alkukilpailu Datatähti 2009 -alkukilpailu Ohjelmointitehtävä 1/3: Hissimatka HUOM: Tutustuthan huolellisesti tehtävien sääntöihin ja palautusohjeisiin (sivu 7) Joukko ohjelmoijia on talon pohjakerroksessa, ja he haluavat

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Tehtävä. Asetukset. Moodlen versiossa 2.3. käyttöön tuli uusi tehtävätyyppi, jonka on tarkoitus tulevaisuudessa korvata aiemmat tehtävätyypit.

Tehtävä. Asetukset. Moodlen versiossa 2.3. käyttöön tuli uusi tehtävätyyppi, jonka on tarkoitus tulevaisuudessa korvata aiemmat tehtävätyypit. Tehtävä Moodlen versiossa 2.3. käyttöön tuli uusi tehtävätyyppi, jonka on tarkoitus tulevaisuudessa korvata aiemmat tehtävätyypit. Uusi tehtävä näkyy Lisää aineisto tai aktiviteetti - valikossa muiden

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Tutustu kameraasi käyttöohjeen avulla, syksy2011 osa 2

Tutustu kameraasi käyttöohjeen avulla, syksy2011 osa 2 Digikamerasta kuvakirjaan Tutustu kameraasi käyttöohjeen avulla, syksy2011 osa 2 Hannu Räisänen 2011 Akun ja kortin poisto Akun ja kortin poisto Sisäinen muisti Kamerassa saattaa olla myös sisäinen muisti

Lisätiedot

Basic Raster Styling and Analysis

Basic Raster Styling and Analysis Basic Raster Styling and Analysis QGIS Tutorials and Tips Author Ujaval Gandhi http://google.com/+ujavalgandhi Translations by Kari Salovaara This work is licensed under a Creative Commons Attribution

Lisätiedot

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Kirjoita jokaiseen palauttamaasi konseptiin kurssin nimi, kokeen päivämäärä, oma nimi ja opiskelijanumero. Vastaa kaikkiin tehtäviin omille konsepteilleen.

Lisätiedot

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Benjamin sivu 1 / 8 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Benjamin sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences Johdatus L A TEXiin 7. Taulukot ja kuvat Dept. of Mathematical Sciences Taulukot I Taulukkomaiset rakenteet tehdään ympäristöllä tabular Ympäristön argumentiksi annetaan sarakemäärittely, joka on kirjaimista

Lisätiedot

HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010)

HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010) EN 1993 -KÄSIKIRJA (v.2010) Täsmennykset ja painovirhekorjaukset 6.6.2012: Sivu 27: Sivun alaosassa, ennen kursivoitua tekstiä: standardin EN 10149-2 mukaiset..., ks. taulukot 1.6 ja 1.7 standardin EN

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

9. Harjoitusjakso III

9. Harjoitusjakso III 9. Harjoitusjakso III Seuraavaksi harjoitellaan kuvien ja tekstin lisäämistä piirtoalueelle. Tarjolla on aikaisempien harjoittelujaksojen tapaan kahden tasoisia harjoituksia: perustaso ja edistynyt taso.

Lisätiedot

Digikuvan peruskäsittelyn. sittelyn työnkulku. Soukan Kamerat 22.1.2007. Soukan Kamerat/SV

Digikuvan peruskäsittelyn. sittelyn työnkulku. Soukan Kamerat 22.1.2007. Soukan Kamerat/SV Digikuvan peruskäsittelyn sittelyn työnkulku Soukan Kamerat 22.1.2007 Sisält ltö Digikuvan siirtäminen kamerasta tietokoneelle Skannaus Kuvan kääntäminen Värien säätö Sävyjen säätö Kuvan koko ja resoluutio

Lisätiedot

Sen jälkeen Microsoft Office ja sen alta löytyy ohjelmat. Ensin käynnistä-valikosta kaikki ohjelmat

