T Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi

Koko: px
Aloita esitys sivulta:

Download "T-75.4100 Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi"

Transkriptio

1 T Digitaalinen kuvatekniikka Kevät 2015 Harjoitus 1: Kameran kuvanprosessointi Palautus:

2 1 Tavoite Työssä tutkitaan kolmea kameran kuvanprosessointiketjun vaihetta: tarkennusta, mosaiikkikuvan muuntamista RGB-muotoon (demosaicing) ja valkotasapainon säätöä. Harjoitustyö liittyy luennoilla Kameran automatiikka ( ) ja Kameran kuvanprosessointi ( ) käsiteltyihin asioihin. Lisätietoa löytyy kurssikirjasta [1] sekä Ramanath et al. n artikkelista Color image processing pipeline [3]. 2 Aineisto Harjoitustyöhön liittyvä tiedostopaketti (T-75_4100_H1_tiedostot.zip) löytyy kurssin Harjoitustyötsivulta. Paketin sisältö on listattu taulukkoon 1. Tiedosto focus_01.jpg... focus_09.jpg open_raw_image.m process_linear_rgb_image_to_srgb.m sampleimage.dng separate_bayer_color_channels.m Sisältö Tehtävässä 1 käytettävät harmaasävykuvat (9 kpl) Matlab-skripti, joka lukee raw-kuvan muuttujaksi ja linearisoi sen; kuvan ohjella syntyy metadatamuuttuja meta_info Matlab-skripti, joka muuntaa linearisoidun RGB-kuvan srgb-väriavaruuteen katselua varten Digital Negative (DNG) -muotoinen raw-kuva, jota käytetään tehtävissä 2 ja 3 Matlab-skripti, joka erottelee mosaiikkikuvan värikanavat Taulukko 1: Harjoitustyöpaketin sisältö. Harjoitustyössä käytetään Matlab-ohjelmaa, joka löytyy lähes kaikista koulun tietokoneista ja jonka voi ladata kotikoneelle osoitteesta https://download.aalto.fi/. Kurssin Muu materiaali -sivulta (https: //noppa.aalto.fi/noppa/kurssi/t /materiaali) löytyy lyhyt Matlab-ohje, joka on tehty Kuvatekniikan perusteet -kurssin tarpeisiin, mutta josta voi olla hyötyä tälläkin kurssilla. Matlabin oma Help-toiminto on myös hyödyllinen työkalu. 3 Harjoitustyön pisteytys Työstä saa enintään 25 pistettä; hyväksytyn työn minimipistemäärä on 13 pistettä. Työssä on kolme tehtävää, joista jokainen sisältää useamman toteutettavan menetelmän. Menetelmät on pisteytetty vaikeusasteen ja/tai työmäärän mukaan. Tehtävässä 6.2 voi saada lisäpisteitä toteuttamalla kaikki menetelmät. Kokonaisuudessaan raportista voi kuitenkin saada enintään 25 pistettä. Lisäksi jokaisesta tehtävästä on saatava yli 0 pistettä. Yhden harjoitustyön osuus kurssin kokonaisarvosanasta on 25 %, jolloin kurssin kaksi harjoitustyötä muodostavat yhdessä puolet kurssin arvosanasta. 4 Raportin palautus Harjoitustyöstä palautetaan raportti PDF-muodossa Moodleen kurssin työtilaan (https://moodle.aalto. fi/course/view.php?id=2660) viimeistään sunnuntaina 1.3. kello 23:59. Myöhäisiä palautuksia otetaan vastaan keskiviikkoon 4.3. kello 12:00 asti, mutta myöhässä palautetusta raportista voi saada korkeintaan 50 % maksimipisteistä eikä korjausmahdollisuutta ole. Sivu 1 / 7

3 Pisteet julkistetaan maanantaina 9.3. Jos työssä on korjattavaa, korjattu raportti tulee palauttaa Moodleen viimeistään torstaina klo 23:59. Hyväksytysti korjatusta työstä saa 50 % maksimipisteistä. 5 Raportin rakenne ja tyyli Raportissa kerrotaan mitä on tehty, mitä on saatu tulokseksi ja selitetään tarvittaessa taustalla olevaa teoriaa (erityisesti pyritään vastaamaan alempana tehtävänannossa esitettyihin kysymyksiin). Raportin tulee olla johdonmukainen, ymmärrettävä kokonaisuus. Selostuksiin liitetään kuvat ja kuvaajat (kaikista, jotka pyydetään piirtämään tai esittämään), mieluiten kohtaan, jossa ne on saatu aikaan. Kuvaajat numeroidaan ja niihin viitataan tekstissä. Joissain tapauksissa voi olla havainnollisempaa esittää kuvasta valittu yksityiskohta kuin koko kuva. Tuotettu Matlab-koodi kirjoitetaan selkeästi kommentoituna siihen kohtaan, jossa koodia on käytetty. Useaan kertaan toistuvia komentoja ei tarvitse esittää moneen kertaan, mutta joka kohdassa tulee kuitenkin mainita, mitä on tehty. Pyri noudattamaan harjoitustyöpohjan ulkoasua ja harjoitustöiden yleisohjetta. Molemmat löytyvät kurssin Muu materiaali -sivulta. Voit kirjoittaa raportin suomeksi, ruotsiksi tai englanniksi. Kurssisivujen Muu materiaali -sivulta löytyy muotopohja raportille sekä L A TEX- että Word-formaatissa. Kiinnitä huomiota siihen, että palauttamasi PDF-tiedosto on kohtuullisen kokoinen (< 10 MB). Pakkaa kuvat tarvittaessa. 6 Tehtävät Harjoitustyön ensimmäisessä tehtävässä (kohta 6.1) käsitellään kameran tarkennusta, toisessa (kohta 6.2) mosaiikkikuvan muuntamista RGB-muotoon ja kolmannessa (kohta 6.3) valkotasapainon säätöä. Tehtävät on esitetty osana kameran kuvanprosessointiketjua kuvassa 1. Ensimmäisessä tehtävässä käytetään materiaalina kuvia focus_01.jpg... focus_09.jpg, ja toisessa ja kolmannessa DNG-kuvaa sampleimage.dng. 6.1 Tehtävä 1: Tarkennus (8 p) Työn ensimmäisessä tehtävässä simuloidaan kameran tarkennusprosessia. Tehtävänä on toteuttaa Matlabskripti, joka löytää yhdeksän kuvan setistä (focus_01.jpg... focus_09.jpg) sen kuvan, joka on tarkin annetun tarkennuspisteen suhteen. Tarkennuspisteitä on neljä; ne on listattu alla taulukossa 2. Pisteiden koordinaatit on annettu Matlabmuodossa, jossa rivien (y) indeksit kasvavat ylhäältä alas ja sarakkeiden (x) vasemmalta oikealle. Tehtävässä toteutetaan kolme menetelmää, jotka on listattu pisteineen alla taulukossa 3. Taulukossa on mainittu myös kurssikirjan [1] menetelmää käsittelevät sivunumerot. Kaikkien näiden tarkennusmenetelmien lähtökohtana on, että tarkimmassa kuvassa on eniten korkeataajuuksisia muutoksia. Tämä näkyy kuvassa nopeana harmaasävyarvojen vaihteluna, eli terävinä reunoina. Sivu 2 / 7

4 Kuva 1: Harjoitustyön tehtävät 1 3 osana kameran kuvanprosessointiketjua [1]. # Kuvaus x y 1 Etualalla olevan henkilön paita Lehden Suomen Kuvalehti -teksti Taka-alalla olevan henkilön parta Takaseinän kaakelit Taulukko 2: Tarkennuspisteet. Menetelmä Pisteet Sivunumerot [1] Varianssi Kuvagradientin energia Laplace-operaattorin energia Taulukko 3: Toteutettavat tarkennusmenetelmät. Kaikki kolme menetelmää voidaan siis toteuttaa ns. spatiaalitasossa ilman kuvan muuntamista taajuustasoon esimerkiksi Fourier-muunnoksen avulla. Varianssimenetelmä perustuu oletukseen, että kuvajoukossa, jonka kuvat eroavat toisistaan vain tarkennuksen osalta, terävimmässä kuvissa on suurin varianssi. Matlabissa vektorin varianssi lasketaan komennolla var. Huomioi, että jos käytät tätä komentoa, joudut ensin muuttamaan kuvan matriisimuodosta vektorimuotoon ja lisäksi double precision -muotoon (komennolla im2double). Voit myös halutessasi kokeilla Matlabin edge-reunantunnistusfunktiota ja verrata tuloksia. Kuvagradientin energiaan perustuvassa menetelmässä kuvan terävyyttä arvioidaan sen ensimmäisen asteen derivaatan avulla. Kuvan osittaisderivaattoja voi approksimoida konvoluutiolla (Matlabissa funktio conv2), jossa 3x3-konvoluutiomatriisi liu utetaan kuvan yli. Osittaisderivaattojen G x ja G y konvoluutiomatriisit F x ja F y ovat: Sivu 3 / 7