Sen jälkeen Microsoft Office ja sen alta löytyy ohjelmat. Ensin käynnistä-valikosta kaikki ohjelmat Microsoft Office 2010 löytyy tietokoneen käynnistävalikosta aivan kuin kaikki muutkin tietokoneelle asennetut ohjelmat. Microsoft kansion sisältä löytyy toimisto-ohjelmistopakettiin kuuluvat eri ohjelmat,

Lisätiedot

Suvi Junes/Pauliina Munter Tietohallinto/Opetusteknologiapalvelut 2014

Suvi Junes/Pauliina Munter Tietohallinto/Opetusteknologiapalvelut 2014 Työpaja Työpaja on vertaisarviointiin soveltuva työkalu. Työpaja mahdollistaa töiden palautuksen ja niiden jakelun opiskelijoiden arvioitavaksi sekä arvioinnin antamisen. Laita Muokkaustila päälle ja lisää

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

NXT Infrapuna-sensori

NXT Infrapuna-sensori NXT Infrapuna-sensori Joissakin tilanteissa on hyödyllistä, jos robotti tunnistaa ympäristöstä tulevaa infrapunavaloa. Tämä tieto on välttämätön esim. RCJ:n robottijalkapallossa. Tässä esitellään vain

Lisätiedot

Paikka-aikakaavio PlanMan Project

Paikka-aikakaavio PlanMan Project Paikka-aikakaavio PlanMan Project 30.4.2014 Sisältö 1. Paikka-elementin käyttöönotto... 2 2. Tehtävien lisääminen paikka-aikakaavioon... 4 3. Tehtävien ulkoasun muokkaus paikka-aikakaaviossa... 5 4. Tehtävien

Lisätiedot

Sisällysluettelo. 1 Yleistä Palautuslaatikosta... 3. 2 Tarkastajan yhteenvetonäkymä... 7. 3 Palautusten tallentaminen omalle koneelle...

Sisällysluettelo. 1 Yleistä Palautuslaatikosta... 3. 2 Tarkastajan yhteenvetonäkymä... 7. 3 Palautusten tallentaminen omalle koneelle... Palautuslaatikko 2 Sisällysluettelo 1 Yleistä Palautuslaatikosta... 3 1.1 Palautuslaatikon luominen... 3 2 Tarkastajan yhteenvetonäkymä... 7 2.1 Palautusten tarkastelu... 8 2.2 Arvosanojen antaminen...

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

6.1 Tekstialueiden valinta eli maalaaminen (tulee tehdä ennen jokaista muokkausta ym.)

6.1 Tekstialueiden valinta eli maalaaminen (tulee tehdä ennen jokaista muokkausta ym.) 6. Tekstin muokkaaminen 6.1 Tekstialueiden valinta eli maalaaminen (tulee tehdä ennen jokaista muokkausta ym.) Tekstin maalaaminen onnistuu vetämällä hiirellä haluamansa tekstialueen yli (eli osoita hiiren

Lisätiedot

Öljyn määrä säiliössä

Öljyn määrä säiliössä Öljyn määrä säiliössä Heikki Apiola 19.1.2011 Liittyy matematiikkalehti Solmun artikkeliin: Riittääkö lämmitysöljy http://solmu.math.helsinki.fi/2011/1/apiola.pdf Maan sisällä makaava lieriön muotoinen

Lisätiedot

Digitaalinen signaalinkäsittely Kuvankäsittely

Digitaalinen signaalinkäsittely Kuvankäsittely Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,

Lisätiedot

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences Johdatus L A TEXiin 7. Taulukot ja kuvat Dept. of Mathematical Sciences Taulukot I Taulukkomaiset rakenteet tehdään ympäristöllä tabular Ympäristön argumentiksi annetaan sarakemäärittely, joka on kirjaimista

Lisätiedot

Johdatus L A TEXiin. 8. Taulukot ja kuvat. Matemaattisten tieteiden laitos

Johdatus L A TEXiin. 8. Taulukot ja kuvat. Matemaattisten tieteiden laitos Johdatus L A TEXiin 8. Taulukot ja kuvat Matemaattisten tieteiden laitos Taulukot I Taulukkomaiset rakenteet tehdään ympäristöllä tabular Ympäristön argumentiksi annetaan sarakemäärittely, joka on kirjaimista