5 1 2 1 F x = (1) F y = (2) Osittaisderivaattojen laskemisen jälkeen gradientin energiaa voidaan approksimoida laskemalla yhteen osittaisderivaattojen alkioittaiset neliöt. Laplace-operaattorin energiaan perustuva menetelmä muistuttaa kuvagradientin energiaan perustuvaa menetelmää, mutta siinä käytetään ensimmäisen asteen derivaatan sijaan Laplace-operaattoria 2, eli toisen asteen derivaattaa. Kuten edellä, sitäkin voi approksimoida konvoluutiolla käyttämällä seuraavaa konvoluutiomatriisia: F 2 = (3) Laplace-operaattorin 2 energiaa approksimoidaan vastaavasti sen alkioittaisella neliöllä. Jokaisen toteuttamasi menetelmän kohdalla raportoi jokaiselle tarkennuspisteelle kuva, jonka kirjoittamasi skripti valitsi tarkimmaksi. Arvioi silmämääräisesti, valitsiko skripti oikean kuvan. Arvioinnissa voi olla hyödyllistä piirtää kuvaaja, jossa vaaka-akselilla ovat kuvat 1 9 ja pystyakselilla valitsemasi tarkkuusmitan arvot kuullekin kuvalle. Määritä itse sopivan kokoinen tarkennusalue tarkennuspisteen ympärille. Kerro raportissa, miten alueen koon muuttaminen vaikutti menetelmän toimivuuteen. 6.2 Tehtävä 2: Demosaicing (9 p + mahdolliset lisäpisteet) Toisessa tehtävässä muunnetaan DNG-muotoinen raw-kuva (sampleimage.dng) lineaarisesta mosaiikkimuodosta RGB-muotoon, jossa jokaisen pikselin puuttuvat väriarvot on interpoloitu viereisten pikselien arvoista. Vaihtoehtoisia toteutettavia menetelmiä on kolme; ne on listattu alla pisteineen taulukossa 4. Menetelmistä kaksi ensimmäistä, bilineaarinen menetelmä ja väritasomenetelmä, ovat niin sanottuja spatiaalitason menetelmiä, joissa hyödynnetään vierekkäisten pikselien tilastollista samankaltaisuutta. Kolmas menetelmä, joka perustuu Fourier-muunnokseen, on puolestaan taajuustason menetelmä. Tällaiset menetelmät hyödyntävät oletuksia luonnollisten kuvien taajuusjakaumasta sekä ihmisen näköjärjestelmän herkkyydestä korkeille taajuuksille. Tehtävästä voi saada täydet pisteet (9 p) toteuttamalla pelkästään kaksi ensimmäistä menetelmää. Kolmas menetelmä on haastavampi, ja tehtävän voi suorittaa myös tekemällä pelkästään sen. Voit myös halutessasi kerätä lisäpisteitä (yhteensä 25 pisteeseen asti) toteuttamalla kaikki kolme menetelmää. Menetelmä Pisteet Sivunumerot [1] Bilineaarinen menetelmä Väritasomenetelmä Fourier-muunnokseen perustuva menetelmä ; lisäksi [2] Taulukko 4: Toteutettavat / vaihtoehtoiset demosaicing-menetelmät. Sivu 4 / 7

6 Kuva luetaan ensin Matlab-muuttujaksi tehtäväpaketista löytyvällä skriptillä open_raw_image.m. Tämän jälkeen muuttujassa on lineaarinen mosaiikkikuva, jossa vierekkäiset pikselit sisältävät eri värikanavien (R, G tai B) informaatiota. Kuvan Bayer-kuvio on RGGB-tyyppinen, jossa parittomilla riveillä vuorottelevat vasemmalta lukien pikselit R ja G, ja parillisilla riveillä pikselit G ja B. RGGB-kuvio on esitetty alla kuvassa 2. Kuva 2: RGGB-tyyppinen Bayer-kuvio. Molemmissa spatiaalisissa interpolaatiomenetelmissä voidaan hyödyntää konvoluutiota (ks. tehtävä 1). Konvoluutiomatriisi liu utetaan mosaiikkikuvan yli ja saadaan siten interpoloitua pikseleille niiden puuttuvat väriarvot. Koska mosaiikkikuvassa on kaksi kertaa niin paljon vihreitä pikseleitä kuin punaisia tai sinisiä pikseleitä, käytetään puuttuvien vihreiden väriarvojen interpolointiin eri konvoluutiomatriisia kuin punaisille ja sinisille pikseleille. Vihreän kanavan konvoluutiomatriisi F g ja punaisen sekä sinisen kanavan konvoluutiomatriisi F rb on esitetty alla yhtälöissä 4 ja 5. F g = (4) F rb = (5) Jokainen väri käsitellään erikseen siten, että konvoluutiomatriisi liu utetaan yli matriisin, jossa on pelkästään interpoloitavan värin arvoja ja muut arvot ovat nollia. Mosaiikkikuvasta saa tuotettua kuvan, jossa Bayer-matriisin alkuperäiset väriarvot on eroteltu omille dimensioilleen, tehtäväpaketista löytyvällä skriptillä separate_bayer_color_channels.m. Jos mosaiikkikuvan koko on m n, skriptin tuottaman kuvan koko on m n 3, jossa punaiset väriarvot ovat dimensiolla 1, vihreät dimensiolla 2 ja siniset dimensiolla 3. Puuttuvien väriarvojen kohdalla on nollaa. Erotellun matriisin dimensiot voidaan konvoloida erikseen sopivilla konvoluutiomatriiseilla. Konvoluutio tuottaa oletusasetuksilla matriisin, jossa on ylimääräisiä lukuarvoja reunoilla. Tuotetusta matriisista tuleekin poistaa ensimmäinen ja viimeinen rivi ja ensimmäinen ja viimeinen sarake, jotta matriisissa on sama määrä pikseleitä kuin alkuperäisessä kuvassa. Bilineaarisessa interpoloinnissa värikanavat konvoloidaan matriiseilla F g ja F rb. Reunantunnistukseen perustuvassa menetelmässä puuttuvat punaiset ja siniset väriarvot saadaan vastaavasti konvoluutiolla, mutta vihreän kanavan arvot interpoloidaan joko vaaka- tai pystysuunnassa sen mukaan, kummassa suunnassa viereisten pikselien ero on pienempi. Jos tarkoituksena on interpoloida vihreät väriarvot Sivu 5 / 7

7 kuvan 3 mukaisesti pikseliin A5, joka on joko punainen tai sininen, interpolaatio tapahtuu vaakasuunnassa, jos H 5 < V 5, ja pystysuunnassa, jos V 5 < H 5, missä H 5 = A3 + 2 A5 A7 + G4 G6 (6) V 5 = A1 + 2 A5 A9 + G2 G8. (7) Väritasomenetelmä eteen seuraavasti: Kuva 3: Pikselin A5 naapurusto [1]. 1. Interpoloidaan vihreät väriarvot punaisiin ja sinisiin pikseleihin em. tavalla. 2. Interpoloidaan punaiset ja siniset väriarvot vihreisiin pikseleihin kahdesta lähimmästä väriarvosta joko vaaka- tai pystysuunnassa, riippuen siitä, missä suunnassa lähimmät arvot ovat. 3. Interpoloidaan punaiset väriarvot sinisiin pikseleihin ja toisinpäin käyttäen neljää lähintä naapuria kuten bilineaarisessa interpoloinnissa. Matriisin reunoilla interpolointiin voi käyttää lähimmän kolmen (kulmissa kahden) pikselin keskiarvoa. Fourier-muunnokseen perustuvat menetelmät on selostettu yleisesti kurssikirjan [1] sivuilla Tehtävässä toteutettava menetelmä on selostettu tarkemmin artikkelissa [2]. Säädä lopuksi jokaisella menetelmällä tuottamasi RGB-kuvan valkotasapaino (tehtävä 3) ja prosessoi sen jälkeen kuvat srgb-muotoon ( Color Matrixing -vaihe kuvassa 1). srgb-muunnos tapahtuu skriptillä process_linear_rgb_image_to_srgb.m. Vertaile demosaicing-menetelmiä silmämääräisesti. Riittää, että käytät vertailussa vain yhtä valkotasapainomenetelmää. HUOM! srgb-muunnoksessa käytetään kahta muunnosmatriisia: CAM XYZ ja XYZ RGB. Näistä ensimmäinen muuttaa kameran väriarvot XYZ-yhdysavaruuteen ja jälkimmäinen XYZ-arvot edelleen RGBavaruuteen. CAM XYZ-matriisin arvot (9 kpl) löytyvät vektorimuodossa metadatamuuttujan meta_info kentästä ColorMatrix2. Skripti process_linear_rgb_image_to_srgb.m olettaa, että kyseessä on pystyvektori, joka skriptin rivillä 9 muutetaan 3x3-matriisimuotoon transponoimalla. On kuitenkin havaittu, että jotkut Matlabin versiot tallentavat vektorin vaakasuunnassa, jolloin skripti ei toimi oikein. Jos skripti tuottaa virheilmoituksen, poista transponoinnit riviltä Tehtävä 3: Valkotasapaino (8 p) Kolmannessa tehtävässä säädetään toisessa tehtävässä tuotetun kuvan valkotasapaino. Toteutettavia menetelmiä on kolme, joista ensimmäinen perustuu raw-kuvan metadataan (Matlab-muuttuja meta_info), Sivu 6 / 7

8 toinen on ns. Gray world -menetelmä ja kolmas Maximum RGB -menetelmä. Menetelmät on listattu pisteineen alla taulukossa 5. Menetelmä Pisteet Sivunumerot [1] Metadata 2 - Gray world Maximum RGB 3 96 Taulukko 5: Toteutettavat valkotasapainomenetelmät. Metadataan perustuvassa menetelmässä luetaan kameran määrittelemä R-, G- ja B-värikanavien valkopiste muuttujan meta_info kentästä AsShotNeutral. Tämän jälkeen lasketaan valkopisteen arvojen käänteisluvut, jotta niitä voidaan käyttää kertoimina kuvan väriarvoille. Lisäksi kertoimet skaalataan siten, että vihreän kanavan kerroin on 1. Kun tämä on tehty, tehtävässä 2 tuotetun kuvan jokaisen värikanavan arvot kerrotaan vastaavan värikanavan kertoimella. Gray world- ja Maximum RGB -menetelmät on esitelty kirjassa sekä luennon kalvoissa Prosessoi lopuksi kaikilla kolmella menetelmällä tuotetut kuvat srgb-muotoon yllä mainitulla tavalla ja vertaile valkotasapainomenetelmiä silmämääräisesti. Riittää, että käytät vertailussa yhtä valitsemaasi demosaicing-menetelmää (kohta 6.2). Viitteet [1] Sebastiano Battiato, Arcangelo Ranieri Bruna, Giuseppe Messina, and Giovanni Puglisi. Image Processing for Embedded Devices. Bentham Science Publishers, [2] J. W. Glotzbach, R. W. Schafer, and K. lllgner. A method of color filter array interpolation with alias cancellation properties. In IEEE International Conference on Image Processing (ICIP-2001), pages , [3] R. Ramanath, W.E. Snyder, Y. Yoo, and M.S. Drew. Color image processing pipeline. Signal Processing Magazine, IEEE, 22(1):34 43, Sivu 7 / 7