Lisätiedot

http://info.edu.turku.fi/mato/

http://info.edu.turku.fi/mato/ Matemaattisia VALOja Vapaita avoimen lähdekoodin ohjelmia matematiikan opettamiseen ja muuhun matemaattiseen käyttöön. http://info.edu.turku.fi/mato/ LaTeX ja Texmaker LaTeX on ladontaohjelmisto, joka

Lisätiedot

Ohjeet Finna- julisteen PowerPoint- pohjan muokkaamiseen

Ohjeet Finna- julisteen PowerPoint- pohjan muokkaamiseen Ohjeet Finna- julisteen PowerPoint- pohjan muokkaamiseen Ennen kuin aloitat: 1. Asenna tietokoneeseesi ilmainen Miso Regular fontti, jonka saat täältä: https://www.fontspring.com/fonts/marten- nettelbladt/miso

Lisätiedot

Seuratiedote 2/09 LIITE 4

Seuratiedote 2/09 LIITE 4 CSA-järjestelmä Johdantoa USGAn Course Rating -järjestelmässä todetaan: USGAn Course Ratingin ja Slope Ratingin määritysten tulee vastata olosuhteita kauden aikana, jolloin suurin osa kierroksista pelataan.

Lisätiedot

S11-04 Kompaktikamerat stereokamerajärjestelmässä. Projektisuunnitelma

S11-04 Kompaktikamerat stereokamerajärjestelmässä. Projektisuunnitelma AS-0.3200 Automaatio- ja systeemitekniikan projektityöt S11-04 Kompaktikamerat stereokamerajärjestelmässä Projektisuunnitelma Ari-Matti Reinsalo Anssi Niemi 28.1.2011 Projektityön tavoite Projektityössä

Lisätiedot

KUVAMUOKKAUS HARJOITUS

KUVAMUOKKAUS HARJOITUS KUVAMUOKKAUS HARJOITUS PUNASILMÄISYYS, VÄRI, KUVAKOKO, RAJAUS PUNASILMÄISYYS Kuvien punasilmäisyyden joutuu kohtaamaan usein huolimatta kameroiden hyvistä ominaisuuksista. Ohjelma tarjoaa hyvän työvälineen

Lisätiedot

1. STEREOKUVAPARIN OTTAMINEN ANAGLYFIKUVIA VARTEN. Hyvien stereokuvien ottaminen edellyttää kahden perusasian ymmärtämistä.

1. STEREOKUVAPARIN OTTAMINEN ANAGLYFIKUVIA VARTEN. Hyvien stereokuvien ottaminen edellyttää kahden perusasian ymmärtämistä. 3-D ANAGLYFIKUVIEN TUOTTAMINEN Fotogrammetrian ja kaukokartoituksen laboratorio Teknillinen korkeakoulu Petri Rönnholm Perustyövaiheet: A. Ota stereokuvapari B. Poista vasemmasta kuvasta vihreä ja sininen

Lisätiedot

A* Reitinhaku Aloittelijoille

A* Reitinhaku Aloittelijoille A* Reitinhaku Aloittelijoille Alkuperäisen artikkelin kirjoittanut Patrick Lester, suomentanut Antti Veräjänkorva. Suom. huom. Tätä kääntäessäni olen pyrkinyt pitämään saman alkuperäisen tyylin ja kerronnan.

Lisätiedot

H6: Tehtävänanto. Taulukkolaskennan perusharjoitus. Harjoituksen tavoitteet

H6: Tehtävänanto. Taulukkolaskennan perusharjoitus. Harjoituksen tavoitteet H6: Tehtävänanto Taulukkolaskennan perusharjoitus Ennen kuin aloitat harjoituksen teon, lue siihen liittyvä taustamateriaali. Se kannattaa käydä läpi kokeilemalla samalla siinä annetut esimerkit käyttämässäsi

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen TL553 DSK, laboraatiot (.5 op) Kuvasignaalit Jyrki Laitinen TL553 DSK, laboraatiot (.5 op), K25 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja VCDemo-ohjelmistoja käyttäen. Kokoa erilliseen mittauspöytäkirjaan

Lisätiedot

KUVANKÄSITTELY THE GIMP FOR WINDOWS OHJELMASSA

KUVANKÄSITTELY THE GIMP FOR WINDOWS OHJELMASSA KUVANKÄSITTELY THE GIMP FOR WINDOWS OHJELMASSA Ohjeistuksessa käydään läpi kuvan koon ja kuvan kankaan koon muuntaminen esimerkin avulla. Ohjeistus on laadittu auttamaan kuvien muokkaamista kuvakommunikaatiota

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Valitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto

Valitse aineisto otsikoineen maalaamalla se hiirella ja kopioimalla (Esim. ctrl-c). Vaihtoehtoisesti, Lataa CSV-tiedosto Versio k15 Näin laadit ilmastodiagrammin Libre Officen taulukkolaskentaohjelmalla. Ohje on laadittu käyttäen Libre Officen versiota 4.2.2.1. Voit ladata ohjelmiston omalle koneellesi osoitteesta fi.libreoffice.org.

Lisätiedot

Tietokannan luominen:

Tietokannan luominen: Moodle 2 Tietokanta: Tietokanta on työkalu, jolla opettaja ja opiskelijat voivat julkaista tiedostoja, tekstejä, kuvia, linkkejä alueella. Opettaja määrittelee lomakkeen muotoon kentät, joiden kautta opiskelijat,

Lisätiedot

Tarjousten vertailu ja hankintapäätös

Tarjousten vertailu ja hankintapäätös Tarjousten vertailu ja hankintapäätös Asiantuntija Laura Heinonen 12.11.2014 Järjestelmän hyödyntäminen myös kilpailutusprosessin lopussa Järjestelmällä voi hoitaa koko kilpailutusprosessin alusta loppuun

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Tyhjät sivut Sivujen asettelu Lajittelu Monisivutulostus Kopiomäärä Sivujen as. ark. Kaksipuolinen Erotinsivut Sidonta Erotinsiv. lähde Sivujen kehys

Tyhjät sivut Sivujen asettelu Lajittelu Monisivutulostus Kopiomäärä Sivujen as. ark. Kaksipuolinen Erotinsivut Sidonta Erotinsiv. lähde Sivujen kehys Viimeistelyvalikosta voidaan määrittää tulostimen käyttämä tulostustapa. Lisätietoja saat valitsemalla valikon vaihtoehdon: Tyhjät sivut Sivujen asettelu Lajittelu Monisivutulostus Kopiomäärä Sivujen as.

Lisätiedot

3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä

3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä 3D animaatio: liikekäyrät ja interpolointi Tommi Tykkälä Läpivienti Keyframe-animaatio Lineaarisesta interpoloinnista TCB-splineihin Bezier-käyrät Rotaatioiden interpolointi Kameran animointi Skenegraafit

Lisätiedot

S-114.2720 Havaitseminen ja toiminta

S-114.2720 Havaitseminen ja toiminta S-114.2720 Havaitseminen ja toiminta Heikki Hyyti 60451P Harjoitustyö 2 visuaalinen prosessointi Treismanin FIT Kuva 1. Kuvassa on Treismanin kokeen ensimmäinen osio, jossa piti etsiä vihreätä T kirjainta.

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

Asiointipalvelun ohje

Asiointipalvelun ohje Asiointipalvelun ohje Yleistä 1. Kirjautuminen 2. Yhteystiedot 3. Vastaustavan valinta 1. Yleistä 2. Palkkatietojen lataaminen tiedostosta 4. Lomake 1. Yleistä 2. Linkit ja vastaajan tiedot 3. Lomakekäsittely

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

1. ASIAKKAAN OHJEET... 2. 1.1 Varauksen tekeminen... 2. 1.2 Käyttäjätunnuksen luominen... 4. 1.3 Varauksen peruminen... 4