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Markkinoitten mallintaminen ja Internet-markkinat

Markkinoitten mallintaminen ja Internet-markkinat Markkinoitten mallintaminen ja Internet-markkinat Kurssiohjeita: Lue ainakin kertaalleen huolella! Harjoitustyö ja harjoitukset Harjoitustyö palautetaan kahdessa osassa Moodleen. Ensimmäisen osan palautuspäivä

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

Ohjeita. Datan lukeminen

Ohjeita. Datan lukeminen ATK Tähtitieteessä Harjoitustyö Tehtävä Harjoitystyössä tehdään tähtikartta jostain taivaanpallon alueesta annettujen rektaskensio- ja deklinaatiovälien avulla. Karttaan merkitään tähdet aina kuudenteen

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Kohdeyleisö: toisen vuoden teekkari

Kohdeyleisö: toisen vuoden teekkari Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

Harjoitus 4 -- Ratkaisut

Harjoitus 4 -- Ratkaisut Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio: In[15]:= f x : x 1 x Sin x ; Plot f x, x, 0, 3 Π, PlotRange All Out[159]= Luodaan tasavälinen pisteistö välille 0 x 3 Π. Tehdään se ensin kiinnitetyllä

Lisätiedot

Puzzle SM 2005 15. 25.7.2005. Pistelasku

Puzzle SM 2005 15. 25.7.2005. Pistelasku Puzzle SM 005 5. 5.7.005 Pistelasku Jokaisesta oikein ratkotusta tehtävästä saa yhden () pisteen, minkä lisäksi saa yhden () bonuspisteen jokaisesta muusta ratkojasta, joka ei ole osannut ratkoa tehtävää.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

T harjoitustyö, kevät 2012

T harjoitustyö, kevät 2012 T-110.4100 harjoitustyö, kevät 2012 Kurssiassistentit T-110.4100@tkk.fi Tietotekniikan laitos Perustieteiden korkeakoulu Aalto-yliopisto 31.1.2012 Yleistä Kurssin osasuoritteita ovat kaksi osatenttiä,

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Maahan on pudonnut omenoita, ja Uolevi aikoo poimia niitä. Tiedät jokaisesta omenasta, kuinka painava se on.

Maahan on pudonnut omenoita, ja Uolevi aikoo poimia niitä. Tiedät jokaisesta omenasta, kuinka painava se on. Datatähti 2015 A: Omenat Aikaraja: 2 s Maahan on pudonnut omenoita, ja Uolevi aikoo poimia niitä. Tiedät jokaisesta omenasta, kuinka painava se on. Uolevi haluaa saada mahdollisimman monta omenaa, mutta

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA Juha Lehtonen 20.3.2002 Joensuun yliopisto Tietojenkäsittelytiede Kandidaatintutkielma ESIPUHE Olen kirjoittanut tämän kandidaatintutkielman Joensuun yliopistossa

Lisätiedot

2 Konekieli, aliohjelmat, keskeytykset

2 Konekieli, aliohjelmat, keskeytykset ITK145 Käyttöjärjestelmät, kesä 2005 Tenttitärppejä Tässä on lueteltu suurin piirtein kaikki vuosina 2003-2005 kurssin tenteissä kysytyt kysymykset, ja mukana on myös muutama uusi. Jokaisessa kysymyksessä

Lisätiedot

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences

Johdatus L A TEXiin. 7. Taulukot ja kuvat. Dept. of Mathematical Sciences Johdatus L A TEXiin 7. Taulukot ja kuvat Dept. of Mathematical Sciences Taulukot I Taulukkomaiset rakenteet tehdään ympäristöllä tabular Ympäristön argumentiksi annetaan sarakemäärittely, joka on kirjaimista

Lisätiedot

Tentti erilaiset kysymystyypit

Tentti erilaiset kysymystyypit Tentti erilaiset kysymystyypit Kysymystyyppien kanssa kannatta huomioida, että ne ovat yhteydessä tentin asetuksiin ja erityisesti Kysymysten toimintatapa-kohtaan, jossa määritellään arvioidaanko kysymykset

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Datatähti 2009 -alkukilpailu

Datatähti 2009 -alkukilpailu Datatähti 2009 -alkukilpailu Ohjelmointitehtävä 1/3: Hissimatka HUOM: Tutustuthan huolellisesti tehtävien sääntöihin ja palautusohjeisiin (sivu 7) Joukko ohjelmoijia on talon pohjakerroksessa, ja he haluavat

Lisätiedot

RockID-varastonhallintajärjestelmän käyttöohje. v. 1.0

RockID-varastonhallintajärjestelmän käyttöohje. v. 1.0 RockID-varastonhallintajärjestelmän käyttöohje v. 1.0 Yleistä Rockstar lukijakäyttöliittymä Tuotteiden lukeminen lähtevään tilaukseen Tilaukseen kuulumattomat tuotteet Tuotteiden lukeminen tilauksesta

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Nspire CAS - koulutus Ohjelmiston käytön alkeet Pekka Vienonen