1. ASIAKKAAN OHJEET... 2. 1.1 Varauksen tekeminen... 2. 1.2 Käyttäjätunnuksen luominen... 4. 1.3 Varauksen peruminen... 4 1. ASIAKKAAN OHJEET... 2 1.1 Varauksen tekeminen... 2 1.2 Käyttäjätunnuksen luominen... 4 1.3 Varauksen peruminen... 4 1.4 Omien tietojen muokkaaminen... 5 1.5 Salasanan muuttaminen... 5 2. TYÖNTEKIJÄN

Lisätiedot

Ensin klikkaa käynnistä-valikkoa ja sieltä Kaikki ohjelmat valikosta kaikki ohjelmat

Ensin klikkaa käynnistä-valikkoa ja sieltä Kaikki ohjelmat valikosta kaikki ohjelmat Microsoft Office 2010 löytyy tietokoneen käynnistä-valikosta aivan kuin kaikki muutkin tietokoneelle asennetut ohjelmat. Microsoft kansion sisältä löytyy toimisto-ohjelmistopakettiin kuuluvat eri ohjelmat,

Lisätiedot

PC vai Yoshbox? Moottorinohjauksen lyhyt teoria ja vertailu Mustavalkoisesti kirjoitettuna innostamaan tiedon ja mielipiteiden jakamiseen by PetriK

PC vai Yoshbox? Moottorinohjauksen lyhyt teoria ja vertailu Mustavalkoisesti kirjoitettuna innostamaan tiedon ja mielipiteiden jakamiseen by PetriK PC vai Yoshbox? Moottorinohjauksen lyhyt teoria ja vertailu Mustavalkoisesti kirjoitettuna innostamaan tiedon ja mielipiteiden jakamiseen by PetriK Vastuunrajaus PC vai Yoshbox Kirjoittaja on kirjoittanut

Lisätiedot

Octave-opas. Mikä on Octave ja miksi? Asennus

Octave-opas. Mikä on Octave ja miksi? Asennus Octave-opas Mikä on Octave ja miksi? Asennus Käynnistys ja käyttöliittymä Komennot tiedostojen hallintaan SciTE-editor.m-tiedostot Ohjeita muualla Mikä on Octave ja miksi? Octave on numeeriseen laskentaan

Lisätiedot

Oppilaan opas. Visuaaliviestinnän Instituutti VVI Oy. Versio 0.2 (2008-01-21)

Oppilaan opas. Visuaaliviestinnän Instituutti VVI Oy. Versio 0.2 (2008-01-21) Oppilaan opas Visuaaliviestinnän Instituutti VVI Oy Versio 0.2 (2008-01-21) Versio Päivämäärä Kuvaus 0.1 2005-01-16 Ensimmäinen versio. 0.2 2008-01-21 Korjattu kuvatiedostojen maksimiresoluutio ja muutamia

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat

Lisätiedot

Diagrammeja ja tunnuslukuja luokkani oppilaista

Diagrammeja ja tunnuslukuja luokkani oppilaista Diagrammeja ja tunnuslukuja luokkani oppilaista Aihepiiri Tilastollisiin tunnuslukuihin tutustuminen Luokka-aste Kesto Tarvittavat materiaalit / välineet Lyhyt kuvaus tehtävästä Yläaste 9. luokka 30 min

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

Smart Board lukion lyhyen matematiikan opetuksessa

Smart Board lukion lyhyen matematiikan opetuksessa Smart Board lukion lyhyen matematiikan opetuksessa Haasteita opettajalle lukion lyhyen matematiikan opetuksessa ovat havainnollistaminen ja riittämätön aika. Oppitunnin aikana opettaja joutuu usein palamaan

Lisätiedot

1 Asentaminen. 2 Yleistä ja simuloinnin aloitus 12/2006 1.1.1

1 Asentaminen. 2 Yleistä ja simuloinnin aloitus 12/2006 1.1.1 1 Asentaminen...2 2 Yleistä ja simuloinnin aloitus...2 2.1 PI-säätimet...3 2.2 Trendit...4 3 Lämpölaitoksen ohjaus...5 4 Voimalan alkuarvojen muuttaminen...6 5 Tulostus...8 6 Mahdollisia ongelmia...8 6.1

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Muuttujien määrittely

Muuttujien määrittely Tarja Heikkilä Muuttujien määrittely Määrittele muuttujat SPSS-ohjelmaan lomakkeen kysymyksistä. Harjoitusta varten lomakkeeseen on muokattu kysymyksiä kahdesta opiskelijoiden tekemästä Joupiskan rinneravintolaa

Lisätiedot

Suun terveydenhuollon tarveaineet

Suun terveydenhuollon tarveaineet Suun terveydenhuollon tarveaineet 1. Hintaliite taulukosta puuttuu Tai vastaava merkintä, pyydämme lisäämään sen hintaliitetaulukkoon. Pahoittelumme virheestä, teksti lisätty Hintaliitteelle. 2. Onko kysymysten

Lisätiedot

LUMA Suomi kehittämisohjelma 8.10.2015 14:53 Joustava yhtälönratkaisu Matemaattinen Ohjelmointi ja Yhtälönratkaisu

LUMA Suomi kehittämisohjelma 8.10.2015 14:53 Joustava yhtälönratkaisu Matemaattinen Ohjelmointi ja Yhtälönratkaisu (MOJYR) Sisällysluettelo (MOJYR)... 1 1. Taustaa... 1 2. MOJYR-ohjelma... 2 2.1 Ohjelman asentaminen... 2 2.2 Käyttöliittymä... 2 3. Puumalli... 3 4. MOJYR-ohjelman ominaisuudet... 5 4.1 Yhtälön muodostaminen...

Lisätiedot

Sonera Viestintäpalvelu VIP VIP Laajennettu raportointi Ohje

Sonera Viestintäpalvelu VIP VIP Laajennettu raportointi Ohje Sonera Viestintäpalvelu VIP VIP Laajennettu raportointi Ohje Sisällysluettelo VIP Laajennettu raportointi... 3 Luo raportti Laajennetun raportoinnin työkaluilla... 4 Avaa Laajennettu raportointi... 4 Valitse

Lisätiedot

Luento 4. Timo Savola. 21. huhtikuuta 2006

Luento 4. Timo Savola. 21. huhtikuuta 2006 UNIX-käyttöjärjestelmä Luento 4 Timo Savola 21. huhtikuuta 2006 Osa I Shell Lausekkeet Komentoriville kirjotettu komento on lauseke echo "foo" echo $USER MUUTTUJA=1 ls -l Rivinvaihto

Lisätiedot

6. Harjoitusjakso II. Vinkkejä ja ohjeita

6. Harjoitusjakso II. Vinkkejä ja ohjeita 6. Harjoitusjakso II Seuraavaksi harjoitellaan algebrallisten syötteiden, komentojen ja funktioiden käyttöä GeoGebrassa. Tarjolla on ensimmäisen harjoittelujakson tapaan kahden tasoisia harjoituksia: perustaso

Lisätiedot

1 Yleistä Web-editorista... 3. 1.1 Web-editori -dokumentin luominen... 3. 2 Pikatoimintopainikkeet... 3. 2.1 Tallenna... 3

1 Yleistä Web-editorista... 3. 1.1 Web-editori -dokumentin luominen... 3. 2 Pikatoimintopainikkeet... 3. 2.1 Tallenna... 3 Web-editori 2 Optima Web-editori -ohje Sisällysluettelo 1 Yleistä Web-editorista... 3 1.1 Web-editori -dokumentin luominen... 3 2 Pikatoimintopainikkeet... 3 2.1 Tallenna... 3 2.2 Peru / Tee uudelleen...