Nspire CAS - koulutus Ohjelmiston käytön alkeet Pekka Vienonen Nspire CAS - koulutus Ohjelmiston käytön alkeet 3.12.2014 Pekka Vienonen Ohjelman käynnistys ja käyttöympäristö Käynnistyksen yhteydessä Tervetuloa-ikkunassa on mahdollisuus valita suoraan uudessa asiakirjassa

Lisätiedot

Moottorin kierrosnopeus Tämän harjoituksen jälkeen:

Moottorin kierrosnopeus Tämän harjoituksen jälkeen: Moottorin kierrosnopeus Tämän harjoituksen jälkeen: osaat määrittää moottorin kierrosnopeuden pulssianturin ja Counter-sisääntulon avulla, osaat siirtää manuaalisesti mittaustiedoston LabVIEW:sta MATLABiin,

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

valitsin on useimmiten html-elementti, jolle tyyli halutaan luoda

valitsin on useimmiten html-elementti, jolle tyyli halutaan luoda Valitsimista valitsin on useimmiten html-elementti, jolle tyyli halutaan luoda Muistin virkistykseksi elementtejä http://appro.mit.jyu.fi/doc/www/xhtml/ HTML-elementtien lisäksi valitsimille voidaan luoda

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

T harjoitustehtävät, syksy 2011

T harjoitustehtävät, syksy 2011 T-110.4100 harjoitustehtävät, syksy 2011 Kurssiassistentit Tietotekniikan laitos Perustieteiden korkeakoulu Aalto-yliopisto T-110.4100@tkk.fi Yleistä Kurssin osasuoritteita ovat kaksi osatenttiä ja harjoitustehtävät

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Ohjeet Finna- julisteen PowerPoint- pohjan muokkaamiseen

Ohjeet Finna- julisteen PowerPoint- pohjan muokkaamiseen Ohjeet Finna- julisteen PowerPoint- pohjan muokkaamiseen Ennen kuin aloitat: 1. Asenna tietokoneeseesi ilmainen Miso Regular fontti, jonka saat täältä: https://www.fontspring.com/fonts/marten- nettelbladt/miso

Lisätiedot

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos

Johdatus L A TEXiin. 9. Sivun mitat, ulkoasu ja kalvot. Matemaattisten tieteiden laitos Johdatus L A TEXiin 9. Sivun mitat, ulkoasu ja kalvot Matemaattisten tieteiden laitos Sivun mitoista I L A TEXissa kaikki sivuasetukset (marginaalit, tekstin leveys, jne.) ovat mittoja Keskeisimmät mitat

Lisätiedot

HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010)

HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010) EN 1993 -KÄSIKIRJA (v.2010) Täsmennykset ja painovirhekorjaukset 6.6.2012: Sivu 27: Sivun alaosassa, ennen kursivoitua tekstiä: standardin EN 10149-2 mukaiset..., ks. taulukot 1.6 ja 1.7 standardin EN

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Tentti erilaiset kysymystyypit

Tentti erilaiset kysymystyypit Tentti erilaiset kysymystyypit Monivalinta Monivalintatehtävässä opiskelija valitsee vastauksen valmiiden vastausvaihtoehtojen joukosta. Tehtävään voi olla yksi tai useampi oikea vastaus. Varmista, että

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

2. Eukleideen algoritmi

2. Eukleideen algoritmi 2. Eukleideen algoritmi 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastellaan annettujen lukujen suurimman yhteisen tekijän etsimistä tehokkaalla tavalla. Erinomaisen käyttökelpoinen

Lisätiedot

Sangen lyhyt L A T E X-johdatus

Sangen lyhyt L A T E X-johdatus Sangen lyhyt L A T E X-johdatus Lari Koponen ja Eetu Ahonen 23.1.2013 Koulutuksen tavoitteet Koulutuksen jälkeen pystyy kirjoittamaan työselostuksen L A T E X:illa, eli Dokumentin rakenne tutuksi Tekstin

Lisätiedot

KTKO104 Tieto- ja viestintätekniikka

KTKO104 Tieto- ja viestintätekniikka KTKO104 Tieto- ja viestintätekniikka Tuokio 6 19.12.2014 Tuukka Kivioja tupejuki@student.jyu.fi Samuel Rahikainen samarahi@student.jyu.fi Sisältö 1. Esittelyt, tuokioiden esittely, Optima, peda.net, tietokoneen

Lisätiedot

6.1 Tekstialueiden valinta eli maalaaminen (tulee tehdä ennen jokaista muokkausta ym.)

6.1 Tekstialueiden valinta eli maalaaminen (tulee tehdä ennen jokaista muokkausta ym.) 6. Tekstin muokkaaminen 6.1 Tekstialueiden valinta eli maalaaminen (tulee tehdä ennen jokaista muokkausta ym.) Tekstin maalaaminen onnistuu vetämällä hiirellä haluamansa tekstialueen yli (eli osoita hiiren

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D104: Kuvien suodatus 0.9 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio Sisältö 1 Johdanto 1

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

Sokkelon sisältö säilötään linkitetyille listalle ja tekstitiedostoon. Työ tehdään itsenäisesti yhden hengen ryhmissä. Ideoita voi vaihtaa koodia ei.

Sokkelon sisältö säilötään linkitetyille listalle ja tekstitiedostoon. Työ tehdään itsenäisesti yhden hengen ryhmissä. Ideoita voi vaihtaa koodia ei. Harjoitustyö 1 Harjoitustyö Tehtävä: ohjelmoi olioperustainen sokkeloseikkailu peli Javakielellä. Sokkelon sisältö säilötään linkitetyille listalle ja tekstitiedostoon. Työ tehdään itsenäisesti yhden hengen

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =?

1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? =? Tehtävät 1 1. Mikä on lukujen 10, 9, 8,..., 9, 10 summa? 2. Mikä on lukujen 10, 9, 8,..., 9, 10 tulo? 3. 16 125 250 =? 4. Kirjoita lausekkeeseen sulut siten, että tulos on nolla. 2 + 2 2 2 : 2 + 2 2 2

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Julia hanke Ohjeistus julkisten hankintojen hiilijalanjälkilaskureihin Tuoteryhmä: kopio- ja pehmopaperit

Julia hanke Ohjeistus julkisten hankintojen hiilijalanjälkilaskureihin Tuoteryhmä: kopio- ja pehmopaperit Julia 2030 -hanke Ohjeistus julkisten hankintojen hiilijalanjälkilaskureihin Tuoteryhmä: kopio- ja pehmopaperit Suomen ympäristökeskus SYKE, Maija Mattinen, 20.12.2011. Lomakkeet ja ohjeet on kirjoitettu

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2 Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi

Lisätiedot

PlanMan Project projektihallintaohjelmisto koulutusohjeistus

PlanMan Project projektihallintaohjelmisto koulutusohjeistus PlanMan Project projektihallintaohjelmisto koulutusohjeistus PlanMan Project ohjelmiston valmistaja 14.2.2012 Asko Saarenpää Uuden projektin tai työohjelman aloitus Näkymä-valikon kautta voi valita mitä

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

KÄYTTÖOHJE. Servia. S solutions

KÄYTTÖOHJE. Servia. S solutions KÄYTTÖOHJE Servia S solutions Versio 1.0 Servia S solutions Servia Finland Oy PL 1188 (Microkatu 1) 70211 KUOPIO puh. (017) 441 2780 info@servia.fi www.servia.fi 2001 2004 Servia Finland Oy. Kaikki oikeudet

Lisätiedot

PÄIVITÄ TIETOSI OPTIMASTA! KOOSTE

PÄIVITÄ TIETOSI OPTIMASTA! KOOSTE PÄIVITÄ TIETOSI OPTIMASTA! KOOSTE IT-palvelut / Hannele Rajaniemi optima-support@jyu.fi www.jyu.fi/itp/optima-ohjeet 2 Sisältö Mikä on koosteen idea? Miten saan kooste-työkalun käyttööni? Miten luon koosteen?

Lisätiedot

A* Reitinhaku Aloittelijoille

A* Reitinhaku Aloittelijoille A* Reitinhaku Aloittelijoille Alkuperäisen artikkelin kirjoittanut Patrick Lester, suomentanut Antti Veräjänkorva. Suom. huom. Tätä kääntäessäni olen pyrkinyt pitämään saman alkuperäisen tyylin ja kerronnan.

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Symmetrisistä ryhmistä symmetriaryhmiin

Symmetrisistä ryhmistä symmetriaryhmiin Symmetrisistä ryhmistä symmetriaryhmiin 16. marraskuuta 2006 1 Symmetrisistä ryhmistä... Bijektiivistä kuvausta {1,..., n} {1,..., n} kutsutaan n-permutaatioksi. Merkitään n-permutaatioden joukkoa S n.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Ohjeita kirjan tekemiseen

Ohjeita kirjan tekemiseen Suomen Sukututkimustoimisto on yhdessä Omakirjan kanssa tehnyt internetiin uuden Perhekirja-sivuston. Se löytyy osoitteesta: www.omakirja.fi -> Kirjat -> Perhekirja tai http://www.omakirja.fi/perhekirja?product=6

Lisätiedot

Päivitetty 9.5.2012. Text Mining -käyttöopas

Päivitetty 9.5.2012. Text Mining -käyttöopas Päivitetty 9.5.2012 Text Mining -käyttöopas WEBROPOL ANALYTICS: TEXT MINING Mitä tarkoittaa kun asiakkaat tai henkilöstö antavat arvosanan 3.1 o Keskiarvoa informatiivisempaa ovat taustalla olevat syyt

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Harjoitus 2: Ohjelmointi (Matlab)

Harjoitus 2: Ohjelmointi (Matlab) Harjoitus 2: Ohjelmointi (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 2. Harjoituskerta Aiheet: - Matlabin kontrollirakenteet - Funktiot ja komentojonotiedostot

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

EI MIKÄÄN NÄISTÄ. KUVITETTU MINI-MENTAL STATE EXAMINATION Ohjeet viimeisellä sivulla. 1. Mikä vuosi nyt on? 2. Mikä vuodenaika nyt on?