Lisätiedot

PlanMan Project projektihallintaohjelmisto koulutusohjeistus

PlanMan Project projektihallintaohjelmisto koulutusohjeistus PlanMan Project projektihallintaohjelmisto koulutusohjeistus PlanMan Project ohjelmiston valmistaja 14.2.2012 Asko Saarenpää Uuden projektin tai työohjelman aloitus Näkymä-valikon kautta voi valita mitä

Lisätiedot

1 Funktiot, suurin (max), pienin (min) ja keskiarvo

1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1. Avaa uusi työkirja 2. Tallenna työkirja nimellä perusfunktiot. 3. Kirjoita seuraava taulukko 4. Muista taulukon kirjoitusjärjestys - Ensin kirjoitetaan

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Vedä ja pudota Maamittauslaitoksen JPEG2000-ortoilmakuva GeoTIFF-muotoon

Vedä ja pudota Maamittauslaitoksen JPEG2000-ortoilmakuva GeoTIFF-muotoon Vedä ja pudota Maamittauslaitoksen JPEG2000-ortoilmakuva GeoTIFF-muotoon Jukka Rahkonen http://latuviitta.org Viimeksi muutettu 16. lokakuuta 2012 Tiivistelmä Latuviitta.ogr -sivuston palautteessa kaivattiin

Lisätiedot

Ohjeita kirjan tekemiseen

Ohjeita kirjan tekemiseen Suomen Sukututkimustoimisto on yhdessä Omakirjan kanssa tehnyt internetiin uuden Perhekirja-sivuston. Se löytyy osoitteesta: www.omakirja.fi -> Kirjat -> Perhekirja tai http://www.omakirja.fi/perhekirja?product=6

Lisätiedot

Suomen virtuaaliammattikorkeakoulu Tietojohtaminen rakennus prosesseissa > 80 % 80 60 % 60 50 % < 50 % Suhteellinen osuus maksimiarvosta (%)

Suomen virtuaaliammattikorkeakoulu Tietojohtaminen rakennus prosesseissa > 80 % 80 60 % 60 50 % < 50 % Suhteellinen osuus maksimiarvosta (%) Oppimisaihion arviointi / Arvioinnin tulos 9 Aineiston arvioinnin tulos arviointialueittain Suomen virtuaaliammattikorkeakoulu Tietojohtaminen rakennus prosesseissa > 80 % 80 60 % 60 50 % < 50 % Arviointialue

Lisätiedot

HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010)

HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010) EN 1993 -KÄSIKIRJA (v.2010) Täsmennykset ja painovirhekorjaukset 20.4.2016: Sivu 72: Alhaalta laskien 2. kappale: Käyttörajatilassa (SLS, Service Limit State)... Käyttörajatilassa (SLS, Serviceability

Lisätiedot

C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa.

C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa. Taulukot C-kielessä taulukko on joukko peräkkäisiä muistipaikkoja, jotka kaikki pystyvät tallettamaan samaa tyyppiä olevaa tietoa. Taulukon muuttujilla (muistipaikoilla) on yhteinen nimi. Jokaiseen yksittäiseen

Lisätiedot

Muuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä

Muuttujan sisällön näet kirjoittamalla sen nimen ilman puolipistettä Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlkompleksianalyysi 1. mlk001.tex Ensiapuohjeita Sijoitus muuttujaan esim: >> z=(1+i)/(1-2*i) Puolipiste lopussa estää tulostuksen. Muuttujan

Lisätiedot

Ohje. Perusdiabetesseurantataulukko: OpenOffice 3.2 Ohjeen versio: 1.0

Ohje. Perusdiabetesseurantataulukko: OpenOffice 3.2 Ohjeen versio: 1.0 Ohje Perusdiabetesseurantataulukko: OpenOffice 3.2 Ohjeen versio: 1.0 Tämän ohjeen tarkoituksen on tutustuttaa sinut Diabetesseurantataulukon käyttöön. Ohjeen lähtökohtana on, että et ennestään hallitse

Lisätiedot

Opiskelun ja työelämän tietotekniikka (DTEK1043)

Opiskelun ja työelämän tietotekniikka (DTEK1043) Opiskelun ja työelämän tietotekniikka (DTEK1043) pääaine- ja sivuaineopiskelijat Taulukkolaskennan perusteet Yleistä Tämä harjoitus käsittelee taulukkolaskentaohjelman perustoimintoja. Harjoituksissa opetellaan

Lisätiedot