EI MIKÄÄN NÄISTÄ. KUVITETTU MINI-MENTAL STATE EXAMINATION Ohjeet viimeisellä sivulla. 1. Mikä vuosi nyt on? 2. Mikä vuodenaika nyt on? POTILAS: SYNTYMÄAIKA: TUTKIJA: PÄIVÄMÄÄRÄ: 1. Mikä vuosi nyt on? 2000 2017 2020 1917 EI MIKÄÄN NÄISTÄ 2. Mikä vuodenaika nyt on? KEVÄT KESÄ SYKSY TALVI 3. Monesko päivä tänään on? 1 2 3 4 5 6 7 8 9 10

Lisätiedot

Gimp 3. Polkutyökalu, vektori / rasteri, teksti, kierto, vääntö, perspektiivi, skaalaus (koon muuttaminen) jne.

Gimp 3. Polkutyökalu, vektori / rasteri, teksti, kierto, vääntö, perspektiivi, skaalaus (koon muuttaminen) jne. Gimp 3. Polkutyökalu, vektori / rasteri, teksti, kierto, vääntö, perspektiivi, skaalaus (koon muuttaminen) jne. Moni ammatikseen tietokoneella piirtävä henkilö käyttää piirtämiseen pisteiden sijasta viivoja.

Lisätiedot

,QWHUQHWVHODLPHQNl\WWlPLQHQ±,QWHUQHW([SORUHU

,QWHUQHWVHODLPHQNl\WWlPLQHQ±,QWHUQHW([SORUHU ,QWHUQHWVHODLPHQNl\WWlPLQHQ±,QWHUQHW([SORUHU Tässä pääsette tutustumaan Internet Explorerin (IE) käyttöön. Muitakin selainversioita löytyy, kuten esimerkiksi Netscape, Opera ja Mozilla. Näiden muiden selainten

Lisätiedot

Opinnäytteen nimi ja mahdollinen alaotsikko (tämä pohja toimii parhaiten Word2010-versiolla)

Opinnäytteen nimi ja mahdollinen alaotsikko (tämä pohja toimii parhaiten Word2010-versiolla) T A M P E R E E N Y L I O P I S T O Opinnäytteen nimi ja mahdollinen alaotsikko (tämä pohja toimii parhaiten Word2010-versiolla) Kasvatustieteiden yksikkö Kasvatustieteiden pro gradu -tutkielma NIMI NIMINEN

Lisätiedot

HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010)

HITSATUT PROFIILIT EN 1993 -KÄSIKIRJA (v.2010) EN 1993 -KÄSIKIRJA (v.2010) Täsmennykset ja painovirhekorjaukset 20.4.2016: Sivu 72: Alhaalta laskien 2. kappale: Käyttörajatilassa (SLS, Service Limit State)... Käyttörajatilassa (SLS, Serviceability

Lisätiedot

6. Harjoitusjakso II. Vinkkejä ja ohjeita

6. Harjoitusjakso II. Vinkkejä ja ohjeita 6. Harjoitusjakso II Seuraavaksi harjoitellaan algebrallisten syötteiden, komentojen ja funktioiden käyttöä GeoGebrassa. Tarjolla on ensimmäisen harjoittelujakson tapaan kahden tasoisia harjoituksia: perustaso

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa: Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Topologia Syksy 2010 Harjoitus 11

Topologia Syksy 2010 Harjoitus 11 Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

Hellä ensikosketus. Tomi Kiviniemi

Hellä ensikosketus. Tomi Kiviniemi Hellä ensikosketus Tomi Kiviniemi Asialista Vähän debuggauksen filosofiaa. GDB:n peruskäyttö Netbeansissä. GDB:n peruskäyttö komentoriviympäristössä. Hieman edistyneempää sähellystä komentoriviympäristössä.

Lisätiedot

VirtuaaliAMK Tulipesän paineen ja palamisilman säätö > 80 % % % < 50 % Suhteellinen osuus maksimiarvosta (%)

VirtuaaliAMK Tulipesän paineen ja palamisilman säätö > 80 % % % < 50 % Suhteellinen osuus maksimiarvosta (%) Oppimisaihion arviointi / Arvioinnin tulos 9 Aineiston arvioinnin tulos arviointialueittain VirtuaaliAMK Tulipesän paineen ja palamisilman säätö > 80 % 80 60 % 60 50 % < 50 % Arviointialue Ominaisuuksien

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 3 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä 3/+^ 3 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen 3/ +^ 3 Liiku matematiikka alueella nuolinäppäimin. Kokeile

Lisätiedot

Johdatus ohjelmointiin

Johdatus ohjelmointiin Johdatus ohjelmointiin EXAM tentin liitetiedostojen lataaminen, käyttäminen ja palauttaminen Kerro mahdolliset puutteet tai parannusehdotukset: pietari.heino@tut.fi Tällä sivulla on selitetty lyhyesti

Lisätiedot

Planssit (layouts) ja printtaus

Planssit (layouts) ja printtaus 1 / 21 Digitaalisen arkkitehtuurin yksikkö Aalto-yliopisto 17.11.2015 Planssit (layouts) ja printtaus Yksittäisen kuvan printtaus 2 / 21 Ennen printtausta valitse näkymä, jonka haluat printata, klikkaamalla

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot